game theory lecture7博弈论
第七章 博奕论(Game Theory教材课程

max
是
u1
即该博奕的纳什均衡解
max u 2
maxu1 maxu2
U1 Uq12
q2
6q2 6q1
2q1 2q2
0 0
的解,
求解上述方程组:
q 1 * q 2 * 2 , Q 4 u 1 1 , u 2 4 , u 1 u 2 8
标志着博奕论的初步形成。 50年代,合作博奕发展到鼎盛阶段,非合作博奕开始出现 纳什和夏普里的讨价还价模型, 塔克的“囚徒困境” 60年代以后,selten,Haysany,Krops,Wilseen
“信誉问题模型” (动态不完全信息博弈) 最近十多年,博弈论几乎贯穿了整个微观经济学,产业组
织理论和企业制度理论,并扩展到宏观经济学,环境、劳动、 福利经济学等领域。
新厂商的市场进入问题
B
打入
A
打击
(0,10)
和平共处
(-2,3)
(5,5)
6.博奕进程的信息
完美信息博奕:在动态博奕中,博弈方对博弈的进程, 即次此行为前各博奕方的行为完全了解
非完美信息博弈:
完全信息博弈:博奕各方完全了解所有博奕方各种策 略组合下得益情况 非完全信息博弈:
7.2.2博弈的主要分类
1 3、赢得(利益):参加博奕各方从博奕中所获得的 利
益 支付矩阵,博弈树
零和博奕:各博奕方赢得的代数和为零 非零和博奕:各博奕方赢得的代数和不为零
4.均衡:所有博奕方的最优策略的组合
博奕分析的目的是使用博奕规则决定均衡
5.得益的信息
完全信息博奕:博奕各方完全了解所有博奕方各种策略 组合下得益情况的博奕,如囚徒困境和田忌赛马。
7。3 完全信息静态博奕——纳什均衡
博弈论介绍 Game Theory

2. 生活中的“囚徒困境”例子
例子1 商家价格战 例子1
出售同类产品的商家之间本来可以 通过共同将价格维持在高位而获利,但 实际上却是相互杀价,结果都赚不到钱。 当一些商家共谋将价格抬高,消费 者实际上不用着急,因为商家联合维持 高价的垄断行为一般不会持久,可以等 待垄断的自身崩溃,价格就会掉下来。
表2 智猪博弈 小猪 按 按 大猪 等待 5,1 9, -1 等待 4,4 0,0
这个博弈大猪没有劣战略。但是,小猪有 一个劣战略“按”,因为无论大猪作何选择, 小猪选择“等待”是比选择“按”更好一些 的战略。 所以,小猪会剔除“按”,而选择“等 待”;大猪知道小猪会选择“等待”,从而 自己选择“按”,所以,可以预料博弈的结 果是(按,等待)。这称为“ 重复剔除劣战略 的占优战略均衡 ”,其中小猪的战略“等待” 占优于战略“按”,而给定小猪剔除了劣战 略“按”后,大猪的战略“按”又占优于战 略“等待”
表4 有补贴时的博弈 空中客车 开发 开发 波音 不开发 -10,10 0, 120 不开发 100,0 0,0
这时只有一个纳什均衡,即波音公司 不开发和空中客车公司开发的均衡(不 开发,开发),这有利于空中客车。 在这里,欧共体对空中客车的补贴就 是使空中客车一定要开发(无论波音是 否开发)的威胁变得可置信的一种“承 诺行动”。
类似的例子还有: 渤海中的鱼愈来愈少了,工业化中的大气 及河流污染,森林植被的破坏等。解决公共 资源过度利用的出路是政府制订相应的规制 政策加强管理,如我国政府规定海洋捕鱼中, 每年有一段时间的“休渔期”,此时禁止捕 鱼,让小鱼苗安安静静地生长,大鱼好好地 产卵,并对鱼网的网眼大小作出规定,禁用 过小网眼的捕网打鱼,保护幼鱼的生存。又 如在三峡库区,为了保护库区水体环境,关 闭了前些年泛滥成灾的许多小造纸厂等。 问题:1、为什么在城市中心道路上禁止汽车鸣 喇叭?
