中心对称图形单元测试卷参考答案与试题解析1
补充材料十 《中心对称图形》单元测试卷

补充材料十《中心对称图形》单元练习一、选择题(每小题3分,共30分)1.把图形绕点A按逆时针方向旋转70o后所得的图形与原图作比较,保持不变的是( ) A.位置与大小B.形状与大小题C.位置与形状D.位置、形状及大小2.下面4个图案中,是中心对称图形的是( )3.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为( ) A.2个B.3个C.4个13.5个4.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=3,则菱形ABCD的周长是( ) A.12 B.18 C.24 D.305.如图,在周长为20 cm的 ABCD中,AB≠AD,AC、BD相交于点O,OE上BD交AD于点E,连接BE,则△ABE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm6.已知菱形的周长为40 cm,两对角线长度比为3:4,则对角线长分别为( )A.12 cm.16 cm B.6 cm,8 cm C.3 cm,4 cm D.24 cm,32 cm7.四边形ABCD,对角线AC、BD相交于点O,如果AO=CO,BO=DO,AC⊥BD,那么这个四边形( ) A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形,又是中心对称图形D.是轴对称图形,但不是中心对称图形8.对于下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.其中可以用任意两个全等的直角三角形拼成的图形有( )A.①④⑥B.①②⑤C.①③⑤D.②⑤⑥9.顺次连接下列各四边形各边中点所得的四边形是矩形的是( ) A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形10.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于( ) A.1:4 B.1:3 C.1:2 D.3:4二、填空题(每小题3分,共24分)11.已知三点A、B、D.如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是__________.12.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为__________cm.13.如图.在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形.四边形ABCD还应满足的一个条件是___________.14.△ABC三边的中点分别为D、E、F,如果AB=6 cm,Ac=8 cm,∠A=90o,那么△DEF的周长是________cm.15.平行四边形的周长为24 cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm.16.如图,矩形ABCD的对角线AC和BD相交于点D,过点O的直线分别交AD、BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为__________.17.菱形的两邻角的度数之比为l:3,边长为__________.18.如图.等边△EBC在正方形ABCD内,连接DE,则∠CDE=________.三、解答题(共46分)19.(6分)如图,在10×10的正方形网格纸中(每个小方格的边长都是1个单位)有一个△ABC,请在网格纸中画出以点O为旋转中心把△ABC按顺时针方向旋转90o得到的△A'B'C'.20.(8分)如图,在 ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF.(1)试说明△CEF是等腰三角形:(2) △CEF的哪两边之和恰好是 ABCD的周长,说明理由.21.(8分)如图,~ABCD中,AE~3J.A_DAB交DC于点E,连接BE,过E作EF⊥BE交AD于点F(1)试说明∠DEF=∠CBE:(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.22.(8分)如图,四边形ABCD是正方形,△DCE绕点D顺时针方向旋转90o后与△DAF重合,连接EF(1)试判断△DEF是什么三角形?并说明你的理由;(2)若此时DE的长为2,请求出EF的长.23.(8分)小华在某课外书上看到了这样一道题:“如图,分别以正方形ABCD的边AB、AD为直径画半圆.若正方形的边长为a,求阴影部分的面积.”从表面上看,图中的阴影部分是复杂且比较分散的图形,要直接计算它的面积还是有困难的,但小华仔细考虑过后,只是将正方形的对角线AC、BD连接起来,然后利用自己所学的“图形的旋转”知识很简便地就将本题解决了,你知道他是怎样做的吗?24.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D'处,折痕为EF(1)试说明△ABE≌△AD' F:(2)连接CF,判断四边形AECF是什么特殊四边形,并证明你的结论.。
2021年苏科版九年级数学上册《第2章 对称图形——圆》单元检测卷(有答案)

九年级上册数学《第2章对称图形——圆》单元测试卷一.选择题1.已知⊙O中,最长的弦长为16cm,则⊙O的半径是()A.4cm B.8cm C.16cm D.32cm2.如图,在⊙O中弦AB,CD相交于点E,∠A=30°,∠AED=75°,则∠B=()A.60°B.45°C.75°D.50°3.如图,AB为⊙O的切线,A为切点,BO交⊙O于点C,点D在⊙O上,若∠ABO的度数是32°,则∠ADC的度数是()A.15°B.16°C.29°D.58°4.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°5.已知⊙O的半径是10cm,根据下列点P到圆心O的距离可判断点P在圆外的是()A.8cm B.9cm C.10cm D.11cm6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2 B.100πcm2 C.100πcm2 D.50πcm27.如图,AB为⊙O的弦,点C为AB的中点,AB=8,OC=3,则⊙O的半径长为()A.4B.5C.6D.78.如图,不等边△ABC内接于⊙O,下列结论不成立的是()A.∠1=∠2B.∠1=∠4C.∠AOB=2∠ACB D.∠ACB=∠2+∠3 9.如图,在等腰直角三角形ABC中,∠C=90°,AB=4,以A为圆心,AC长为半径作弧,交AB于点D,则阴影部分的面积是()A.2πB.8C.8﹣2πD.16﹣2π10.如图,AB是⊙O的直径,CD为⊙O的弦,且CD⊥AB于点E,点F为圆上一点,若AE=BF,,OE=1,则BC的长为()A.2B.3C.4D.5二.填空题11.如图,⊙O中,弦AB、CD相交于点P,若AP=5,BP=4,CP=3,则DP为.12.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,则筒车工作时,盛水桶在水面以下的最大深度为m.13.