智能控制汇报PPT

合集下载

智能控制理论及应用 PPT

智能控制理论及应用 PPT

智能控制理论及应用 PPT智能控制是控制理论发展的高级阶段,它综合了人工智能、自动控制、运筹学等多学科的知识,旨在解决那些传统控制方法难以处理的复杂系统控制问题。

本 PPT 将带您深入了解智能控制理论及其广泛的应用领域。

一、智能控制的概念智能控制是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。

与传统控制相比,智能控制具有以下显著特点:1、不确定性:能够处理系统中的不确定性,如模型不确定性、参数变化和外部干扰等。

2、复杂性:适用于复杂的、非线性的和时变的系统。

3、自适应性:可以根据系统的运行情况和环境变化自动调整控制策略。

4、学习能力:能够从数据和经验中学习,不断优化控制性能。

二、智能控制的主要理论1、模糊控制模糊控制是基于模糊集合理论和模糊逻辑推理的一种智能控制方法。

它通过将精确的输入量模糊化,利用模糊规则进行推理,最后将模糊输出解模糊化为精确的控制量。

模糊控制适用于那些难以建立精确数学模型的系统,例如温度控制、速度控制等。

2、神经网络控制神经网络控制是利用人工神经网络的学习和自适应能力来实现控制的方法。

神经网络可以通过对大量数据的学习,提取系统的特征和规律,从而实现对系统的有效控制。

在机器人控制、模式识别等领域有着广泛的应用。

3、专家控制专家控制是将专家系统的知识和经验与控制理论相结合的一种智能控制方法。

专家系统包含了大量的领域知识和控制策略,能够根据系统的状态和需求提供准确的控制决策。

4、遗传算法遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传变异的过程来寻找最优的控制参数或策略。

它在控制器的参数优化、系统的建模和优化等方面发挥着重要作用。

三、智能控制的应用领域1、工业生产在工业生产过程中,智能控制可以提高生产效率、产品质量和设备的可靠性。

例如,在化工生产中,通过智能控制可以实现对反应过程的精确控制,优化生产工艺;在机器人制造中,利用神经网络控制可以实现机器人的精确动作和轨迹规划。

智能控制应用举例PPT课件

智能控制应用举例PPT课件
模糊控制技术应用
一、模糊控制全自动洗衣机
在模糊洗衣机中,主要是要考虑布质﹑布量﹑水 温和肮脏程度这几种条件,而从这些条件求取水位,洗 涤时间和水流,漂洗方式和脱水时间等。
图1.1 洗衣机的模糊推理
图1.2 水温﹑布量和时间的模糊量
考虑到洗衣过程中的两种情况,一种是静态的,即洗涤剂浓度;另一种是动态的, 即洗衣水流及时间。故而推理分两大部分,这也就是洗涤剂浓度推理和洗衣推理。 在洗涤剂浓度推理中,其规则如下: 如果浑浊度高,则洗涤剂投入量大; 如果浑浊度偏高,则洗涤剂投入量偏大; ……… 如果浑浊度低,则洗涤剂投入量小; 在洗衣推理中,推理规则如下; 如果布量少,布质以化纤偏多,而且水温高;则水流为特弱,洗涤时间特短; ……… 如果布量多,布质以棉布偏多,而且水温低;则水流为特强,洗涤时间为特长;
控制规则的自调整是在冷藏室的柜门打开并加入食品时实行的。 它包含两个过程,一个是加入食品量的判别,一个是进行控制规则的修 改。
加入食品量的判别是根据柜门关闭后所得温度和冷藏室开启 柜门前的温度之差来判定的。用TCL 表示关闭柜门后冷藏室的温度, 用TOP 表示开启柜门前冷藏室的温度,则温差⊿T为:
表2.5 Cp=ON,且⊿T=ME时校正后的控制规则
表2.6 Cp=OFF,且⊿T=ME时校正后的控制规则
控制系统的电路结构
1、电源部分 电源部分包括5V稳压电源,电源过零检测电路,电源电压检测电路等三个电路。
2、风门控制部分
3、控制系统的总电路图
图2.10 系统程序框图
SUCCESS
THANK YOU
表1.1 洗衣的模糊推理
控制器硬件系统的结构:
图1.3 硬件系统框 图
图1.4 系统软件流程图