第三节博弈论(GameTheory)

第三节博弈论(Game Theory)在国际关系的研究过程中,我们时常会运用到博弈论这样一个工具。
博弈论在英语中称之为“Game Theory”。
很多人会认为这是一种所谓的游戏理论,其实不然,我们不能把Games 与Fun 同论,而应该将博弈论称之为是一种“Strategic interaction”(策略性互动)。
“博弈”一词现如今在我们的生活中出现的已经很频繁,我们经常会听说各种类型的国家间博弈(如:中美博弈),“博弈论”已经深刻的影响了世界局势和地区局势的发展。
在iChange创设的危机联动体系中,博弈论将得到充分利用,代表也将有机会运用博弈论的知识来解决iChange 核心学术委员会设计的危机。
在这一节中,我将对博弈论进行一个初步的介绍与讨论,代表们可以从这一节中了解到博弈论的相关历史以及一些经典案例的剖析。
(请注意:博弈论的应用范围非常广泛,涵盖数学、经济学、生物学、计算机科学、国际关系、政治学及军事战略等多种学科,对博弈论案例的一些深入分析有时需要运用到高等数学知识,在本节中我们不会涉及较多的数学概念,仅会通过一些基本的数学分析和逻辑推理来方便理解将要讨论的经典博弈案例。
)3.1 从“叙利亚局势”到“零和博弈”在先前关于现实主义理论的讨论中,我们对国家间博弈已经有了初步的了解,那就是国家是有目的的行为体,他们总为了实现自己利益的最大化而选择对自己最有利的战略,其次,政治结果不仅仅只取决于一个国家的战略选择还取决于其他国家的战略选择,多种选择的互相作用,或者策略性互动会产生不同的结果。
因此,国家行为体在选择战略前会预判他国的战略。
在这样的条件下,让我们用一个简单的模型分析一下发生在2013年叙利亚局势1:叙利亚危机从2011年发展至今已经将进入第四个年头。
叙利亚危机从叙利亚政府军屠杀平民和儿童再到使用化学武器而骤然升级,以2013年8月底美国欲对叙利亚动武达到最为紧张的状态,同年9月中旬,叙利亚阿萨德政府以愿意向国际社会交出化学武器并同意立即加入《禁止化学武器公约》的态度而使得局势趋向缓和。
GameTheory:博弈论

EE693H Fall2007Game TheoryTR,12:00pm–1:15pm,Holmes389Course InformationGame theory provides the most natural framework to study the strategic interactions between self-interested decision makers.Due to the emergence of distributed complex systems made up of many autonomous agents (such as the Internet),there has been a resurgence of interest in game theory within the engineering and the computer science communities.This course will introduce the students to the fundamentals of noncoopera-tive game theory as well as the computational tools provided by noncooperative game theory.Emphasis will be on the engineering applications such as control,communications,transportation systems,and resource allocation problems.The course is intended for mathematically inclined students with some background on probability theory.Instructor:G¨u rdal Arslan,Holmes440,Phone:956–3432,E-mail:*****************Office Hours:OpenRecommended Texts:Dynamic Noncooperative Game Theory by Bas.ar and OlsderGame Theory by Fudenberg and Tirole,Webpage:/∼gurdal/EE693H.htmSite of announcements,handouts,homeworks,etc.Grading:Homework30%;Mid-term35%;Project35%.Policies:No credit will be given to late homeworks.Exams must be taken at the announced times.(Tentative)Topics•Introduction(1Lecture)–Examples and various solution concepts•Zero-Sum Finite Games in Normal Form(2Lecture)–Security strategies–Lower and upper values–Saddle-point equilibrium–Mixed strategies–Minmax theorem–Computation of saddle-point equilibria by graphical solution and LP approaches–Dominated strategies–Iterative elimination of dominated strategies•Normal Form Games(6Lecture)–Pure and mixed strategies–Dominated strategies and solution by iterated dominance–Nash equilibrium–Pure equilibrium,Strict equilibrium–Examples