如图,点D是等边△ABC外部一点,∠ADC=30°,BD=8,则四边形ABCD面积的最小值为.14.如图所示,四边形ABCD是圆内接四边形,其中∠A=80°,则∠C=.15.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB延长线上任一点,QS⊥OP于S,则OP•OS=.16.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是.17.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD的度数为.18.已知如图:△ABC中,∠C=90°,BC=AC,以AC为直径的圆交AB于D,若AD=8cm,则阴影部分的面积为.19.圆锥的底面半径为5cm,侧面展开图的面积是30πcm2,则该圆锥的母线长为cm.20.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.三.解答题21.如图,△ABC内接于⊙O,∠BAC=45°,AD⊥BC,垂足为D,BD=6,DC=4.(1)求⊙O的半径;(2)求AD的长.22.如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.23.如图,从一个半径为1m的圆形铁皮中剪出一个圆心角为90°的扇形,并将剪下来的扇形围成一个圆锥,求此圆锥的底面圆的半径.24.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,连接OA.若AB=4,CD=1,求⊙O半径的长.25.如图,AB是⊙O的直径,PA,PC分别与⊙O相切于点A,点C,若∠P=60°,PA =,求AB的长.26.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.27.如图1,AB是⊙O的直径,点C在⊙O上,D为AC的中点,连接BC,OD.(1)求证:OD∥BC;(2)如图2,过点D作AB的垂线与⊙O交于点E,作直径EF交BC于点G.若G为BC中点,⊙O的半径为2,求弦BC的长.28.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案与试题解析一.选择题1.解:∵最长的弦长为16cm,∴⊙O的直径为16cm,∴⊙O的半径为8cm.故选:B.2.解:∵∠A=30°,∴∠D=∠A=30°,∴∠B=∠AED﹣∠D=75°﹣30°=45°.故选:B.3.解:∵AB为⊙O的切线,∴∠OAB=90°,∴∠AOB=90°﹣∠ABO=58°,由圆周角定理得,∠ADC=∠AOB=29°,故选:C.4.解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.5.解:A、∵OP=8cm<10cm,∴点P在圆内,不合题意;B、∵OP=9cm<10cm,∴点P在圆内,不合题意;C、∵OP=10cm,∴点P在圆上,不合题意;D、∵OP=11cm>10cm,∴点P在圆外,符合题意.故选:D.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵OC⊥AB于C,∴AC=CB,∵AB=8,∴AC=CB=4,在Rt△AOC中,OC=3,根据勾股定理,OA==5.故选:B.8.解:∵OB=OC,∴∠1=∠2,所以A选项的结论成立;∵OA=OB,∴∠4=∠OBA,∴∠AOB=180°﹣∠4﹣∠OBA=180°﹣2∠4,∵△ABC为不等边三角形,∴AB≠BC,∴∠BOC≠∠AOB,而∠BOC=180°﹣∠1﹣∠2=180°﹣2∠1,∴∠1≠∠4,所以B选项的结论不成立;∵∠AOB与∠ACB都对,∴∠AOB=2∠ACB,所以C选项的结论成立;∵OA=OC,∴∠OCA=∠3,∴∠ACB=∠1+∠OCA=∠2+∠3,所以D选项的结论成立.故选:B.9.解:∵△ACB是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵AB=4,∴AC=BC=AB×sin45°=4,∴S△ACB==8,S扇形ACD==2π,∴图中阴影部分的面积是8﹣2π.故选:C.10.解:如图,连接OC交AF于J,设BC交AF于T,过点T作TH⊥AB于H.∵AB⊥CD,∴=,∵=,∴=,∴OC⊥AF,∴∠AJO=∠CEO=90°,∵∠AOJ=∠COE,OA=OC,∴△AJO≌△CEO(AAS),∴OJ=OE,∴AE=CJ,∵AB是直径,∴∠F=∠CJT=90°,∵AE=BF,∴BF=CJ,∵∠CTJ=∠BTF,∴△CTJ≌△BTF(AAS),∴CT=BT,∵TH⊥AB,CD⊥AB,∴TH∥CE,∴EH=BH,∵=,∴∠TBF=∠TBH,∵∠F=∠THB=90°,BT=BT,∴△BTF≌△BTH(AAS),∴BF=BH,∵AE=BF,∴AE=BH,∵OA=OB,∴OE=OH=1,∴EH=BH=2,∴AE=BH=2,∴AB=6,OC=OB=3,∴EC===2,∴BC===2,故选:A.二.填空题11.解:由相交弦定理得,PA•PB=PC•PD,∴5×4=3×DP,解得,DP=,故答案为:.12.解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2(m),答:筒车工作时,盛水桶在水面以下的最大深度为2m.13.解:过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,如下图所示:∵DE⊥DC,∴∠EDC=90°,∵∠ADC=30°,∴∠EDA=60°,∵DE=DA,∴三角形ADE是等边三角形,∴AD=AE,∠DAE=60°,∴∠CAE=∠CAD+∠DAE=∠CAD+60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠BAD=∠BAC+∠CAD=60°+∠CAD,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,∵BD=8,∴CE=8,设等边三角形ABC的边长为a,等边三角形ADE的边长为b,在直角三角形DEC中,CE=8,AD=b,∴DC2=64﹣b2,在直角三角形AMD中,∠ADC=30°,AD=b,∴AM=b,∴DM=b,∴CM=﹣b,在直角三角形ACM中,AC=AM2+CM2,∴a2=(b)2+(﹣b)2,∵四边形ABCD面积=×a×a+×b×当b=4时,面积为最小值:16﹣16,故答案为:16﹣16.14.解:∵四边形ABCD为圆内接四边形,∠A=80°,∴∠C=180°﹣80°=100°.故答案为:100°.15.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.16.解:如图,连接AC,取AC的中点H,连接EH,OH.∵CE=EP,CH=AH,∴EH=PA=1,∴点E的运动轨迹是以H为圆心半径为1的圆,∵C(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OE的最小值=OH﹣EH=2.5﹣1=1.5,故答案为:1.5.17.解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.18.