智能控制ppt课件

智能控制ppt课件
发展历程
从经典控制理论到现代控制理论 ,再到智能控制理论,经历了数 十年的发展。
智能控制与传统控制的区别
01
02
03
控制目标
传统控制追求精确的数学 模型,而智能控制更注重 实际控制效果。
控制方法
传统控制主要采用基于模 型的控制方法,而智能控 制则采用基于知识、学习 和经验的方法。
适应性
传统控制对环境和模型变 化适应性较差,而智能控 制具有较强的自适应能力 。
仿真调试、实验调试
调试方法
优化策略
性能评估
05
CATALOGUE
智能控制在工业领域的应用
工业自动化概述
工业自动化的定义和 发展历程
工业自动化对现代工 业的影响和意义
工业自动化的主要技 术和应用领域
中的应用
02
智能传感器和执行器在工业自动化中的应用
模糊控制器设计
包括模糊化、模糊推理、去模糊化等步骤,实现输入 输出的非线性映射。
神经网络控制技术
神经元模型
模拟生物神经元结构和功 能,构建基本计算单元。
神经网络结构
通过神经元之间的连接和 层次结构,构建复杂的神 经网络系统。
学习算法
基于样本数据训练神经网 络,调整连接权重和阈值 ,实现特定功能的控制。

智能控制在智能家居中的应用
智能照明控制
通过智能控制器和传感器,实 现灯光的自动调节和远程控制 ,提高照明舒适度和节能效果

智能窗帘控制
通过智能控制器和电机,实现 窗帘的自动开关和远程控制, 提高居住便捷性和私密性。
智能空调控制
通过智能控制器和温度传感器 ,实现空调的自动调节和远程 控制,提高居住舒适度和节能 效果。

智能控制基础总结-PPT

智能控制基础总结-PPT

0.09 0.6 0.4 0.84 0.49
1.0
NS
ZE
3.3231
0.7
0.3
u
0
2
4
6
u=3.32
27
人工神经网络
❖ 人工神经网络就是模拟人脑细胞的分布式工作特 点和自组织功能,且能实现并行处理、自学习和 非线性映射等能力的一种系统模型。
❖ 神经网络系统研究主要有三个方面的内容,即神 经元模型、神经网络结构和神经网络学习方法。
相等:对于所有的u∈U ,均有μA(u)=μB(u)。记作A=B。 包含:对于所有的u∈U ,均有μA (u) ≤μB(u)。记作AB。 空集:对于所有的u∈U ,均有μA(u) =0 。记作:A= 。 全集:对于所有的u∈U ,均有μA(u) =1。
14
交、并、补
交集:对于所有的u∈U ,均有
μC(u)=μA∧μB=min{μA(u),μB(u)} 则称C为A与B的 交集,记为 C=A∩B 。
28
人工神经元模型
❖ 神经元模型是生物神经元的抽象和模拟。可看 作多输入/单输出的非线性器件 。
xi 输入信号,j=1,2,…,n;
wij 表示从单元uj 到单元ui 的
连接权值;
i
si 外部输入信号;
ui 神经元的内部状态;
θi 阀值;
yi 神经元的输出信号;
Neti wij x j si i , ui f(Neti ), yi g(ui ) j ❖ 通常假设yi=f(Neti),而f为激励函数。
8
智能控制的三元结构
❖ AC:动态反馈控制。
❖ AI:一个知识处理系 统,具有记忆、学习、 信息处理、形式语言、 启发式推理等功能。

《智能控制导论》课件

《智能控制导论》课件
程护理等。
02
CATALOGUE
智能控制系统的基本组成
传感器
传感器是智能控制系统的首要环节,负责采集各种物理量、化学量、生物量等原始 数据,并将其转换为可处理的电信号或数字信号。
传感器的性能指标包括精度、稳定性、灵敏度、响应速度等,直接影响智能控制系 统的性能。
常见的传感器类型包括温度传感器、压力传感器、位移传感器、速度传感器等,可 根据具体应用需求进行选择。
详细描述
智能控制的主要特点包括自主学习、自适应、自组织、自决策和自修复等,它 能够根据环境变化和系统状态,自主地调整控制策略,实现最优的控制效果。
智能控制的历史与发展
总结词
智能控制的历史可以追溯到20世纪50年代,随着人工智能和 计算机技术的不断发展,智能控制得到了广泛的应用和发展 。
详细描述
智能控制的发展经历了三个阶段,分别是萌芽阶段、形成阶 段和成熟阶段。目前,智能控制已经广泛应用于工业、农业 、军事、医疗等领域,成为现代控制技术的重要组成部分。
模糊控制器结构
模糊控制器通常包括模糊化、模 糊推理、反模糊化三个主要部分 。其中,模糊推理是核心,基于 模糊规则库和模糊集合运算进行 推理。
应用领域
模糊控制在工业控制、智能家居 、智能交通等领域有广泛应用, 尤其在处理不确定性和非线性问 题时表现出色。
神经网络控制
神经元模型与网络结构
神经网络控制基于神经元模型和网络结构,通过模拟人脑 神经元之间的连接和信息传递机制进行学习、记忆和决策 。
《智能控制导论》 ppt课件
contents
目录
• 智能控制概述 • 智能控制系统的基本组成 • 智能控制的主要技术 • 智能控制在工业自动化中的应用 • 智能控制面临的挑战与未来发展

