复合函数及抽象函数的单调性
复合函数及抽象函数的单调性

复合函数的单调性复合函数的定义:设y=f(u)定义域A ,u=g(x)值域为B ,若A B ,则y 关于x 函数的y=f[g(x)]叫做函数f 与g 的复合函数,u 叫中间量复合函数的单调性复合函数的单调性由两个函数共同决定;引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。
引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。
若u=g(x)y=f(u)则y=f[g(x)]规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。
“同增异减”例2. 已知f ( x )=-x2 + 2x + 8,g ( x ) = f ( 2-x 2 ),求g ( x )的单调增区间.的单调区间。
:求函数例29121)(1x x f --=抽象函数例1:设f(x)是定义在实数集R 上的奇函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)<f(3a2-2a+1),试求a 的取值范围。
问:设f(x)是定义在实数集R 上的奇函数,且在区间(-∞,0)上是增函数,问在 区间(0,+∞)上f(x)是 增函数还是减函数?例2:设f(x)是定义在实数集R 上的偶函数,且在区间(-∞,0]上是增函数,又f(2a2+a+1)<f(3a2-2a+1),试求a 的取值范围。
.2)3()()4()()()3()()()()2(1)2()1()(2的取值范围求时,满足:上的函数:定义在例x x f x f y f x f y x y f x f xy f f x f R ≤-+<>+==+.)().()()(,,1)(0)(3上的增函数是求证:有、且对于任意时,上,当定义在:函数例R x f b f a f b a f R b a x f x R x f =+∈>>例4:.]1,2[)(,2)1(,0)(),()()(,)(上的值域在区间求时,且当均有、对于任意实数已知函数--=->>+=+xffxfxyfxfyxfyxxf.,9)1()3(.),0()()2.()()1().1,0()(1,9)27(,1)1()()()()(53的取值范围求且若上的单调性,并证明在判断的奇偶性判断时当且都有、对任意实数:已知函数例aafaxfxfxfxffyfxfxyfyxxf≤+≥+∞∈<<==-=复合函数的单调性小结复合函数y=f[g(x)]的单调性可按下列步骤判断:(1) 将复合函数分解成两个简单函数:y=f(u)与u=g(x)。
高一函数单调性题型大全

高一函数单调性题型大全【知识点梳理】1.函数单调性的定义:如果函数f(x)对区间D 内的任意x ₁,x ₂,当x ₁<x ₂时都有f(x ₁)<f(x ₂),则f(x)在D 内是增函数:当x ₁<x ₂时都有f(x ₁)>f(x ₂),则f(x)在D 内时减函数。
f (x 1)−f (x 2)x 1−x 2<0f (x )在[a,b]是减函数:(x 1−x 2)[f (x 1)−f (x 2)]<0f (x )在[a,b]是减函数。
(x 1−x 2)[f (x 1)−f (x 2)]>0f (x )在[a,b]是增函数。
3.复合函数单调性的判断。
(同增异减)4.函数单调性的应用.利用定义都是充要性命题.即若f(x) 在区间D 上递增(递减)且, f (x 1)<f (x 2)x 1<x 2(x 1,x 2∈D );若f(x)在区间D 上递递减且. f (x 1)<f (x 2)x 1>x 2.(x 1,x 2∈D )5.在公共定义域内,增函数f(x)+增函数g(x)是增函数:减函数f(x)+减函数g(x) 是减函数:增函数 f(x)-减函数g(x)是增函数; 减函数f(x)-增函数g(x)是减函数。
6.函数 y =ax +b x (a⟩0,b >0)在 (−∞,−√] [√,)上单调递增:在 [−√,0)THN (0,√]上是单调递减。
1.若u=g(x), y=f(u)在所讨论的区间上都是增函数或都是减函数,则y=f[g(x)]为增函数;2. 若u=g(x), y=f(u)在所讨论的区间上一个是增函数,另一个是减函数,则y=f[g(x)]为减函数. 列表如下:. 因此判断复合函数的单调性可按下列步骤操作:1.将复合函数分解成基本初等函数: y=f(u), u=g(x);2.分别确定各个函数的定义域;2.单调性的定义的等价形式: 设x ₁,x ₂∈[a,b]. 那么 f (x 1)−f (x 2)x 1−x 2>0f (x )在[a,b]是增函数:7.复合函数单调性的判断 讨论复合函数y=f[g(x)]的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性. 一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:3.分别确定分解成的两个基本初等函数的单调区间.注若两个基本初等函数在对应的区间上的单调性是同增或同减,则y=f[g(x)]为增函数;若为一增一减或一减一增,则y=f[g(x)]为减函数.题型目录:题型一:用定义法证明函数单调性题型二:抽象函数单调性的判断证明题型三:函数单调性定义的理解题型四:基本初等函数的单调性题型五:函绝对值函数的单调性判断题型六:已知函数的单调性求参数范围题型七:分段函数的单调性求参数范围题型八:复合函数单调性(同增异减)题型九:抽象函数单调性解不等式【典型例题】题型一:用定义法证明函数单调性证明函数单调性的步骤:(1)取值:设x₁,x₂是f(x)定义域内一个区间上的任意两个量,且;x₁<x₂:(2)变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号:判断差的正负或商与1的大小关系:(4)得出结论.【例1】证明函数f(x)=x+1x在(0, 1)上是减函数。