解:连接CD,∵△ABC中,∠C=90°,BC=AC,∴∠DAC=45°,∵以AC为直径的圆交AB于点D,∴∠ADC=90°,∴CD⊥AB,∴CD=AD=BD,∵AD=8cm,∴图中阴影部分的面积为:S=BD•CD==32(cm2).△BDC故答案为:32cm2.19.解:圆锥的底面周长是:2π×5=10π,设圆锥的母线长是l,则×10πl=30π,解得:l=6;故答案为:6.20.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.三.解答题21.解:(1)如图1,连接OB、OC,∵BD=6,DC=4,∴BC=10,由圆周角定理得,∠BOC=2∠BAC=90°,∴OB=BC=5;(2)如图2,连接OA,过点O作OE⊥AD于E,OF⊥BC于F,∴BF=FC=5,∴DF=1,∵∠BOC=90°,BF=FC,∴OF=BC=5,∵AD⊥BC,OE⊥AD,OF⊥BC,∴四边形OFDE为矩形,∴OE=DF=1,DE=OF=5,在Rt△AOE中,AE==7,∴AD=AE+DE=12.22.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.23.解:连接BC,依题意,线段BC是圆的直径.∴,∴==π.∴圆锥的底面圆的半径=π÷2π=(m).答:圆锥的底面圆的半径为m.24.解:设⊙O的半径为r,则OA=r,OC=r﹣1,∵OD⊥AB,AB=4,∴AC=AB=2,在Rt△ACO中,OA2=AC2+OC2,∴r2=22+(r﹣1)2,r=,答:⊙O半径的长为.25.解:∵PA、PB是⊙D的切线,∴PA=PC,∠BAP=90°,∵∠P=60°,∴△PAC是等边三角形,∴AC=PA=,∠PAC=60°,∵AB是⊙O直径,∴∠ACB=90°,∴∠BAC=30°,∴AB===2.26.解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∵∠E=25°,∴∠DOE=∠E=25°,∴∠ODC=50°,同理∠C=∠ODC=50°∴∠AOC=∠E+∠OCE=75°.27.(1)证明:连接BD,如图1所示:∵D为AC的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ABD=∠BDO,∴∠CBD=∠BDO,∴OD∥BC;(2)解:∵G为BC中点,∴OF⊥BC,由(1)得:OD∥BC,∴DO⊥EF,∴△DOE是等腰直角三角形,∴∠OED=45°,∵DE⊥AB,∴∠EOA=∠BOG=45°,∴△OGB是等腰直角三角形,∴BG=OB=×2=,∴BC=2BG=2.28.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.1、三人行,必有我师。
苏科版九年级数学上《第二章对称图形--圆》单元测试含答案试卷分析详解

第二章对称图形--圆单元测试一、单选题(共10题;共30分)1.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是 ( )A、25πB、65πC、90πD、130π2.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A、60ºB、30ºC、45ºD、50º3.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则的长为()A、3π2B、3π4C、3π8D、3π4.若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系()A、点A在圆内B、点A在圆上C、点A在圆外D、不能确定5.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是( ).A、30°B、60°C、90°D、120°6.如图所示的扇形的圆心角度数分别为30°,40°,50°,则剩下扇形是圆的()A、13B、23C、14D、347.如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则S1S2=()A.3B.4C.5D.68.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.若抛物线与坐标轴只有一个交点,则b2﹣4ac=0D.相等的圆心角所对的弧相等9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°10.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A、27°B、54°C、63° D 、36°二、填空题(共8题;共24分)11.已知,半径为4的圆中,弦AB把圆周分成1:3两部分,则弦AB长是________ .12.如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为________ .13.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________14.已知正六边形的半径为2cm,那么这个正六边形的边心距为 ________cm15.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的面积为________ cm2.16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC^ 的弧长为________.(结果保留π)17.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是________.18.如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于________.三、解答题(共5题;共36分)19.如图,P是半径为3cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C 是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=433cm,求图中阴影部分的面积.20.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.23.如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为43 ,求点P的坐标.四、综合题(共1题;共10分)24.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)答案解析一、单选题1、【答案】B【考点】圆锥的计算,图形的旋转【解析】【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.2、【答案】A【考点】圆周角定理【解析】【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=12∠AOB=60°;故选A.3、【答案】A【考点】等腰梯形的性质,切线的性质,弧长的计算【解析】【分析】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,由等腰梯形的性质可得到BM=AM=2,从而可求得∠BAD的度数,再根据弧长公式即可求得长.【解答】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为135×2π180=3π2 ,故选A.【点评】本题考查等腰梯形的性质,圆的切线的性质及弧长公式的理解及运用.4、【答案】A【考点】点与圆的位置关系【解析】【分析】点A到圆心O的距离是3,小于⊙O半径4,所以点A在圆内。
