matlab数值分析实验三(2)
数值分析matlab实验报告

数值分析matlab实验报告数值分析MATLAB实验报告引言:数值分析是一门研究利用计算机进行数值计算和解决数学问题的学科。
它在科学计算、工程技术、金融等领域中有着广泛的应用。
本实验旨在通过使用MATLAB软件,探索数值分析的基本概念和方法,并通过实际案例来验证其有效性。
一、插值与拟合插值和拟合是数值分析中常用的处理数据的方法。
插值是通过已知数据点之间的函数关系,来估计未知数据点的值。
拟合则是通过一个函数来逼近一组数据点的分布。
在MATLAB中,我们可以使用interp1函数进行插值计算。
例如,给定一组离散的数据点,我们可以使用线性插值、多项式插值或样条插值等方法,来估计在两个数据点之间的未知数据点的值。
拟合则可以使用polyfit函数来实现。
例如,给定一组数据点,我们可以通过最小二乘法拟合出一个多项式函数,来逼近这组数据的分布。
二、数值积分数值积分是数值分析中用于计算函数定积分的方法。
在实际问题中,往往无法通过解析的方式求得一个函数的积分。
这时,我们可以使用数值积分的方法来近似计算。
在MATLAB中,我们可以使用quad函数进行数值积分。
例如,给定一个函数和积分区间,我们可以使用quad函数来计算出该函数在给定区间上的定积分值。
quad函数使用自适应的方法,可以在给定的误差限下,自动调整步长,以保证积分结果的精度。
三、常微分方程数值解常微分方程数值解是数值分析中研究微分方程数值解法的一部分。
在科学和工程中,我们经常遇到各种各样的微分方程问题。
而解析求解微分方程往往是困难的,甚至是不可能的。
因此,我们需要使用数值方法来近似求解微分方程。
在MATLAB中,我们可以使用ode45函数进行常微分方程数值解。
例如,给定一个微分方程和初始条件,我们可以使用ode45函数来计算出在给定时间范围内的解。
ode45函数使用龙格-库塔方法,可以在给定的误差限下,自动调整步长,以保证数值解的精度。
结论:本实验通过使用MATLAB软件,探索了数值分析的基本概念和方法,并通过实际案例验证了其有效性。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
matlab数值计算实验报告

matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种广泛应用于科学与工程领域的高级计算机语言和环境,它提供了丰富的函数库和工具箱,方便用户进行数值计算、数据分析和可视化等任务。
本实验报告将介绍我在使用Matlab进行数值计算实验中的一些经验和心得体会。
一、数值计算方法数值计算方法是一种利用数值近似来解决实际问题的方法,它在科学和工程领域具有广泛的应用。
在Matlab中,我们可以利用内置的函数和工具箱来实现各种数值计算方法,例如插值、数值积分、数值微分等。
二、插值方法插值是一种通过已知数据点来推测未知数据点的方法。
在Matlab中,我们可以使用interp1函数来进行插值计算。
例如,我们可以通过已知的一些离散数据点,利用interp1函数来估计其他位置的数值。
这在信号处理、图像处理等领域具有重要的应用。
三、数值积分数值积分是一种通过分割曲线或曲面来近似计算其面积或体积的方法。
在Matlab中,我们可以使用quad函数来进行数值积分计算。
例如,我们可以通过quad函数来计算某个函数在给定区间上的积分值。
这在概率统计、物理学等领域具有广泛的应用。
四、数值微分数值微分是一种通过数值逼近来计算函数导数的方法。
在Matlab中,我们可以使用diff函数来进行数值微分计算。
例如,我们可以通过diff函数来计算某个函数在给定点上的导数值。
这在优化算法、控制系统等领域具有重要的应用。
五、数值求解数值求解是一种通过数值近似来计算方程或方程组的根的方法。
在Matlab中,我们可以使用fsolve函数来进行数值求解计算。
例如,我们可以通过fsolve函数来求解某个非线性方程的根。
这在工程计算、金融分析等领域具有广泛的应用。
六、实验应用在本次实验中,我使用Matlab进行了一些数值计算的应用实验。
例如,我利用插值方法来估计某个信号在给定位置的数值,利用数值积分方法来计算某个曲线下的面积,利用数值微分方法来计算某个函数在给定点的导数值,以及利用数值求解方法来求解某个方程的根。
数值分析实验报告Matlab仿真资料