高中数学函数单调性的判定和证明方法(详细)

⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -
=
=
∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。
函数单调性判断方法

,0上是减函数。
C .(-∞,-1]D .[1,+∞)[小结](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.题型二、分段函数单调性判断及应用使用情景:分段函数的单调性问题解题模板:第一步 通过观察分析,决定如何对自变量进行分类;第二步 根据常见函数的单调性,分别计算每段函数的单调性;第三步 满足函数在整个区间上是增函数(或减函数),即左段的函数的最大值(或最小值)小于等于右段函数的最小值(或最大值);第四步 得出结论.【例1】 已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( ) A .()1,2 B .(][),12,-∞+∞ C .[]1,2 D .()(),12,-∞+∞+∞+∞ D(2,) (1,)【变式练习3】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是[小结] 1、最值问题使用情景:分段函数的最值问题解题模板:第一步 通过观察分析,决定如何对自变量进行分类;第二步 根据常见函数的最值,分别计算每段函数的最值;第三步 满足函数在整个区间上的最值,即比较每段函数的最值大小,谁最大谁是最大值,谁最小谁是最小值;第四步 得出结论.2、单调性问题其一是分段函数在每一个区间上的增函数(或减函数)与整体函数相同;其二是满足函数在整个区间上是增函数(或减函数),即左段的函数的最大值(或最小值)小于等于右段函数的最小值(或最大值).题型三、抽象函数的单调性【例1】已知奇函数()f x 的定义域为[]2,2-,且在[]2,0-内递减,求满足:2(1)(1)0f m f m -+-<的实数m 的取值范围.【例2】定义在上的偶函数满足:,在区间与上分别递增和递减,则不等式的解集为 .【变式练习1】设奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-.当[1,1]x ∈-时,函数2()21f x t at ≤-+,对一切[1,1]a ∈-恒成立,则实数t 的取值范围为( )A.22t -≤≤B.2t ≤-或2t ≥C.0t ≤或2t ≥D.2t ≤-或2t ≥或0t =【变式练习2】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->-,则a 的取值范围是______[小结]不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有: (1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化.题型四、函数单调性判断方法(性质)的应用函数单调性的性质:(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反;(4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反. 【常见判断方法】方法一 定义法使用情景:一般函数类型解题模板:第一步 取值定大小:设任意,且; 第二步 作差:;第三步 变形(合并同类项、通分、分解因式、配方等); 第四步 定符号; 第五步 得出结论. 【例1】 判断并证明:21()1f x x =+在(,0)-∞上的单调性.12,x x D ∈12x x <12()()f x f x -x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[方法技巧]用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例5] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞ C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的.(2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.【变式练习3】1.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)2.已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( ) A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )3.定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.随堂检测1.已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.2.讨论函数f (x )=x +a x(a >0)的单调性.。