2020-2021学年苏科 版八年级下册数学 第9章 中心对称图形——平行四边形 单元测试卷

2020-2021学年苏科新版八年级下册数学《第9章中心对称图形——平行四边形》单元测试卷一.选择题1.经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定2.下列判断四边形是平行四边形的是()A.两组角相等的四边形B.对角线平分的四边形C.一组对边相等,一组对角相等的四边形D.两组对边分别相等的四边形3.四边相等的四边形一定是()A.矩形B.菱形C.正方形D.无法判定4.等腰三角形中有一条边长为4,其三条中位线的长度总和为8,则底边长是()A.4B.8C.4或6D.4或85.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格.②先以点O为中心作其中心对称图形,再以点A的对应点为中心逆时针方向旋转90°.③先以直线MN为轴作其轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中变换后的图形为三角形PQR的是()A.①②B.①③C.②③D.①②③6.按图中所示的排列规律,在空格中应填()A.B.C.D.7.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A.30°B.60°C.120°D.180°8.观察下列图形,其中是旋转对称图形的有()A.1个B.2个C.3个D.4个9.如图所示的图案中,能够绕自身的某一点旋转180°后还能与自身重合的图形的个数是()A.1B.2C.3D.410.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题11.如图,在△ABC中,AB=4,AC=2.4,BC=3.6,AD⊥BC于点D,E,F分别是AB,AC的中点,则EF=,DE=,DF=.12.根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是.13.矩形的两邻边分别为8cm和6cm,则其对角线为cm,矩形面积为cm2.14.(1)若直角三角形斜边上的高和中线分别为10cm、12cm,则它的面积为cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为.15.如图,在▱ABC D中,E是AB上一点,F是AB延长线上一点,则S△CDE S△CDF(在横线上填“<”或“>”或“=”).16.一般来说,反证法有如下三个步骤:(1),(2)(3).17.国旗上的五角星是旋转对称图形,它的最小旋转角是.18.如图,已知四边形ABCD是一个平行四边形,则只须补充条件,就可以判定它是一个菱形.19.如果▱ABCD和▱ABE F有公共边AB,那么四边形DCEF是.20.等边三角形、平行四边形、矩形、圆四个图形中,既是轴对称图形又是中心对称图形的是.三.解答题21.如图所示,已知DE,EF是△ABC的两条中位线.求证:四边形BFED是平行四边形.22.怎样将图中的甲图案变成乙图案.23.如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?24.如图,四边形ABCD为平行四边形,E为BC的中点,DF⊥AE于点F,H为DF的中点,证明:CH⊥DF.25.如图,在平面直角坐标系中,有一个平行四边形ABCD,其中点A,B在x轴上,点D 在y轴上,点C在第一象限.已知AD⊥BD,AD=4,∠ABD=30°,求A,B,C,D 各点的坐标.26.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)27.有一组数排成方阵,如图所示,试计算这组数的和.小明想了想,方阵象正方形,正方形是轴对称图形,又是中心对称图形,能否利用轴对称和中心对称的思想来解决方阵的计算问题呢?小明试了试,竟得到了非常巧妙的方法,你能试试看吗?1234523456345674567856789参考答案与试题解析一.选择题1.解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选:C.2.解;根据平行四边形的判定可知,A、B、C不能判定为平行四边形.故选:D.3.解:根据菱形的判定:四边相等的四边形是菱形.故选:B.4.解:由题意得,周长=2×8=16,①当底边=4时,此时腰长=6,符合题意;②当腰长=4时,此时底边=8,4+4=8,不能构成三角形,不符合题意.综上可得,底边长为4.故选:A.5.解:①通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,②通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,③通过认真的画图可知,此方法可以将△ABC变换成△PQR,故此方法正确,故选:D.6.解:观察图形,发现:图形绕三角形的中心按顺时针方向转动90°.故选:A.7.解:第一个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第二个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第三个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到;第四个图案可以看作是它的“基本图案”绕着它的旋转中心旋转90°得到.上述选项中只有180°是90°的整数倍.故选:D.8.解:旋转对称图形是(1),(3),(4);不是旋转对称图形的是(2).故选:C.9.解:4个图形都符合条件.故选D.10.解:根据平行四边形的基本性质:平行四边形的两组对角分别相等,可知角分别为,(1)90°,90°,90°90°;(2)120°,60°,120°,60°;(3)150°,30°,150°,30°;不是平行四边形的四边形为(4)60°,90°,120°,90°.共4种,故选:C.二.填空题11.解:如图∵E,F分别是AB,AC的中点,∴EF为△ABC的中位线,∴EF=BC=1.8;∵AD⊥BC,E是AB的中点,∴DE=AB=2;同理可得DF=AC=1.2.12.解:∵矩形、菱形、正方形的对角线都具有平分的性质,则根据两条对角线的关系判断一个四边形是矩形或菱形或正方形的必不可少的条件是平分.故答案为平分.13.解:矩形的对角线为=10cm,面积S=6×8=48cm2故答案为10,48.14.解:(1)∵直角三角形斜边上的中线为12cm,∴斜边=2×2=24cm,∴它的面积=×24×10=120cm2;(2)∵等腰三角形的一个外角为100°,∴与这个外角相邻的内角是180°﹣100°=80°,若80°角是顶角,则顶角为80°,若80°角是底角,则顶角为180°﹣80°×2=20°,所以,这个等腰三角形的顶角为80°或20°.故答案为:(1)120;(2)80°或20°.15.