of pure equilibrium(Cournot’s model of oligopoly,CDMA uplink power control)–Existence of mixed equilibria infinite normal games(Best response correspondence,Kakutani’s fixed point theorem)–Existence of pure equilibrium in infinite games with continuous payoffs(Quasi-concavity of player payoffs in its own decisions)–Sufficient conditions for the uniqueness of pure equilibrium in infinite games with continuous payoffs(Diagonal strict concavity condition)–Existence of mixed equilibrium in infinite games with continuous payoffs–Discontinuous games–Computation of Nash equilibria infinite normal-form games(algebraic approach,optimization approach)–Correlated equilibrium,coarse correlated equilibrium,correlated equilibrium with information partitions•Well-known Classes of Non-Zero-Sum Games(7Lecture)–Generalized ordinal potential games and existence of pure equilibria–Finite improvement property–Characterization of potential games–Weighted potential games–Congestion games–Inefficiency of Nash equilibria in congestion games,Tolls minimizing the total congestion,Braess’paradox–Price of anarchy and price of stability in congestion games–Infinite potential games–Efficiency loss in resource allocation games–(Weakly)acyclic games–Consensus problem–Supermodular games•Learning in games(8Lecture)–Cournot’s adjustment process–Fictitious play,Asymptotic behavior,Convergence of beliefs in certain classes of games,Shapley’s example,Lack of payoffconsistency,–Stochasticfictitious play,Payoffconsistency,Perturbed equilibria,Convergence of intended be-havior via stochastic approximation theory–Computation,memory,and observation requirements offictitious play–Regret based dynamics,Utility basedfictitious play–Finite memory variants offictitious play,Adaptive play,Elements of Markov processes,Perturbed Markov processes,Stochastic stability•Repeated Games•Auctions;Mechanism design;Incentive design•Games with incomplete/imperfect information;•Extensive form games•Dynamic games;Markov games。
博弈论 Game theory (全)

博弈论 Game Theory博弈论亦名“对策论”、“赛局理论”,属应用数学的一个分支, 目前在生物学,经济学,国际关系,计算机科学, 政治学,军事战略和其他很多学科都有广泛的应用。
在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。
主要研究公式化了的激励结构间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。
其中一个有名有趣的应用例子是囚徒困境(Prisoner's dilemma)。
具有竞争或对抗性质的行为称为博弈行为。
在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。
为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。
比如日常生活中的下棋,打牌等。
博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
生物学家使用博弈理论来理解和预测演化(论)的某些结果。
例如,约翰·史密斯(John Maynard Smith)和乔治·普莱斯(George R. Price)在1973年发表于《自然》杂志上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。
其余可参见演化博弈理论(evolutionary game theory)和行为生态学(behavioral ecology)。
