智能控制01绪论.ppt
智能控制理论及应用 PPT

智能控制理论及应用 PPT智能控制是控制理论发展的高级阶段,它综合了人工智能、自动控制、运筹学等多学科的知识,旨在解决那些传统控制方法难以处理的复杂系统控制问题。
本 PPT 将带您深入了解智能控制理论及其广泛的应用领域。
一、智能控制的概念智能控制是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
与传统控制相比,智能控制具有以下显著特点:1、不确定性:能够处理系统中的不确定性,如模型不确定性、参数变化和外部干扰等。
2、复杂性:适用于复杂的、非线性的和时变的系统。
3、自适应性:可以根据系统的运行情况和环境变化自动调整控制策略。
4、学习能力:能够从数据和经验中学习,不断优化控制性能。
二、智能控制的主要理论1、模糊控制模糊控制是基于模糊集合理论和模糊逻辑推理的一种智能控制方法。
它通过将精确的输入量模糊化,利用模糊规则进行推理,最后将模糊输出解模糊化为精确的控制量。
模糊控制适用于那些难以建立精确数学模型的系统,例如温度控制、速度控制等。
2、神经网络控制神经网络控制是利用人工神经网络的学习和自适应能力来实现控制的方法。
神经网络可以通过对大量数据的学习,提取系统的特征和规律,从而实现对系统的有效控制。
在机器人控制、模式识别等领域有着广泛的应用。
3、专家控制专家控制是将专家系统的知识和经验与控制理论相结合的一种智能控制方法。
专家系统包含了大量的领域知识和控制策略,能够根据系统的状态和需求提供准确的控制决策。
4、遗传算法遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传变异的过程来寻找最优的控制参数或策略。
它在控制器的参数优化、系统的建模和优化等方面发挥着重要作用。
三、智能控制的应用领域1、工业生产在工业生产过程中,智能控制可以提高生产效率、产品质量和设备的可靠性。
例如,在化工生产中,通过智能控制可以实现对反应过程的精确控制,优化生产工艺;在机器人制造中,利用神经网络控制可以实现机器人的精确动作和轨迹规划。
智能控制基础-第1章 绪论

在实际应用方面,智能控制在现代工业体系的39个 工业大类中都有广泛应用,尤其是在一些高精端行 业中,智能控制应用极为广泛。
5
智能控制 基础
怎样才能学好智能控制?
智能控制作为一门新兴学科,发展极快,分支极多, 需要关注学科最新的发展动态;
对于某些复杂的和饱含不确定性的控制过程,根本无法 用传统数学模型来表示,即无法解决建模问题。
第一章 智能控制概述
28
智能控制 基础
5、智能控制的研究对象
应用传统控制理论进行控制必须提出并遵循一些比较苛 刻的线性化假设,而这些假设在应用中往往与实际情况不 相吻合。
为了提高控制性能,传统控制系统可能变得很复杂,从 而增加了设备的投资,减低了系统的可靠性。
控制问题;
领域是控制界当前的研究热
点和今后的发展方向。
第一章 智能控制概述
24
智能控制 基础
4、智能控制与传统控制的关系
然而,智能控制和传统控制又是密不可分的,而不是互 相排斥的。
传统控制是智能控制的一个组成部分,在这个意义下, 两者可以统一在智能控制的框架下;
传统控制在某种程度上可以认为是智能控制发展中的低 级阶段,智能控制是对传统控制理论的发展。
第1章 智能控制概述
智能控制 基础
课程涵盖的内容
智能控制的基本概念、特点、类型、对象特点; 模糊控制器、模糊辨识、自适应模糊控制器; 神经网络控制; 专家系统; 遗传算法、蚁群算法、粒子群算法。
2
智能控制 基础
课程总目标
掌握智能控制的基本概念、特点、主要类型、对象特点; 掌握智能控制的基本理论框架,了解智能控制技术的主要
智能系统与智能控制PPT课件

.
2
Astrom对智能控制系统的定义
在传统的控制理论中融入诸如逻辑、推理 和启发式机制等非常规的数学手段而构 成的一种更为灵活的控制系统。
.