解:∵四边形ABCD是平行四边形,∴AB∥DC,∴AB和CD之间的距离处处相等,即S△CDE =S△CDF,故答案为:=.16.解:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.17.解:∵360°÷5=72°,∴该图形绕中心至少旋转72度后能和原来的图案互相重合.故答案为:72°.18.解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.19.解:由题意可得:AB平行且等于CD,AB平行且等于EF∴CD平行且等于EF,又∵两个平行四边形在同一平面∴四边形DCEF是平行四边形.故答案为:平行四边形.20.解:矩形、圆即是轴对称图形,又是中心对称图形.故答案为:矩形、圆.三.解答题21.证明:∵DE,EF是△ABC的两条中位线.∴DE∥BC,EF∥AB,∴四边形BFED是平行四边形.22.解:步骤:(1)将图甲绕O点逆时针旋转一定角度,使树干与地面垂直.(2)接着将图(1)向右平移至与图乙重合即可.23.解:这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.24.证明:延长AE、DC交于点P,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠PCE,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE(ASA),∴PC=AB=CD,∵H为DF的中点,∴CH是△PDF的中位线,∴CH∥AE,∵DF⊥AE,∴CH⊥DF.25.解:∵在直角△ABD中,∠ABD=30°,∴AB=2AD=8,又∵直角△ABD中,OD⊥AB,∴∠ADO=∠ABD=30°,在直角△AOD中,AO=AD=2,OD=AD•cos30°=4×=2,则OB=AB﹣0A=8﹣2=6,则A的坐标是(﹣2,0),B的坐标是(6,0),C的坐标是(8,2),D的坐标是(0,2).26.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.27.解:∵(1+9)+(2+8)+(3+7)+(4+6)+…+(8+2)+(3+7)+(4+6)+(5+5)+(6+4)+5=10×12+5=120+5=125∴这组数和为125.。
苏科版八年级下册第九章《中心对称图形——平行四边形》单元测试考试试卷(无答案)

苏科版八年级下学期第九章《中心对称图形——平行四边形》单元测试试卷2018.4一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.下列图形中,既是中心对称图形又是轴对称图形的是A B C D2.下列命题中假命题是A .两组对边分别相等的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .一组对边平行一组对角相等的四边形是平行四边形D .一组对边平行一组对边相等的四边形是平行四边形3.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为A .30°B .45°C .90°D .135°4.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为A .1B .34C .23 D .2 5.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为A .45°B .55°C .60°D .75°第3题 第4题 第5题6.在菱形ABCD 中,AE ⊥BC ,AF ⊥CD ,且E 、F 分别为BC 、CD 的中点,那么∠EAF 的度数为A .75°B .60°C .45°D .30°7.如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm²,而中间那个小平行四边形(阴影部分)的面积为20 cm²,则四边形ABDC 的面积是A .40 cm²B .60 cm²C .70cm²D .80 cm²8.如图,在菱形ABCD 中,∠A =60°,E 、F 分别是AB ,AD 的中点,DE 、BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120°;②BG +DG =CG ;③△BDF ≌△CGB ;④S △ABD =2AB 43. A .1个 B .2个 C .3个 D .4个第7题 第8题 第9题9.如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是A .(23,3)、(32-,4) B .(23,3)、(21-,4) C .(47,27)、(32-,4) D .(47,27)、(21-,4) 10.如图所示,边长为1的正方形EFGH 在边长为3的正方形ABCD 所在平面上移动,始终保持EF ∥AB ,线段CF 的中点为M ,DH 的中点为N ,则线段MN 的长为A .217B .210 C .317 D .1032 二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.连接四边形ABCD 各边中点,得到四边形EFGH ,还要添加 ▲ 条件,才能保证四边形EFGH 是矩形.12中,AB=5cm ,AD =8cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF = ▲ cm .第13题 第14题 第15题第10题13.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 分别是边AB 、AC 的中点,延长BC到点F ,使CF =21BC ,若AB =10,则EF 的长是 ▲ . 14.如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线BD 上有一点P ,使PC +PE 的和最小,则这个最小值为 ▲ .15.如图,在平面直角坐标系中,菱形OABC 的顶点B 的坐标为(8,4),则C 点的坐标为 ▲ .16.如图,在Rt △ABC 中,∠C =90°,AC =BC =10cm ,点P 从点B 出发,沿BA 方向以每秒2cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB 方向以每秒1cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间为t 秒,当四边形QPBP ′为菱形时t 的值为 ▲ .17.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部,将AF 延长交边BC 于点G ,若GB CG =k 1,则ABAD = ▲ (用含k 的代数式表示).18.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y =x 上时停止旋转,旋转过程中,AB 边交直线y =x 于点M ,BC 边交x 轴于点N (如图),在旋转正方形OABC 的过程中,△MBN 的周长为 ▲ .