函数单调性的判定方法

函数单调性的判定方法1.判断具体函数单调性的方法对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种:1.1 定义法首先我们给出单调函数的定义。
一般地,设f 为定义在D 上的函数。
若对任何1x 、D x ∈2,当21x x <时,总有(1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数;(2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。
给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。
用单调性的定义判断函数单调性的方法叫定义法。
利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤:(1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -;(3)变形(普遍是因式分解和配方);(4)断号(即判断)()(21x f x f -差与0的大小);(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。
例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。
证明:设1x ,),(2+∞-∞∈x ,且21x x <,则).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=-由于043)2(22221212221>++=++x x x x x x x ,012>-x x 则0))(()()(2122211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。
函数单调性常见类型

函数的单调性题型一 判断、讨论、证明函数的单调性1判断函数y=x-x 1在其定义域上的单调性。
2讨论并证明y=x+x 1在定义域上的单调性。
3定义在R 上的函数f (x )对任意不相等实数a ,b 总有()()ba b f a f -->0成立,则必有 A 、函数f (x )是先增加后减小B 、函数f (x )是先减小后增加C 、f (x )在R 上是增函数D 、f (x )在R 上是减函数 4已知b x k x f ++=)12()(在实数R 是减函数,则k 的取值范围为( )5已知函数),0(,)(2+∞∈++=x c bx x x f 是单调函数,则实数b 的取值范围为( ) .0.≥b A 0.≤b B 0.>b C 0,<b D6已知2)1(2)(2+--=x a x x f 在]4,(-∞上是减函数,求实数a 的取值范围。
题型二 抽象函数的单调性 1、已知f(x)是定义在[-1,1]上的增函数,且f(x-2)<f(1-x), 求x 的取值范围.2 、f (x )是定义在(0,+∞)上的增函数,则不等式f (x )>f (8(x —2))的解集是A 、(2,716)B 、(—∞,716)C 、(2,+∞)D 、(2,716)题型三 用图形讨论函数单调性1函数y=|x —3|—|x+1|的单调递减区间是 。
2画出函数223.y x x =-++的图像,并指出函数的单调区间3画出函数y=|x|的图像,并判断其单调性。
4画出函数y=|x 2+2x-1|的图像,并指出其在R 上的单调性。
题型四 基本初等函数的单调性问题1.设函数243,[1,4]y x x x =-+∈,则()f x 的最小值和最大值为( )A.-1 ,3B.0 ,3C.-1,4D.-2,02.函数f (x )=—x 2+2(a —1)x+2在(—∞,4)上是增函数,则a 的范围是A 、a ≥5B 、a ≥3C 、a ≤3D 、a ≤—53.已知22(2)5y ax a x =+-+在区间(4,)+∞上是减函数,则a 的范围是( ) A.25a ≤ B.25a ≥ C.25a ≥或0a = D.0a ≤ 3.若函数242--=x x y 的定义域为[]m ,0,值域为[]2,6--,则m 的取值范围是( )A 、(]4,0B 、[]4,2C 、(]2,0D 、()4,2 4.函数32++=bx ax y 在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则( )A 、00<>a b 且B 、02<=a bC 、02>=a bD 、的符号不确定b a ,5.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞7.已知函数(21)32f x x +=+,且()4f a =,则a =_____________8.函数]1,1[)20(32-<<++=在a ax x y 上的最大值是 ,最小值是 . 9.