《智能控制》PPT课件

《智能控制》PPT课件
(3)组织功能:对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有 主动性和灵活性。智能控制器可以在任务要求范围内进行自行决策,主动采取行动,当 出现多目标冲突时,在一定限制下,各控制器可以在一定范围内自行解决。
1.1.4 智能控制的研究对象 (1)不确定性的模型
7
模型的不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可 能在很大范围内变化。
可以概括为:智能控制是“三高三性”的产物。即“控制系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能”
8
1.1.5 智能控制系统的结构 1.智能控制系统的基本结构
数据库
感知信息 与处理
认知学习 智能控制器
评价机构
传感器
环境 广义对象
还包括外部各种干 扰等不确定制、神经网络控制、专家控制、 学习控制及仿人控制等。
3
第一章
第一节 智能控制的基本概念 1.1.1 智能控制的由来
绪论
传统控制理论(包括经典控制理论和现代控制理论)是建立在被控对象精确数学模
型基础上的控制理论。实际上,许多工业被控对象或过程常常具有非线性、时变性、变 结构、多层次、多因素以及各种不确定性等,难于建立精确的数学模型。即使对一些复 杂对象能够建立起数学模型,模型也往往过于复杂,既不利于设计也难于实现有效控制。 虽然对缺乏数学模型的被控对象可以进行在线辨识,但是由于算法复杂、实时性差,使 得应用范围受到一定限制。
IC:智能控制(intelligent control) AI:人工智能(artificial intelligent) AC:自动控制(automatic control)
9
2. 分层递阶智能控制结构
1977年Saridis以机器人控制为背景提出了三级递阶控制结构。

智能控制技术(专家系统与专家控制系统)PPT

智能控制技术(专家系统与专家控制系统)PPT
22
专家控制(Expert Control)是智能控 制的一个重要分支,又称专家智能控制。 所谓专家控制,是将专家系统的理论和 技术同控制理论、方法与技术相结合, 在未知环境下,仿效专家的经验,实现 对系统的控制。
23
专家控制试图在传统控制的基础上“加 入”一个富有经验的控制工程师,实现控 制的功能,它由知识库和推理机构构成主 体框架,通过对控制领域知识(先验经验、 动态信息、目标等)的获取与组织,按某 种策略及时地选用恰当的规则进行推理输 出,实现对实际对象的控制。
11
知识库包含多种功能模块,主要 有知识查询、检索、增删、修改和扩 充等。知识库通过人机接口与领域专 家相沟通,实现知识的获取。
12
2.推理机
推理机是用于对知识库中的知识进行推理 来得到结论的“思维”机构。推理机包括三 种推理方式:
(1)正向推理:从原始数据和已知条件得 到结论;
(2)反向推理:先提出假设的结论,然后 寻找支持的证据,若证据存在,则假设成立;
1.定义 专家系统是一类包含知识和推理的智能
计算机程序,其内部包含某领域专家水平的 知识和经验,具有解决专门问题的能力。
4
2.1.2 专家系统的发展历程 分为四个阶段:
(1)孕期期(1965年以前) 专家系统历史的一些重要事件 1956年人工智能诞生; 两项历史意义的突破:LT系统与西洋跳棋 程序; 1957年开始通用问题求解程序GPS.
专家系统的数量增加,仅1987年研制成 功的专家系统就有1000种。
专家系统可以解决的问题一般包括解 释、预测、设计、规划、监视、修理、 指导和控制等。目前,专家系统已经广 泛地应用于医疗诊断、语音识别、图象 处理、金融决策、地质勘探、石油化工、 教学、军事、计算机设计等领域。