第16题 第17题 第18题三、解答题(本大题共7小题,共54分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分6分)如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴的正半轴上,点B 的坐标是(0,7),且AB =25.△AOB 绕某点旋转180°后,点C (36,9)是点B 的对应点.(1)求出△AOB 的面积;(2)写出旋转中心的坐标;(3)作出△AOB 旋转后的三角形.如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.21.(本题满分9分)如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0),动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,点P、Q的距离为2时,求点P的坐标.22.(本题满分7分)D、E分别是△ABC的边AB、AC的中点,O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G.(1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在图2中补全图形,并说明理由.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:①△ABG≌△AFG;②BG=GC;(2)求△FGC的面积.24.(本题满分8分)已知:如图,在菱形ABCD中,∠B=60°,把一个含60°角的三角尺与这个菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转.(1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F,求证:CE +CF=AB;(2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F,写出此时CE、CF、AB长度之间关系的结论.(不需要证明)25.(本题满分10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1中,若AB=1,BC=2为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是▲ 阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形.(2)操作、探究与计算:的邻边长分别为1,a(a>1),且是3及裁剪线的示意图,并在图形下方写出a的值;的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,是几阶准菱形.。
中心对称与中心对称图形基础题30道解答题附答案

9.2 中心对称与中心对称图形基础题汇编(3)一.填空题(共20小题)1.(2012秋•黔东南州期中)下列图形中,是中心对称图形但不是轴对称图形的是_________(填序号).2.(2006秋•永川区校级期中)在英文字母A、B、C、D、E、F、G、H、I、J、K、L、M、N中是中心对称图形,而不是轴对称图形的字母是_________.3.(2011秋•乐平市校级期中)下面这几个图形中,是中心对称图形但不是轴对称图形的共有_________个.4.在①线段,②角,③平行四边形,④长方形,⑤等腰梯形,⑥圆,⑦等边三角形中,是中心对称图形的是_________,是轴对称图形的有_________,既是中心对称又是轴对称图形是_________(填序号).5.(2013秋•鼓楼区校级期中)下列四个汽车标志图案中,是中心对称图形的图案的是_________(只需填入图案代号)6.(2011秋•红山区校级月考)下列四张扑克牌图案,属于中心对称的是_________.7.(2014秋•闽侯县校级月考)将5个边长都为1cm的正方形按如图所示的样子摆放,点A.B.C.D分别是四个正方形的中心,则图中四块阴影部分的面积的和为_________cm2.8.(2013秋•潘集区校级月考)如图所示的四个图形中是轴对称的有_________;是中心对称图形的有_________(用A、B、C、D填写).9.把下列图形中符合要求的图形的编号填入圈内.10.汉字“田”成中心对称,请找出2~3个成中心对称的汉字_________,并找出一个汉字使其旋转180°后成为另一个汉字_________.11.如图所示,△A′B′C′与△ABC关于O成中心对称,那么AO=_________,BO=_________,CO=_________,点A、O与_________三点在同一直线上,_________三点在同一直线上,_________三点在同一直线上.12.如图所示,正六边形ABCDEF,它有_________个对称中心.13.如图,在平行四边形ABCD中,关于O点成中心对称的三角形有_________对.14.如图,正方形边长为a,则阴影部分面积为_________.15.如果两个图形关于某一点成中心对称,下列说法:①这两个图形一定是全等形;②对称点的连线一定经过对称中心;③将一个图形绕对称中心旋转某个角度必定与另一个图形重合;④一定存在某直线,沿该直线折叠后的两个图形互相重合.其中,正确的是_________(填序号).16.写出符合下列要求的汉字.(1)成轴对称图形的汉字10个_________;(2)成中心对称图形的汉字5个_________(3)既成轴对称图形,又成中心对称图形汉字5个_________.17.如图中哪些图形绕其上的一点旋转180°,旋转前后的图形能完全重合?图_________是.18.根据如图所示的图案,然后回答问题:(1)是轴对称的图形有_________;(2)是中心对称的图形有_________;(3)既是中心对称图形,又是轴对称图形的有_________.19.在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有_________,是中心对称图形的有_________,既是轴对称图形又是中心对称图形的有_________.20.(2009秋•资阳期末)观察下列图形,其中轴对称图形有_________;旋转对称图形有_________;中心对称图形有_________(只填对应序号).二.解答题(共10小题)21.如图是由两个矩形组成的组合图形,能否在图形中找到一点P,沿过点P的某一条直线折叠该图形,能将该图形分成面积相等的两部分?若能,请你在图中做出点P,并说明点P的位置;若不能,请说明理由.22.如图,已知MN⊥PQ,垂足为O,点A、A1是以MN为对称轴的对称点,而点A、A2是以PQ为对称点,则点A1A2关于点O成中心对称,你能说明其中的道理吗?23.如图所示的图形是一个中心对称图形,点O是AC与BD的交点,且是对称中心.(1)若AO=4cm,那么CO的长是多少?(2)试说明△ABO≌△CDO.24.你还记得某个图形关于两平行直线依次作出某一图形的轴对称图形,其最后的图形可以由原图形经过一次平移而得到.假如把这两条平行直线换成相交直线,又能得到什么结论呢?如图,已知△ABC,直线a、b相交于点O,请先画出△ABC关于直线a对称的△A′B′C′,然后画出△A′B′′C关于直线b对称的△A″B″C″,你能发现ABC和A″B″C″有什么关系吗?