3
1.2 IEEE 对ICS 的规定
• 目前对ICS还没有一个完整的定义. • IEEE Control System Society 的Technical
• 需要合适的性能指标和有效的学习机制。
.
7
1.5 ICS的发展概况
• 60’s:自控理论和技术已渐趋成熟,AI刚开始
• 66: Mendel将AI引入飞船控制系统的设计
• 71: KS FU提出智能控制这个新兴学科
•
“Learning control systems and intelligent
.
6
Heuristic reasoning & Learning
• Heuristic reasoning(启发式推理): IF…THEN…ELSE
• Learning(学习):由于系统的不确定性, 使得预先设计的控制方案往往不能取得 好的结果,需要在线积累运行的各种信 息并动态地产生出较好的解决方案。
控制的发展
.
12
1.6 智能控制的主要实现手段
• 专家系统 • 模糊集合 • 神经网络 • 进化计算
• 自适应、自组织和自学习控制 • 知识工程 • 信息熵 • Pertri 网 • 人机系统理论 • 形式语言与自动机 • 大系统理论
.
13
简介:ES/FS/NN/GA
• ES:医疗诊断的专家系统 • FS:人对事物的描述,“漂亮”“难看” • NN:模拟人对事物的学习 • GA:模拟生物进化的优化算法
智能控制ppt课件

从经典控制理论到现代控制理论 ,再到智能控制理论,经历了数 十年的发展。
智能控制与传统控制的区别
01
02
03
控制目标
传统控制追求精确的数学 模型,而智能控制更注重 实际控制效果。
控制方法
传统控制主要采用基于模 型的控制方法,而智能控 制则采用基于知识、学习 和经验的方法。
适应性
传统控制对环境和模型变 化适应性较差,而智能控 制具有较强的自适应能力 。
仿真调试、实验调试
调试方法
优化策略
性能评估
05
CATALOGUE
智能控制在工业领域的应用
工业自动化概述
工业自动化的定义和 发展历程
工业自动化对现代工 业的影响和意义
工业自动化的主要技 术和应用领域
中的应用
02
智能传感器和执行器在工业自动化中的应用
模糊控制器设计
包括模糊化、模糊推理、去模糊化等步骤,实现输入 输出的非线性映射。
神经网络控制技术
神经元模型
模拟生物神经元结构和功 能,构建基本计算单元。
神经网络结构
通过神经元之间的连接和 层次结构,构建复杂的神 经网络系统。
学习算法
基于样本数据训练神经网 络,调整连接权重和阈值 ,实现特定功能的控制。
。
智能控制在智能家居中的应用
智能照明控制
通过智能控制器和传感器,实 现灯光的自动调节和远程控制 ,提高照明舒适度和节能效果
。
智能窗帘控制
通过智能控制器和电机,实现 窗帘的自动开关和远程控制, 提高居住便捷性和私密性。
智能空调控制
通过智能控制器和温度传感器 ,实现空调的自动调节和远程 控制,提高居住舒适度和节能 效果。
智能控制基础总结-PPT

0.09 0.6 0.4 0.84 0.49
1.0
NS
ZE
3.3231
0.7
0.3
u
0
2
4
6
u=3.32
27
人工神经网络
❖ 人工神经网络就是模拟人脑细胞的分布式工作特 点和自组织功能,且能实现并行处理、自学习和 非线性映射等能力的一种系统模型。
❖ 神经网络系统研究主要有三个方面的内容,即神 经元模型、神经网络结构和神经网络学习方法。