《智能控制》课件

《智能控制》课件

智能控制的特点
人工智能技术的应用
智能控制利用人工智能技术,将人类的智慧融入到控制系统中。
系统的自我学习和适应能力
智能控制系统能够通过学习和适应不断提升自身性能和响应能力。
高效、精准、快速的控制响应
智能控制系统具备高效率、精确度和快速响应,能够应对复杂的控制任务。
智能控制系统架构
1
智能控制系统的组成
3 智能控制的应用领域
智能控制广泛应用于工技术
神经网络控制
利用神经网络模拟人脑神经元 的工作原理,实现自适应控制 和学习能力。
遗传算法控制
借鉴生物进化原理,通过优胜 劣汰的策略优化控制参数的选 择。
模糊控制
基于模糊逻辑的控制方法,适 用于复杂和不确定的系统。
《智能控制》PPT课件
欢迎来到《智能控制》PPT课件。本课程将深入探讨智能控制的定义、技术、 特点以及应用领域。让我们一起探索智能控制的奥秘和魅力。
概述
1 什么是智能控制?
智能控制是利用先进的人工智能技术,使控制系统具备学习和适应能力的控制方式。
2 智能控制与传统控制的区别
智能控制通过模拟人类智慧实现优化决策,相比传统控制更适应复杂系统需求。
智能控制系统由传感器、执行器、控制器和学习算法四部分组成,实现智能化的控制 功能。
2
智能控制系统的设计流程
智能控制系统设计包括需求分析、模型建立、控制策略选择和参数调优等步骤。
3
智能控制系统实例分析
通过案例分析,了解智能控制在不同领域的真实应用和效果。
智能控制系统应用实践
1 工业控制
2 交通运输
智能控制在工业生产中的应用,提高生产 效率和产品质量。
3 发展智能控制的必
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统,控制参数多,各个参数之间相互影响,抗干扰能力
较弱,不适合需要高控制性能的场合。
解决办法
• 为了增强直流电机调速系统的抗干扰能力和鲁棒性,
提高调速系统的响应速度和稳态精度, 提出了基于模糊
控制的直流电机PWM 调速系统。
PWM调速机理
在线检测电机转速的实时变化,通过模糊控制选择合
适的控制语言,对PWM 开关器件的导通时间加以控制,
基于模糊控制的直流电机 PWM 调速系统
研究背景
直流电机由于具有良好的调速特性,宽广的
调速范围,长期以来在对调速性能指标要求较高
的场合得到了广泛的应用。
存在问题
• 在电机低速运行整流桥输出电压较低时,电网输入电
流功率因数低,谐波分量比较大,对电网特别是公共直流
电网有不利的影响。

直流电机调速系统是一个复杂的多变量、非线性控制
性和抗干扰能力
结论
该系统将转速偏差和转速偏差率模糊化为模糊 控制器的输入语言变量,根据所制定的一套模糊控 制规则来选择控制PWM中开关管IGBT导通时间的输 出语言变量,并以此通过脉宽调制技术来驱动直流 电机。通过实验结果表明:该系统能有效的抑制超 调现象,提高系统的响应速度和稳态性能。
谢谢!
k1=1/200,k2 =1,k3 = 200×103,IGBT 的开关频率2kHz。
0.6s 时,对电机突加负载50 N⋅m。转速偏差e(t)、PWM 驱动 电路的输入量α (t)、转速w(t)和转矩Te的仿真结果如图所示:
仿真结果
仿真结果表明:智能控 制技术和PWM技术的引入能 有效抑制超调量,提高系统 响应速度和稳态性能,并且 模糊控制技术能优化系统结 构,使系统具有较强的鲁棒
从而驱动直流电机达到调速的目的。 且PWM 调速时,电
源侧一般不采用二极管不控整流,有利于改善电网功率因
数和减少谐波对电网的污染。
系统构成及原理
基于模糊控制的直流电机脉 宽调制调速系统主要由模糊控制 器、PWM 驱动电路和直流电机组 成。
系统框图Βιβλιοθήκη 图中, wr(k)表示给定转速,wa(k)表示实际转速,e表示 转速偏差,ce 表示转速偏差率,cα表示模糊控制量,k1、k2、
目的是控制电机的转速,因
而控制规则依赖的是实际转 速与给定基准转速的差异比 较。
PWM 驱动电路设计
所设计的驱动电路采用脉宽调制技术,用到的电力电子 器件是具有自关断能力的电压控制型器件N 沟道IGBT 以及续 流二极管VD。直流电机的励磁方式为他励式。
仿真实验
用MATLAB/SIMULINK 对上述系统进行仿真实验。他励 直流电机的参数:Ra =0.5Ω ,La =0.003 H,J =0.0167 kg⋅m2, G = af f G i =0.8,RΩ =0.0167。系统参数:wr =200 rad/s,
uf ( Rf Lfp)if
Te Gefifia
ua ( Ra Lap)ia Gafif Ω
电磁转矩:
(1) (2)
(3)
转矩方程:
Te ( Jp RΩ)Ω TL
(4)
模糊控制器设计
模糊控制器设计过程中,
将输入量按一定的模糊控制 规则自动进行推理运算,模 仿专家经验,获取问题的求 解。本系统模糊控制的主要
k3表示增益量,其值由所设计的模糊控制器的论域决定。
调速过程
将反馈的直流电机的实际转速与给定转速进行
比较,得到转速偏差和偏差率,并使之模糊化,由
模糊控制器经推理运算得到合适的控制语言,经过
一定的处理,来控制驱动电路的脉宽调制系统,从
而实现对直流电机的转速调节。
直流电机数学模型
他励直流电动机的电压方程:
相关文档
最新文档