函数222(03)()6(20)x x x f x x x x ⎧-<≤=⎨+-≤≤⎩的值域为_______________________ 10.函数212+=x y 的值域为______________________. 11.已知函数2()23(0)f x ax ax b a =-+->在[1,3]上有最大值5和最小值2,则a 、b 的值是题型五 解答题1.已知函数y =(0)a <在区间(,1]-∞上有意义,求实数a 的取值范围.2.二次函数)(x f 满足x x f x f 2)()1(=-+,且1)0(=f .(1)求)(x f 的解析式;(2)在区间[]1,1-上,)(x f y =的图象恒在直线m x y +=2上方,试确定实数m 的取值范围.3.已知函数2,(1),()2,(11),2,(1).x x f x x x x ≤-⎧⎪=--<<⎨⎪-≥⎩4.已知函数2()(2)f x x a x b =+++满足2)1(-=-f ;(1)若方程()=2f x x 有唯一的解;求实数b a ,的值;(2)若函数()f x 在区间[]-22,上不是单调函数,求实数a 的取值范围5.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。
人教A版高中数学必修一 7复合函数的单调性

第7讲 函数的单调性(2)一、教学目标1.掌握函数单调性的定义以及函数的单调区间求法2.理解函数单调性的应用.二、知识点梳理知识点一:复合函数与抽象函数单调性1、复合函数单调性的判断一般地对于复合函数))((x g f y =,如果)(x g t =在()b a ,上是单调函数,并且)(t f y =在()()()b g a g ,或者()()()a g b g ,上也是单调函数,那么()()x g f y =在()b a ,上的单调性如下表所示,简记为“同增异减”讨论复合函数单调性的步骤:① 求出复合函数的定义域;② 复合函数分解成若干个常见的基本函数,并判定其单调性;③ 把中间变量的变化范围转化成自变量的变化范围;④ 根据上述复合函数的单调性规律判定其单调性。
例1、求函数2281)(x x x f --=的单调区间变式训练已知225)(,32)(x x g x x x f -=--=试求()x g 的单调区间2、抽象函数单调性的判断与证明没有给出具体解析式的函数,称为抽象函数,求此类函数的单调性通常有两种方法:一种是“凑”凑定义或凑已知,利用定义或者已知条件得出结论;另一种是赋值,给变量赋值要根据条件与结论的关系。
例2、已知函数)(x f 对任意的R y x ∈,,总有()()()y f x f y x f +=+,且当x>0时,()0<x f .求证:()x f 在R 上为减函数。
知识点二:函数最值的求法求函数最值的方法1、配方法:主要适用于二次函数或者可化为二次函数的函数,要特别注意自变量的取值范围2、换元法:用换元法一定要注意新元的取值范围3、数形结合法:对于图像较容易画出的函数的最值问题,可借助图像直观求出。
4、利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上的函数的最值。
例3、利用单调性求最值 求函数12-+=x x y求函数()x x x f +=1的最值利用图像求最值例4、用}{b a ,m in 表示a,b 两个数中较小值,设()}{()()x f x x x x f 则,010,2m in ≥-+=的最大值为_____二次函数最值求二次函数最值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出;二是函数定义域为某一区间,这时二次函数最大值(最小值)由它单调性确定,而它的单调性由二次函数的开口方向和对称轴的位置来确定;当开口方向和对称轴的位置不确定时,还需进行分类讨论。
复合函数的单调性与赋值法证明函数的单调性

一、复合函数 y f 的单调性 g x 将复合函数分解成 y f u , u g x
u g x
增 增 减 减
y f u 增 减 增 减
y f g x
增 减 减 增
复合函数单调性归纳为“同增异减”
(1)求 f
1
(2)证明: f x 在定义域内是增函数
练习2.函数f x 对任意实数a,b都 有 f a b f a f b 明: f x 是R上的增函数
例.求函数 y x 2 x 1 的单调 区间
2
练习:求 y x 2 x 8 的 单调区间
2
二、抽象函数单调性
例1.已知 y f x 在定义域 1,1 2 上是减函数,且f 1 a f a 1 求a的取值范围
练习:已知 y f x 在定义 域 0, 是增函数,且 2 f a f 2a 3 ,求a的取值 范围
例2: 已知定义在R上的函数 f ( x) 满足:对任 意 a, b R,都有 f (a b) f (a) f (b),且当 x 0 时,f ( x) 0 ,试确定函数的单调性.
练习1:已知函数 f x 的定义域是 0, , 当x>1时, f x 0,且 f xy f x f y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x( x 3) 4
x0
x4
x 3 0
12
例3:函数f ( x)定义在R上,当x 0时,f ( x) 1,
且对于任意a、b R, 有f (a b) f (a) f (b).