数值分析实验报告学院:电气工程与自动化学院专业:控制理论与控制工程姓名:李亚学号:61201401622014 年 12 月24日实验一 函数插值方法一、目的和意义1、 学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、 明确插值多项式和分段插值多项式各自的优缺点;3、 熟悉插值方法的程序编制;4、 如果绘出插值函数的曲线,观察其光滑性。
二、实验原理1、 Lagrange 插值公式00,()n ni n k k i i k k i x x L x y x x ==≠⎛⎫-= ⎪-⎝⎭∑∏编写出插值多项式程序;2、 给出插值多项式或分段三次插值多项式的表达式;三、实验要求对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。
试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。
数据如下:(1求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。
(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈)试构造Lagrange 多项式6,和分段三次插值多项式,计算的(1.8)f ,(6.15)f 值。
(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈)四、实验过程1.进入matlab开发环境;2.根据实验内容和要求编写程序,程序如下所示,程序通过运用function 函数编写,生成.m文件。
调用时只需要在命令窗口调用y=Lagrange(A,input)就可以实现任意次数拉格朗日插值法求解。
function y=Lagrange(A,input)[a,b]=size(A);x=input;y=0;for j=1:aMj=1;Nj=1;for k=1:aif(k==j)continue;endMj=Mj*(x-A(k,1));Nj=Nj*(A(j,1)-A(k,1));endy=y+A(j,2)*Mj/Nj;end3.调试程序并运行程序;调用拉格朗日脚本文件对以上两个表格数据求解,表格一对应MATLAB向量A;表格二对应向量I。
数值分析matlab实验报告

数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。
实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。
一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。
MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。
二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。
三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。
3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。
2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。
3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。
五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。
基于MATLAB数值分析实验报告

基于MATLAB数值分析实验报告班级:072115姓名:李凯学号:20111003943实验二:矩阵与向量运算实验目的:在MATLAB里,会对矩阵与向量进行加、减、数乘、求逆及矩阵特征值运算,以及矩阵的LU分解。
设A是一个n×n方阵,X是一个n维向量,乘积Y=AX可以看作是n维空间变换。
如果能够找到一个标量λ,使得存在一个非零向量X,满足:AX=λX (3.1)则可以认为线性变换T(X)=AX将X映射为λX,此时,称X 是对应于特征值λ的特征向量。
改写式(3.1)可以得到线性方程组的标准形式:(A-λI)X=0 (3.2)式(3.2)表示矩阵(A-λI)和非零向量X的乘积是零向量,式(3.2)有非零解的充分必要条件是矩阵(A-λI)是奇异的,即:det(A-λI)=0该行列式可以表示为如下形式:a11–λa12 (1)a21 a22 –λ…a2n =0 (3.3)…………A n1 a n2 …a nn将式(3.3)中的行列式展开后,可以得到一个n阶多项式,称为特征多项式:f(λ)=det(A-λI)=(-1)n(λn+c1λn-1+c2λn-2+…+c n-1λ+c n) (3.4) n阶多项式一共有n个根(可以有重根),将每个根λ带入式(3.2),可以得到一个非零解向量。
习题:求下列矩阵的特征多项式的系数和特征值λj:3 -1 0A= -1 2 -10-1 3解:在MATLAB中输入命令:A=【3 -1 0;-1 2 -1;0 -1 3】;c=poly(A)roots(c)得到:实验四:Lagrange插值多项式实验目的:理解Lagrange插值多项式的基本概念,熟悉Lagrange插值多项式的公式源代码,并能根据所给条件求出Lagrange插值多项式,理解龙格现象。
%功能:对一组数据做Lagrange插值%调用格式:yi=Lagran_(x,y,xi)%x,y:数组形式的数据表%xi:待计算y值的横坐标数组%yi:用Lagrange还擦之算出y值数组function fi=Lagran_(x,f,xi)fi=zeros(size(xi));np1=length(f);for i=1:np1z=ones(size(xi));for j=i:np1if i~=j,z=z.*(xi-x(j))/(x(i)-x(j));endendfi=fi+z*f(i);endreturn习题:已知4对数据(1.6,3.3),(2.7,1.22),(3.9,5.61),(5.6,2.94)。
数值分析实验报告matlab

数值分析实验报告matlab数值分析实验报告引言:数值分析是一门研究利用计算机数值方法解决数学问题的学科,它在科学计算、工程设计、金融分析等领域具有重要的应用价值。
本实验报告旨在通过使用MATLAB软件,探索数值分析的基本原理和方法,并通过实际案例加深对数值分析的理解。
一、误差分析在数值计算中,误差是无法避免的。
误差分析是数值分析中的重要一环,它帮助我们了解数值计算的准确性和稳定性。
在实验中,我们通过计算机模拟了一个简单的数学问题,并分别计算了绝对误差和相对误差。
通过比较不同算法的误差大小,我们可以选择最适合的算法来解决实际问题。
二、插值与拟合插值和拟合是数值分析中常用的方法,它们可以通过已知的数据点来推导出未知数据点的近似值。
在本实验中,我们通过MATLAB的插值函数和拟合函数,分别进行了插值和拟合的实验。
通过比较不同插值和拟合方法的结果,我们可以选择最适合的方法来处理实际问题。
三、数值积分数值积分是数值分析中的重要内容,它可以用来计算曲线下的面积或函数的积分值。
在实验中,我们通过MATLAB的数值积分函数,对一些简单的函数进行了积分计算。
通过比较数值积分和解析积分的结果,我们可以评估数值积分的准确性和稳定性,并选择最适合的积分方法来解决实际问题。
四、常微分方程的数值解法常微分方程是数值分析中的重要内容,它可以用来描述许多自然现象和工程问题。
在实验中,我们通过MATLAB的常微分方程求解函数,对一些简单的微分方程进行了数值解法的计算。
通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。
五、线性方程组的数值解法线性方程组是数值分析中的经典问题,它在科学计算和工程设计中广泛应用。
在实验中,我们通过MATLAB的线性方程组求解函数,对一些简单的线性方程组进行了数值解法的计算。
通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。
数值分析实验报告三