博弈论也应用于数学的其他分支,如概率,统计和线性规划等。
历史博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论的定义和主要思想

清华诚志
9
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
清华诚志
12
两种均衡
占优策略是无论其他局中人采取什么策 略对于自己来说都是最好的策略。
占优均衡所有局中人都有占优策略而形 成的均衡。
纳什均衡是指某一局中人在其他局 中人的策略给定时选择最好策略而 形成的均衡。
清华诚志
13
占优均衡一定是纳什均衡,但 纳什均衡不一定是占优均衡。
占优均衡
– “不管你做什么,我所做的都是最佳选择。” – “不管我做什么,你所做的都是最佳选择。”
纳什均衡
– “给定你的行为,我所做的是最佳选择。” – “给定我做什么,你所做的是最佳选择。”
清华诚志
14
博弈的分类
1)根据参与人的多少,可将博弈分为两人 博弈和多人博弈;
2)根据博弈结果的不同,又可分为零和博 弈、常和博弈和变和博弈;
3)根据博弈方策略的数量,可分为有限博 弈和无限博弈;
清华诚志
清华诚志
5
Selten and Harsanyi
泽尔腾(1965)将纳 什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概 念;以及进一步刻画 不完全信息动态博弈 的“完备贝叶斯纳什 均衡”
博弈论-game-theory-两人轮流进行游戏

当k∞时 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… g(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… 这有啥用
游戏的联合
定义:对于n个给定的公平组合博弈G1, G2, …, Gn,定义他 们集的合联 ;合对为于G一=个G1局+G面2+x…i属+G于n.X对i,于设游F戏i(xGi)i表Байду номын сангаас示设xXi的i为后它继的局局面面集 合对。于G那的么一G个的局局面面x集=合{x1X,x=2,X…1*,xXn2}*,…它*X的n(后其继中局*为面笛集卡合儿积);
gn(x1,x2,…,xn) = g(x1)⊕g(x2)⊕…⊕g(xn)
= x1⊕x2⊕…⊕xn
经典Nim游戏
图的游戏
3
0
2 0
1
3 ⊕0 ⊕0=3
0 0
1 0
1
Anti-Nim
有n堆石子,每堆ai个,两个人轮流游戏,每次游戏者 取走某一石碓中至少1枚,至多k枚的石子。谁取走最 后一颗石子算谁输。
一方算输 无论游戏如何进行,总可以在有限步之内结束。(the
Ending Condition)
N局面,P局面
N局面——先手必胜局面
winning for the Next player
P局面——后手必胜局面
winning for the Previous player
定义:
每一个最终局面都是P局面 对于一个局面,若至少有一种操作使它变成一个P局面,
还扩展
游戏4:游戏有n堆石子,第i堆有ai枚,两人轮流进行 游戏,每次游戏者可以从任意一堆取走任意多枚石子, 也可以将任意的一堆石子任意的分成两堆。谁取走最 后一颗石子为胜。
第六章博弈论

一般认为,1944年美国数学家冯•诺依曼(John Von Neumann)和经济学家奥斯卡•摩根斯坦 (Oskar Morgenstern)合著的《博弈论与经济 行为》(The Game Theory and Economic Behavior) 一书的出版,标志着系统的博弈理 论的形成。
❖该书详尽地讨论了二人零和博弈, 并对合作博弈作了深入探讨,开辟 了一些新的研究领域。更重要的是 将博弈论加以空前广泛的应用,尤 其是在经济学上,由于博弈论数学 上的严整性与经济学应用上的广泛 性,一些经济学家将该巨著的出版 视为数理经济学确立的里程碑。
“保证最低价格”策略
❖ “保证最低价格”条款。
❖ 该条款一般规定:“顾客在本 商店购买这种商品一段时间内,如 果发现其他任何商店以更低的价格 出售同样的商品,本店将退还差价, 并补偿差额的10%。”
❖ 一、单项选择题:
❖ 分析下列的报酬矩阵,回答问题:
John的 开业长时间 咖啡 馆 开业短时间
✓ 第一,不能让对方事先知道自己可 能采取的策略。
✓ 第二,必须采取随机选择的原则。 ✓ 第三,选择策略的概率一定要使对
方无机可乘。
动态博弈
➢重复博弈 ➢序列博弈
重复博弈
❖ 对重复博奕的研究结果证明有一种 最好的策略:只需将一个原则贯穿始终, 即“以牙还牙”(Tit-for-tat)。
❖ 以牙还牙策略的获胜有一个十分重 要的条件,即博弈是无限次重复的。
❖王则柯 :《新编博弈论平话》 中信出版社 ❖ 王则柯主编:《21世纪经济学教材:博弈论
教程》中国人民大学出版社
❖ 《美丽心灵》(A Beautiful Mind )是一部关于一个 真实天才的极富人性的剧情片。故事的原型是数学家 小约翰-福布斯-纳什(Jr.John Forbes Nash)。英俊而又 十分古怪的纳什早年就作出了惊人的数学发现,开始 享有国际声誉。但纳什出众的直觉受到了精神分裂症 的困扰,使他向学术上最高层次进军的辉煌历程发生 了巨大改变。面对这个曾经击毁了许多人的挑战,纳 什在深爱着的妻子艾丽西亚(Alicia)的相助下,毫不畏 惧,顽强抗争。经过了几十年的艰难努力,他终于战 胜了这个不幸,并于1994年获得诺贝尔奖。这是一个 真人真事的传奇故事,今天纳什继续在他的领域中耕 耘着。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
behavioral strategy in Extensive-Form Games
a behavioral strategy is more in tune with the dynamic nature of the extensive-form game. When using such a strategy, a player mixes among his actions whenever he is called to play.