求证:f ( x)是R上的增函数.
证:令a 0, b 1则f (1) f (0) f (1)
f (1) f (1) 2, f (2) f (1) f (1) 4,
所以f ( x)的值域为[4,2].
15
例5:已知函数f ( x)对任意实数x、y都有f ( xy) f ( x) f ( y) 且f (1) 1, f (27) 9,当0 x 1时f ( x) (0,1). (1)判断f ( x)的奇偶性.(2)判断f ( x)在(0, )上的单调性,并证明.
时,函数②也递增,故(-∞,-1] 是所求的一个单调增
区间;
,1
7
(2)x∈ (-1,0]时,函数①递增,且t∈(1,2] , 而 t∈(1,2] 时,函数②递减, 故(-1,0] 是g ( x )的单调减区间; (3)x∈(0,1]时,函数①递减,且t∈(1,2] , 而 t∈(1,2],函数②也递减, 故(0,1]是g ( x )的单调增区间;
皮肌炎图片——皮肌炎的症状表现
• 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
• 1、早期皮肌炎患者,还往往伴 有全身不适症状,如-全身肌肉酸 痛,软弱无力,上楼梯时感觉两 腿费力;举手梳理头发时,举高 手臂很吃力;抬头转头缓慢而费 力。
①
y =-t 2 +2t + 8
②
函数②的增、减转折点是 t = 1,把 t = 1 代入①,得
x1=-1,x2=1,又①的增、减转折点是 x3 = 0, 于是三个关节点把数轴分成四个区间:
,1 , 1, 0 , 0 , 1 , 1 ,
(1)x∈(-∞,-1] 时,函数①递增,且t≤1,而t ∈ (-∞, 1]
例2: 定 义 在R上 的 函 数f ( x)满 足 : (1) f (2) 1 (2) f ( xy) f ( x) f ( y) (3)x y时 ,f ( x) f ( y) (4) f ( x) f ( x 3) 2 求x的 取 值 范 围. 解:由(3)知f ( x)在R上减,又f (4) f (2) f (2) 2
(3) f (27) 9又 9 f (3 9) f (3) f (9) f (3) f (3) f (3) [ f (3)]3 即f (3) 3 9
f (a 1) 3 9 f (a 1) f (3)
a 0a 1、3 (0, )
f (a 1) f (3) a 1 3 a 2
f (x2 )
f ( x1 ) x2
f (x2 )
f (x2 )
f
(
x2
)[
f
(
x1 x2
)
1]
16
当0 x2 1时 ,f ( x2 ) (0,1);
当x2 1时 ,f (1) f (1) 1 0;
当x2
1时, 1 x2
(0,1)
1 f ( ) (0,1)
x2
1
1
f (1)
•复合函数的单调性
复合函数的定义:设y=f(u)定义
域A,u=g(x)值域为B,若A B,
则y关于x函数的y=f[g(x)]叫做函 数f与g的复合函数,u叫中间量
1
•复合函数的单调性
•复合函数的单调性由两个函数共同决定;
引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b) 上是增函数,其值域为(c,d),又函数y=f(u)在区 间(c,d)上是增函数,那么,原复合函数y=f[g(x)] 在区间(a,b)上是增函数。
(3) f ( x)在[1,1]增, f ( x)max f (1) m2 2am 1
m2 2am 0即2am m2 0
令g(a) 2ma m 2 , a [1,1]
问:设f(x)是定义在实数集R上的奇函 数,且在区间(-∞,0)上是增函数, 问在 区间(0,+∞)上f(x)是 增函数还 是减函数?