相等:对于所有的u∈U ,均有μA(u)=μB(u)。记作A=B。 包含:对于所有的u∈U ,均有μA (u) ≤μB(u)。记作AB。 空集:对于所有的u∈U ,均有μA(u) =0 。记作:A= 。 全集:对于所有的u∈U ,均有μA(u) =1。
14
交、并、补
交集:对于所有的u∈U ,均有
μC(u)=μA∧μB=min{μA(u),μB(u)} 则称C为A与B的 交集,记为 C=A∩B 。
28
人工神经元模型
❖ 神经元模型是生物神经元的抽象和模拟。可看 作多输入/单输出的非线性器件 。
xi 输入信号,j=1,2,…,n;
wij 表示从单元uj 到单元ui 的
连接权值;
i
si 外部输入信号;
ui 神经元的内部状态;
θi 阀值;
yi 神经元的输出信号;
Neti wij x j si i , ui f(Neti ), yi g(ui ) j ❖ 通常假设yi=f(Neti),而f为激励函数。
8
智能控制的三元结构
❖ AC:动态反馈控制。
❖ AI:一个知识处理系 统,具有记忆、学习、 信息处理、形式语言、 启发式推理等功能。
《智能控制》PPT课件

1.1.4 智能控制的研究对象 (1)不确定性的模型
7
模型的不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可 能在很大范围内变化。
可以概括为:智能控制是“三高三性”的产物。即“控制系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能”
8
1.1.5 智能控制系统的结构 1.智能控制系统的基本结构
数据库
感知信息 与处理
认知学习 智能控制器
评价机构
传感器
环境 广义对象
还包括外部各种干 扰等不确定制、神经网络控制、专家控制、 学习控制及仿人控制等。
3
第一章
第一节 智能控制的基本概念 1.1.1 智能控制的由来
绪论
传统控制理论(包括经典控制理论和现代控制理论)是建立在被控对象精确数学模
型基础上的控制理论。实际上,许多工业被控对象或过程常常具有非线性、时变性、变 结构、多层次、多因素以及各种不确定性等,难于建立精确的数学模型。即使对一些复 杂对象能够建立起数学模型,模型也往往过于复杂,既不利于设计也难于实现有效控制。 虽然对缺乏数学模型的被控对象可以进行在线辨识,但是由于算法复杂、实时性差,使 得应用范围受到一定限制。
IC:智能控制(intelligent control) AI:人工智能(artificial intelligent) AC:自动控制(automatic control)
9
2. 分层递阶智能控制结构
1977年Saridis以机器人控制为背景提出了三级递阶控制结构。
《智能控制》课件
智能控制的特点
人工智能技术的应用
智能控制利用人工智能技术,将人类的智慧融入到控制系统中。
系统的自我学习和适应能力
智能控制系统能够通过学习和适应不断提升自身性能和响应能力。
高效、精准、快速的控制响应
智能控制系统具备高效率、精确度和快速响应,能够应对复杂的控制任务。
智能控制系统架构
1
智能控制系统的组成
3 智能控制的应用领域
智能控制广泛应用于工技术
神经网络控制
利用神经网络模拟人脑神经元 的工作原理,实现自适应控制 和学习能力。
遗传算法控制
借鉴生物进化原理,通过优胜 劣汰的策略优化控制参数的选 择。
模糊控制
基于模糊逻辑的控制方法,适 用于复杂和不确定的系统。
《智能控制》PPT课件
欢迎来到《智能控制》PPT课件。本课程将深入探讨智能控制的定义、技术、 特点以及应用领域。让我们一起探索智能控制的奥秘和魅力。
概述
1 什么是智能控制?