Normal-Form Representation of Extensive-Form Games
• Any extensive-form game can be transformed into a normal-form game by using the set of pure strategies of the extensive form (see definition 7.4) as the set of pure strategies in the normal form, and the set of payoff functions is derived from how combinations of pure strategies result in the selection of terminal nodes. • Therefore the normal-form representation of an extensive form will suffice to find all the Nash equilibria of the game.
Mixed versus Behavioral Strategies in Extensive-Form Games
• Definition 7.5 A mixed strategy for player i is a probability distribution over his pure strategies si∈ Si .
Mixed versus Behavioral Strategies
Given a mixed strategy , a behavior strategy can be construct by the sum of the probability that reaching the action in the information set. Given a behavior strategy, a mixed strategy can be found by inverse the above process.
Pure Strategies in Extensive-Form Games
• Definition 7.4 A pure strategy for player i is a mapping si :Hi→Ai that assigns an action si(hi) ∈ Ai(hi) for every information set hi ∈ Hi . We denote by Si the set of all pure-strategy mappings si∈ Si . • The strategy defines actions that are conditional on his information about where he is in the game.
The Absent-Minded Driver
• Piccione and Rubinstein (1997)
Define a “planning” mixed strategy of the player as a probability p that he will exit at any exit he passes His expected payoff from this strategy is 0p + 4p(1−p) + 1(1− p)2 =−3p2 + 2p + 1, which is maximized at p = 1/3 At an intersection,he knows that with some probability q he is at Exit 1, and with some probability (1− q) he is at exit 2.The driver’s payoff for choosing to exit with probability p is now, at the intersection, q*4p(1− p) + 1(1− p) 2++ (1− q)*4p + 1(1− p)+, which is equivalent to the planning problem only when q = 1
Mixed versus Behavioral Strategies
• The first is, given a mixed (not behavioral) strategy, can we find a behavioral strategy that leads to the same outcomes? • given a behavioral strategy, can we find a mixed strategy that leads to the same outcomes?
Normal-Form Representation of Extensive-Form Games
• Furthermoreunique normal form that represents it, which is not true for the reverse transformation (see the following remark).
• We defined games of complete as the situation in which each player i knows the action set and the payoff function of each and every player j ∈ N, and this itself is common knowledge. • Definition 7.3 A game of complete information in which every information set is a singleton and there are no moves of Nature is called a game of perfect information. • A game in which some information sets contain several nodes or in which there are moves of Nature is called a game of imperfect information.
• In a game of (complete but) imperfect information some players do not know where they are because some information sets include more than one node. • This happens, for example, every time they move without knowing what some players have chosen previously, • Games of imperfect information are also useful to capture the uncertainty a player may have about acts of Nature.
Example : battle of sexes game.
• This is the sequential version battle of sexes game.
F F Player 1 O Player 2 O (6,8) Palyer 2 O F
(8,6)
(0,0) (0,0)
game of imperfect information
exogenous uncertainty or endogenous uncertainty
A card game
Strategies and Nash Equilibrium
• Pure Strategies in Extensive-Form Games • A pure strategy for player i is a complete plan of play that describes which pure action player i will choose at each of his information sets. • Let Hi be the collection of all information sets at which player i plays, and let hi ∈ Hi be one of i’s information sets. Let Ai(hi) be the actions that player i can take at hi , and let Ai be the set of all actions of player i, Ai=∪hi∈Hi Ai(hi)
A game of perfect recall
• Definition 7.7 A game of perfect recall is one in which no player ever forgets information that he previously knew. • a game of perfect recall is one in which, if a player is called upon to move more than once in a game, then he must remember the moves that he chose in his previous information sets. • Practically all of the analysis in game theory, and in applications of game theory to the social sciences, assumes perfect recall, as will we in this text. • For the class of perfect-recall games, Kuhn (1953) proved that mixed and behavioral strategies are equivalent, in the sense that given strategies of i’s opponents, the same distribution over outcomes can be generated by either a mixed or a behavioral strategy of player i.