猜想:在此图中,若再增加什么条件,能使得△ABC△A″B″C″关于点O成中心对称呢?25.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.26.如图,AB∥CD,AB=CD,点E、F在BC上,BE=CF,试说明此图是中心对称图形的理由.27.如图分别是五角星、六角星、七角星、八角星的图形(1)请问其中是中心对称图形的是_________;(2)依此类推,36角星_________(填“是”或“不是”)中心对称图形.(3)你怎样判断一个n角星是否中心对称图形呢?谈谈你的见解.28.(2012秋•桃园县校级期中)如图,五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是这四个正方形的对角线的交点,请利用上题的结论,求图中四块阴影面积的总和是多少?29.(2007春•曲阜市校级月考)轴对称图形的对称轴将图形面积二等分,中心对称图形过对称中心的直线将图形面积二等分.请用学过的知识将下图所示的图形面积分成相等的两部分.30.如图,过▱ABCD的对称中心O的直线EF,分别交AB、DC于E、F,试问:(1)四边形AEFD与四边形CFEB的形状、大小有何关系?(2)判断正误:过中心对称图形的对称中心的直线把这个图形分成的两个图形全等.9.2 中心对称与中心对称图形基础题汇编(3)参考答案与试题解析一.填空题(共20小题)1.(2012秋•黔东南州期中)下列图形中,是中心对称图形但不是轴对称图形的是乙、丁(填序号).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:甲、是轴对称图形,是中心对称图形,不符合题意;乙、不是轴对称图形,是中心对称图形,符合题意;丙、是轴对称图形,不是中心对称图形,不符合题意;丁、不是轴对称图形,是中心对称图形,符合题意.故答案为:乙、丁.点评:此题主要考查了中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.(2006秋•永川区校级期中)在英文字母A、B、C、D、E、F、G、H、I、J、K、L、M、N中是中心对称图形,而不是轴对称图形的字母是N.考点:中心对称图形;轴对称图形.分析:根据中心对称图形,轴对称图形的定义进行判断.解答:解:由中心对称图形,轴对称图形的性质可知,是中心对称图形,而不是轴对称图形的字母为:N.故答案为:N.点评:本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.3.(2011秋•乐平市校级期中)下面这几个图形中,是中心对称图形但不是轴对称图形的共有2个.考点:中心对称图形;轴对称图形.分析:结合车标图案,根据轴对称图形与中心对称图形的概念求解.解答:解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故符合题意的有2个.故答案为:2.点评:此题考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.4.在①线段,②角,③平行四边形,④长方形,⑤等腰梯形,⑥圆,⑦等边三角形中,是中心对称图形的是①③④⑥,是轴对称图形的有①②④⑤⑥⑦,既是中心对称又是轴对称图形是①④⑥(填序号).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:②角,⑤等腰梯形,⑦等边三角形,是轴对称图形,不是中心对称图形;③平行四边形不是轴对称图形,是中心对称图形;①线段,④长方形,⑥圆,是轴对称图形,也是中心对称图形.故是中心对称图形的是①③④⑥,是轴对称图形的有①②④⑤⑥⑦,既是中心对称又是轴对称图形是①④⑥.故答案为①③④⑥,①②④⑤⑥⑦,①④⑥.点评:本题考查了轴对称图形与中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,熟记常见图形的对称性有利于提高解题速度.5.(2013秋•鼓楼区校级期中)下列四个汽车标志图案中,是中心对称图形的图案的是①②(只需填入图案代号)考点:中心对称图形.分析:根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解答:解:①②是中心对称图形的图案,故答案为:①②.点评:此题主要考查了中心对称图形,关键是找出对称中心.6.(2011秋•红山区校级月考)下列四张扑克牌图案,属于中心对称的是B.考点:中心对称.分析:根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故答案为:B.点评:本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.7.(2014秋•闽侯县校级月考)将5个边长都为1cm的正方形按如图所示的样子摆放,点A.B.C.D分别是四个正方形的中心,则图中四块阴影部分的面积的和为1cm2.考点:中心对称.分析:根据中心对称的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.解答:解:∵点A、B、C、D分别是四个正方形的中心,∴每一个阴影部分的面积等于正方形的,∴四块阴影部分的面积的和=12=1cm2.故答案为:1.点评:本题考查了中心对称的性质,正方形的性质,熟练掌握正方形的性质并判断出每一个阴影部分的面积等于正方形的是解题的关键.8.(2013秋•潘集区校级月考)如图所示的四个图形中是轴对称的有A、B、C、D;是中心对称图形的有A、C(用A、B、C、D填写).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:是轴对称的有A、B、C、D;是中心对称图形的有A、C;故答案为:A、B、C、D;A、C.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.把下列图形中符合要求的图形的编号填入圈内.考点:中心对称图形;轴对称图形;旋转对称图形.分析:要根据各自的定义来判断图形的种类.如果一个图形沿着一条直线折叠,直线两侧的图形能够互相完全重合,这个图形就叫做轴对称图形;把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,这两个图形叫做中心对称图形;绕着某一定的点旋转一定的角度后能与自身重合,这种图形叫做旋转对称图形.解答:解:轴对称图形:①、③、④、⑥、⑦、⑧;旋转对称图形:①、②、④、⑤、⑥、⑦、⑧;中心对称图形:①、②、④、⑤.点评:此题主要考查了对称图形的性质,要准确掌握各种图形的定义,注意中心对称图形不一定是轴对称图形,而轴对称图形不一定是中心对称图形.10.汉字“田”成中心对称,请找出2~3个成中心对称的汉字日、一,并找出一个汉字使其旋转180°后成为另一个汉字士.考点:中心对称图形.专题:开放型.分析:根据中心对称图形的定义,结合熟悉的汉字进行判断即可.解答:解:成中心对称的汉字有:申、日、一;一个汉字使其旋转180°后成为另一个汉字的有:士.故答案可为:日、一,士.点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.如图所示,△A′B′C′与△ABC关于O成中心对称,那么AO=A′O,BO=B′O,CO=C′O,点A、O 与A′三点在同一直线上,B、B′、O三点在同一直线上,C、C′、O三点在同一直线上.