智能控制是利用先进的人工智能技术,使控制系统具备学习和适应能力的控制方式。
2 智能控制与传统控制的区别
智能控制通过模拟人类智慧实现优化决策,相比传统控制更适应复杂系统需求。
智能控制系统由传感器、执行器、控制器和学习算法四部分组成,实现智能化的控制 功能。
2
智能控制系统的设计流程
智能控制系统设计包括需求分析、模型建立、控制策略选择和参数调优等步骤。
3
智能控制系统实例分析
通过案例分析,了解智能控制在不同领域的真实应用和效果。
智能控制系统应用实践
1 工业控制
2 交通运输
智能控制在工业生产中的应用,提高生产 效率和产品质量。
3 发展智能控制的必
人工智能及其应用PPT课件
3)1948年美数学家创立了控制论
4)1948年美数学家创立了信息论
5)同期美籍奥地利生物学Badenlofe建立了系统论
2、人工智能的发展史-孕育期(1956年前)
物质基础
1)1946年美数学家莫克利发明了世界上第一台通用电子 计算机ENIAC(Electronic Numerical Integrator and Calculator)
1、外显率(P):反映搜索过程中,从初始结点
向目标结点进行时搜索区域的宽度。
定义:P=L/T
L : 从初始结点到达目标的路径长度 T : 整个搜索过程中所生成的结点总数(不包括 初始结点)
不同搜索策略搜索效率的衡量指标
2、有效分枝因数(B):表示每个有效结点平均
生成的子结点数目。
定义:B+B2+B3+…+BL=T
第二节 搜索策略
盲目的图搜索策略:盲目的、无信息引导的搜索 2、深度优先搜索:从根节点开始,首先扩展最新产生的
节点,即沿着搜索树的深度方向发展, 直到没有后继节点再返回。
0
1
7
2 46
8
11
3
5
9 10
特点:不完备的搜索。有时会陷入“死胡同”,可进行“界”的
限制
第二节 搜索策略
启发式的图搜索策略:有信息引导的搜索 启发信息:特定问题领域的信息能有效引导搜索,使搜索简化。 启发信息的作用: 1、用它来决定下一步先扩展哪一个节点,不是盲目、随意地扩展
扩展节点
nsm
第二节 搜索策略
搜索策略:指在搜索过程中如何选择扩展节点的次序问题。 回溯策略 图搜索策略: 盲目的图搜索 启发式搜索
第二节 搜索策略
人工智能智能控制PPT
AI IC AC
智能控制的二元结构
三元结构
萨里迪斯(Saridis)认为,二
元交集的两元互相支配无助于智
能控制的有效和成功应用,必须 把远筹学的概念引入智能控制,
AI
使它成为三元交集中的一个子集。
对这一问题的争论,在IEEE第
一次智能控制国际讨论会上达到
高潮。
OR IC
CT
萨里迪斯还提出分级智能控 制系统,由3个智能(感知)级组 成:组织级、协调级、执行级。
(4)把任务协商作为控制系统以及控制过程的一 部分来考虑。
在上述讨论的基础上,我们能够给出智能控 制器的一般结构,如下图 所示。
不完全任务描述
任务协商
混合知识表示
多传感器 感知系统
各种传感器
高层规划/控制 常规控制过程
各种驱动器
世界(环境)
智能控制器的一般结构
3. 智能控制的特点
(1)同时具有以知识表示的非数学广义模型 和以数学模型表示的混合控制过程。
智能控制的三元结构
知识组织器
协调器1 硬件控制器1
协调器n 硬件控制器n
组织级 协调级 执行级
过程1
过程n
分级智能控制系统
四元结构 在研究了前述各种智
能控制的结构理论和各相 关学科的关系之后,蔡自 兴提出四元智能控制结构, 把智能控制看做人工智能、 自动控制、运筹学和信息 论四个学科的交集。
AI
1967年,Leondes和Mendel首先正式使用 “智能控制”一词。
智能控制的产生和发展
1985年,在美国首次召开了智能控制学 术讨论会。
1987年又在美国召开了智能控制的首届 国际学术会议,标志着智能控制作为一个 新的学科分支得到承认。
智能控制理论及应用PPT课件
•智能控制理论概述•智能控制基础理论•智能控制技术与方法•智能控制系统设计与实现•智能控制在工业领域应用案例•智能控制在非工业领域应用案例•智能控制发展趋势与挑战目录智能控制定义与发展定义发展历程智能控制与传统控制比较控制对象传统控制主要针对线性、时不变系统,而智能控制则面向复杂、非线性、时变系统。
控制方法传统控制主要采用基于数学模型的方法,而智能控制则运用神经网络、模糊逻辑、遗传算法等智能算法。
控制性能传统控制在稳定性和精确性方面表现较好,而智能控制则在适应性和鲁棒性方面更具优势。