例2:设f(x)是定义在实数集R上的偶函数,且 在区间(-∞,0]上是增函数,又 f(2a2+a+1)<f(3a2-2a+1),试求a的取值范围。
(0<a<3) 10
8
(4)x∈(1,+∞)时, 函数①递减,且t∈(-∞,1) 而t∈(-∞,1) 时,函数②递增, 故(1,+∞)是g ( x )的单调减区间. 综上知,所求g ( x )的增区间是
, 1 和 0 , 1
9
抽象函数
例1:设f(x)是定义在实数集R上的奇函数,且 在区间(-∞,0)上是增函数,又 f(2a2+a+1)<f(3a2-2a+1),试求a的取值范围。
证明:任取 x1、x2 [1,1], 且x1 x2 , 则
f (x1 )
f (x2 ) ( x1
x2 )
f (x1 ) x1
f (x2 ) x2
( x1
x2 )
f (x1 ) f ( x2 ) x1 ( x2 )
x1、
x2
[1,1]
f (x1 ) f ( x2 ) x1 ( x2 )
(3)若a 0且f (a 1) 3 9,求a的取值范围.
解(1)令y 1则f ( x) f ( x) f (1) f ( x) f ( x)为偶函数.
(2)设0
x1
x2则0
x1 x2
1
f ( x1 ) (0,1) x2
f ( x1 )
f (x2 )
f ( x1 x2
x2 )
故 0 a 2.
18
例6:已知 f ( x)是定义在[-1,1]上的奇函数,
若 a、b [1,1],且a b 0, 则有 f (a) f (b) 0.
ab
(1)判断 f ( x) 在[-1,1]上的增减性,并证明你的结论;
(2)解不等式 f (5 x 1) f (6 x 2 )
解:(1)f ( x)在[-1,1]上增。
解:由1-9x2≥0得:-1/3≤x≤1/3 当-1/3≤x≤0,x增大时,1-9x2增大,f(x)减小 当0<x≤1/3,x增大时,1-9x2减小,f(x)增大 ∴函数的单调区间是 [-1/3,0],[0,1/3]。
5
例2. 已知f ( x )=-x2 + 2x + 8, g ( x ) = f ( 2-x 2 ),求g ( x )的单调增区间.
0, 又x1
x2
0,
f ( x1 ) f ( x2 ) 0.
故 f ( x) 在[-1,1]上增。
19
(2) f ( x) 在[-1,1]上增,
1 5x 1 1
f (5x 1)
f
(6x
2
)
1 6x2
1
5x 1 6x 2
x
0 x 2 5
6 x 6 1 或x
2
6
6 1
【讲解】很明显这是一个复合函数的单调性问题,所以 应“分层剥离”为两个函数
t=-x2+2 ① y = f ( t ) =-t 2 + 2t + 8 ②
【解题思路】 x∈某区间A
t∈某区间B
①在A上的增减性 ②在B上的增减性
g ( x )在A上的 单调性
关键是A的端点如何确定?
6
【解】设t =-x2 + 2
14
例4: 已知函数f ( x)对于任意实数x、y,均有f ( x y) f ( x) f ( y),
且当x 0时,f ( x) 0, f (1) 2, 求f ( x)在区间[2,1]上的值域.
解:设x1 x2 x2 x1 0 f ( x2 x1 ) 0
又f ( x2 ) f [( x2 x1 ) x1 ] f ( x2 x1 ) f ( x1 )
当x1 0时f ( x1 ) 1; 当x1 0时f ( x1 ) 1;
当x1 0时Hale Waihona Puke a x1, b x1则f (0)
f ( x1 ) 1 f ( x1 ) 0
f ( x1 ) f ( x1 ) 1
f ( x1 )
1 f ( x1 )
故对于任x1 R都有f ( x1 ) 0.
函数。
2
•复合函数的单调性
引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b) 上是减函数,其值域为(c,d),又函数y=f(u)在区间 (c,d)上是减函数,那么,原复合函数y=f[g(x)]在 区间(a,b)上是增函数。
证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b,
13
又1 f ( x2 x1 ) 0 f ( x1 ) f ( x2 ) 0
综上:f ( x)为增函数.
注 : 常 用 的 佩 凑 方 法: f ( x1 ) f ( x1 x2 x2 );
f ( x1 )
f ( x1 x2
x2 ); f ( x1
x2 )
f ( x1 ( x2 ));
证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b,因
为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记
u1=g(x1),u2=g(x2),即u1<u2,且u1,u2 (c,d).因为函数
y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2), 即