grid
[k,x,wuca,yx]=erfen (﹣1,1,10^-5)
2)运行结果
ans =
0 -1.0000 1.0000 0 1.0000 -11.6321 10.7183 -1.0000
ans =
1.0000 0 1.0000 0.5000 0.5000 -1.0000 10.7183 4.6487
ans =
11.0000 0.0898 0.0908 0.0903 0.0005 -0.0076 0.0033 -0.0021
ans =
12.0000 0.0903 0.0908 0.0906 0.0002 -0.0021 0.0033 0.0006
ans =
13.0000 0.0903 0.0906 0.0905 0.0001 -0.0021 0.0006 -0.0008
ans =
7.0000 0.1256 0.0008 0.0033 0.0262
ans =
8.0000 0.1240 0.0002 0.0016 0.0129
ans =
9.0000 0.1233 0.0000 0.0007 0.0056
ans =
9.0000 0.1233 0.0000 0.0007 0.0056
(2)、Use the iteration method ,the initial value .
2、The equation has two roots near 0.1.
Determine them by means ofNewton’s method.
(with accuracy )
3、用迭代法求方程 附近的一个根。方程写成下
k = 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东金融学院实验报告
本报告正文部分字体、字号要求:
(1)正文部分5号宋体,23-26磅行距;所有数字、字母必须用times new roman字体,而不是宋体!
(2)程序算法清单全部小5号,times new roman字体,行距为固定值10~12磅;
(3)表格以“表1+说明、表2+说明,…”等标示列在表格的上面,表格中出现的所有字母必须是times new roman字体,文字部分小5号,宋体,行距为固定值10~12磅;
(4)插图或截图以“图1+说明,图2+说明,…”列于插图的下面。
课程名称:基于MATLAB数值分析
四.实验结果(包括程序、图表、结论陈述、数据记录及分析等)
在本次实验中,我使用的被积函数都是θ22sin )(1*4y a c a -=这个形式。
(1)求解第一问结果:
图1被积函数θ
22sin )(1*4y
a
c a -=的曲线图
(2)求解第二问结果:
图2 n=30时复化梯形方法的被积函数图形
图3 n=30时复化simpson 方法的被积函数图形
表1 复化梯形在[0,2]区间等分为2,4,8,16,32,64个区间的求解结果
n I
Error
4 4.870743851190015300e+004 1.4551915228e-011 8 4.870743851190015300e+004 1.4551915228e-011 16 4.870743851190013800e+004 2.9103830457e-011 32 4.870743851190015300e+004
1.4551915228e-011
6 4.870743851190013800e+004 2.9103830457e-011 128 4.870743851190016000e+004 7.2759576142e-012 256
4.870743851190016700e+004
0000000000
表2 复化simpson 在[0,2]区间等分为2,4,8,16,32,64个区间的求解结果
n I
Error
4 4.870743851190014500e+004 -1.4551915228e-011 8 4.870743851190014500e+004 -1.4551915228e-011 16 4.870743851190014500e+004 -1.4551915228e-011 32 4.870743851190015300e+004 -2.1827872843e-011 64 4.870743851190013800e+004 -7.2759576142e-012 128 4.870743851190015300e+004 -2.1827872843e-011 256
4.870743851190013100e+004
0000000000
另外,为了更好直观地分析出它们的计算过程的区别,我们作出了它们等分为不同区间的各个图形。
图4复化梯形和复化Simpson 公式在[0,
2
π
]范围等分为4,8,16,32,64,128,256个区间的求解结果和误差分析 在选取n=30的时候,复化梯形和复化Simpson 公式的结果是4.870743851190015300*104, 而在增加划分区间的时候,得到的结果之间相差并没有太大。
由此,在本次实验中,我们可以认为要求精度在不高的前提下,我们是可以通过划分较少的区间数,降低计算量而得到精确的结果。
附录。