航空航天智能控制可以提高飞行器的自主导航能力、实现复杂任务的自主决策和执行。
智能控制可以实现车辆的自主驾驶、交通拥堵预测、路径规划等功能。
智能家居智能控制可以实现家居设备的远程控制、语音控制、场景定制等功能。
机器人控制智能控制可以实现机器人的自主导航、路径规划、动态避障智能制造智能控制应用领域1 2 3模糊集合与隶属度函数模糊关系与模糊推理模糊控制器设计模糊数学基础神经网络基础神经元模型与神经网络结构01神经网络学习算法02神经网络在智能控制中的应用03遗传算法基础遗传算法基本原理遗传算法优化方法遗传算法在智能控制中的应用模糊控制技术模糊控制基本原理01模糊控制器设计02模糊控制应用实例03神经网络控制技术神经网络基本原理神经网络控制器设计神经网络控制应用实例遗传算法优化技术遗传算法基本原理遗传算法优化方法遗传算法优化应用实例系统需求分析明确系统控制目标和任务分析系统环境和约束确定系统性能指标系统架构设计选择合适的控制策略根据系统需求和性能指标,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。
设计控制器结构根据所选控制策略,设计相应的控制器结构,包括输入、输出、算法等部分。
构建系统框架将控制器与被控对象、传感器和执行器等连接起来,构建完整的智能控制系统框架。
传感器模块控制算法模块执行器模块通信模块关键模块实现自动化生产线优化调度基于遗传算法的调度优化模糊控制在生产调度中的应用基于神经网络的调度预测01基于A*算法的路径规划02模糊逻辑在机器人导航中的应用03强化学习在机器人路径规划中的应用机器人路径规划与导航神经网络在故障预测中的应用采用神经网络对历史故障数据进行学习,预测未来可能出现的故障及其发生时间,为预防性维护提供决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指令:10分钟 水流: 强
甩干: 5分钟
What?---例子(续)
• 模糊控制洗衣机
– 把家庭主妇的智能、经验转化为自己的控制 策略
衣服很脏,洗衣时间长; 衣服不太脏,洗衣时间稍短; 棉质衣服,水流稍弱; 化纤类衣服,水流稍强;
……
模糊数学 What?---例子(续)
? 传感器
洗衣时间 20*0.7+35*0.3
=24.5
洗衣时间
How?
• 输入、输出模糊化:
• 运用规则库进行决策:人的知识、经 验
• 通过反模糊化得到最终的输出:
模糊控制器
规则库
参考 输入
模糊化
模糊推理
反模糊化
输出 被控对象
Why?
• 常规控制:建立在对象的精确数学模型之上
有些对象数学 模型很难得到
熟练的操作工 人利用经验可 以控制得很好
• 现代控制理论:
– 20世纪50、60年代逐渐发展起来 – 系统描述方法:状态空间描述法 – 研究对象:多输入、多输出的复杂对象
• 主要理论及方法:
– 线性系统理论:能控性、能观性、稳定性 – 最优控制 – 自适应控制 – 系统辨识
第三阶段 先进控制、智能控制
• 20世纪70、80年代发展起来
洗衣机智能模糊控制
衣服非常脏,洗衣时间较长 衣服脏, 洗衣时间适中
衣服不太脏,洗衣时间稍短
……
?执行器
How?--- 模糊的概念
天气冷热
雨的大小
风的强弱
人的胖瘦
年龄大小
个子高低
An Example
经典集合对温度的定义
1
0.5
冷
舒适
热
14.9 15
0 5 10 15 20 25 30 35 40
1
0.5
冷
舒适
热
0 5 10 15 20 25 30 35 40
第二节 什么是智能控制
1.2 什么是智能控制
• 智能控制IC:Intelligent Control • 人工智能与自动控制的交集
具有模拟人类学习和自适应能力的控制系统
AI IC AC
Artificial Intelligence
Automatic Control
1.2 什么是智能控制(2)
• 强调智能与控制的结合
.
1.3.4 遗传算法
• 实现思路:
1. 问题编码,生成初始染色体群 2. 复制(从旧种群中选择生命力强的个体
进行复制) 3. 再生
交叉(部分内容进行互换) 变异(某个或某几个位置的内容进行跳变)
4. 循环进行直到收敛于问题的最优解。
参考书
• 《智能控制技术》,韦巍编,机械工业出版社
2000年 • 《模糊控制技术》,韩峻峰,李玉惠编著,重
模糊集合对温度的定义
1 0.99 1
0.7
0.5 冷
舒适
热
0.3
0.01
05
14.9 15
10 15 20 25 30 35 40
How?
隶1 属 0.7 度 0.3
0
1
隶 属 度
0
不太脏
3
短
5
主妇经验:
衣服很脏,洗衣时间长 衣服脏,洗衣时间中 衣服不太脏,洗衣时间短
脏
很脏
*
5
7
中长ຫໍສະໝຸດ 2035衣服程度
现代控制理论 研究对象:多输入-多输出系统(MIMO) 模 型:状态空间表示法
智能控制、先进控制
第一阶段: 经典控制理论
• 从四十年代到五十年代末,经典控制理 论的发展与应用使整个世界的科学水平 出现了巨大的飞跃,几乎在工业、农业 、交通运输及国防建设的各个领域都广 泛采用了自动控制技术。
第二阶段 现代控制理论
机器人神经网络控制
智能控制
先进控制
• 鲁棒控制
• 预测控制
实际对象
不确定对象:一族对象
• 变结构控制以往的控控制制器 方法:对象数学模型
固- 定结构的控制器
变结构控制: 未卜先知 变化结构的控制器
第一节小结
• 控制策略遵循的基本原则:
– 适合被控对象 – 工业需要、技术推进 -> 控制策略 – 易于实现
1.1 自动控制无处不在
自动控制作为一门科学技术,已经广泛地运用 于我们社会生活的方方面面。
家电
洗衣机智能控制 电冰箱温度控制
工业生产中
倒立摆稳定控制
机器人控制
空间机器人控制
控制器的本质
u f (y)
re
-
控制器
u 对象 y
1.2 自动控制的发展历程
经典控制理论 研究对象:单输入-单输出系统(SISO) 模 型:传递函数
模糊控制
数学方程很难提出但人们有丰富控制经验的对象
Why?
• 独特的作用:
– [有效、便捷地]实现 和经验
的控制策略
– 不需被控对象的数学模型就可实现较好的 控制
1.3.2 神经元网络控制
它具有 • 模拟人脑神经系统智能活动的控制方学式习能力
适应能力
xp1
· 输入 ·
·
x pn
p1 p
输出
pm
How it works (1)
x1
y f (x1, x2 )
y x2
Why
• 神经网络的特点:
– 逼近任意的非线性函数 – 便于信息的并行、分布式处理和存储 – 可以实现多输入、多输出 – 能进行学习,以适应环境的变化
1.3.3 专家系统
• 能够像人类的专家那样解决某些专业 范围内的问题的智能计算机系统
– 集某些领域中几位以至几十位著名专家 的知识和经验于一体 (知识库)
智能控制导论
16周,32学时
浙江20理0工7大年学9月
联系方式
• 姓 名: 任 佳 • 电 话: 13819199498 (669498) • Email: jren@ • 办公室:15号楼219
第一讲 绪论
自动控制及其发展历程 什么是智能控制 智能控制的主要方法及应用
第一节 自动控制及其发展历程
– 模拟专家进行决策(推理机) – 解释机制
1.3.3 专家系统
推理机
知识库
综合数据库
Question
解 释
用
接
户
口
Answer
知识获取
专家
1.3.4 遗传算法
• 思想来源:
– Darwin的进化论 – Mendel的遗传学说
物竞天择, 适者生存
遗传:作为一种指 令遗传码封装在每 个细胞中,并以基 因的形式包含在染 色体中,每个基因 有特殊的位置并控 制某个特殊的性质
庆大学出版社 开发与应用 • 《模糊控制及其MATLAB应用》,张国良等编
智能
密切相关
控制
智能系统必是控制系统 控制系统必需具有智能
第三节 智能控制的主要方法及应用
1.3 智能控制的主要方法
• 模糊控制 • 神经元网络控制 • 专家系统 • 遗传算法
1.3.1 模糊控制简介
What? How? Why?
What?---例子
• 模糊控制:用计算机去执行人的控制策略 • An Example :模糊控制洗衣机