考点:中心对称.分析:根据中心对称的性质:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分可得AO=A′O,BO=B′O,CO=C′O;根据中心对称的定义可得A、O与A′三点共线,进而得到答案.解答:解:△A′B′C′与△ABC关于O成中心对称,那么AO=A′O,BO=B′O,CO=C′O,点A、O与A′三点在同一直线上;B、B′、O三点在同一直线上;C、C′、O三点在同一直线上;故答案为:A′O;B′O;C′O;A′;B、B′、O;C、C′、O.点评:此题主要考查了中心对称图形的定义与性质,关键是掌握中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.12.如图所示,正六边形ABCDEF,它有1个对称中心.考点:中心对称.分析:根据对称中心的定义得出答案即可.解答:解;如图所示:对角线交点即为对称中心,故它有1个对称中心.故答案为:1.点评:此题主要考查了对称中心的定义,根据已知得出对称中心的位置是解题关键.13.如图,在平行四边形ABCD中,关于O点成中心对称的三角形有4对.考点:中心对称.分析:根据平行四边形ABCD是中心对称图形,再根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,即可得出答案.解答:解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB 共4对.故答案为:4.点评:此题考查了中心对称,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.14.如图,正方形边长为a,则阴影部分面积为.考点:中心对称.分析:根据题意将不规则的阴影部分的面积转化为规则的几何图形的面积计算即可.解答:解:由题意得:S阴影=S正方形=,故答案为:.点评:本题考查了的阴影部分的面积的求法,解题的关键是弄清阴影部分的面积如何转化为规则几何图形的.15.如果两个图形关于某一点成中心对称,下列说法:①这两个图形一定是全等形;②对称点的连线一定经过对称中心;③将一个图形绕对称中心旋转某个角度必定与另一个图形重合;④一定存在某直线,沿该直线折叠后的两个图形互相重合.其中,正确的是①②③(填序号).考点:中心对称.分析:根据中心对称图形的性质分别分析得出即可.解答:解:如果两个图形关于某一点成中心对称,①这两个图形一定是全等形,此选项正确;②对称点的连线一定经过对称中心,此选项正确;③将一个图形绕对称中心旋转某个角度必定与另一个图形重合,此选项正确;④一定存在某一点,沿该点旋转后的两个图形互相重合,故此选项错误.故答案为:①②③.点评:此题主要考查了中心对称图形的性质,正确把握相关定义是解题关键.16.写出符合下列要求的汉字.(1)成轴对称图形的汉字10个中、日、土、甲、木、人、豆、八、山、口;(2)成中心对称图形的汉字5个日,一,十,田,三,中(3)既成轴对称图形,又成中心对称图形汉字5个日,一,十,田,三,中.考点:中心对称图形;轴对称图形.分析:(1)根据轴对称图形的概念,以及汉字的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.(2)根据中心对称图形的概念,以及汉字的特征求解.绕对称中心旋转180°后,所得的图形与原图形完全重合,这样的图形叫做中心对称图形.(3)根据轴对称图形与中心对称图形的概念求解.解答:解:(1)成轴对称图形的汉字10个中、日、土、甲、木、人、豆、八、山、口;(2)成中心对称图形的汉字5个日,一,十,田,三,中;(3)既成轴对称图形,又成中心对称图形汉字5个日,一,十,田,三,中.故答案为:中、日、土、甲、木、人、豆、八、山、口;日,一,十,田,三,中;日,一,十,田,三,中.点评:此题考查了中心对称图形和轴对称图形的定义.轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.中心对称图形的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点.17.如图中哪些图形绕其上的一点旋转180°,旋转前后的图形能完全重合?图②⑤是.考点:中心对称图形.分析:根据题意以及中心对称图形的概念,找出中心对称图形.解答:解:由图可得,第②⑤是中心对称图形.故答案为:②⑤.点评:本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.18.根据如图所示的图案,然后回答问题:(1)是轴对称的图形有①④;(2)是中心对称的图形有②③④;(3)既是中心对称图形,又是轴对称图形的有④.考点:中心对称图形;轴对称图形.分析:分别根据轴对称图形以及中心对称图形的性质分别判断得出即可.解答:解:(1)是轴对称的图形有①④;(2)是中心对称的图形有②③④;(3)既是中心对称图形,又是轴对称图形的有④.故答案为:①④;②③④;④.点评:本题考查轴对称图形和中心对称图形的概念,熟练区分它们是解题关键.19.在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有①②③④⑥⑦⑧⑨,是中心对称图形的有①⑤⑥⑦⑧⑨,既是轴对称图形又是中心对称图形的有①⑥⑦⑧⑨.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有①②③④⑥⑦⑧⑨,是中心对称图形的有①⑤⑥⑦⑧⑨,既是轴对称图形又是中心对称图形的有①⑥⑦⑧⑨.故答案为:①②③④⑥⑦⑧⑨,①⑤⑥⑦⑧⑨,①⑥⑦⑧⑨.点评:本题考查了轴对称图形与中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,熟记常见图形的对称性有利于提高解题速度.20.(2009秋•资阳期末)观察下列图形,其中轴对称图形有②③⑤⑥;旋转对称图形有①②③④⑥;中心对称图形有③④⑥(只填对应序号).考点:中心对称图形;轴对称图形;旋转对称图形.分析:根据轴对称、中心对称及旋转对称的定义,结合所给图形即可作出判断.解答:解:轴对称图形有:②③⑤⑥;旋转对称图形有:①②③④⑥;中心对称图形有:③④⑥;故答案为:②③⑤⑥、①②③④⑥、③④⑥.点评:本题考查了中心对称图形、旋转对称图形及轴对称的定义,属于基础题,解答本题的关键是掌握各图形的特点.二.解答题(共10小题)21.如图是由两个矩形组成的组合图形,能否在图形中找到一点P,沿过点P的某一条直线折叠该图形,能将该图形分成面积相等的两部分?若能,请你在图中做出点P,并说明点P的位置;若不能,请说明理由.考点:中心对称.分析:根据过对角线交点的直线把矩形分成面积相等的两部分,可得答案.解答:解:能,如图:,P点在两个矩形对角线交点的直线上.点评:本题考查了中心对称,利用了确定两个矩形的对角线是解题关键.22.如图,已知MN⊥PQ,垂足为O,点A、A1是以MN为对称轴的对称点,而点A、A2是以PQ为对称点,则点A1A2关于点O成中心对称,你能说明其中的道理吗?考点:中心对称;轴对称的性质.分析:根据轴对称的对称点被对称轴垂直平分,可得MN是AA1的垂直平分线,PQ是AA2的垂直平分线,根据垂直平分线的性质,可得OA=OA1,∠3=∠4,OA=OA2,∠1=∠2,再根据中心对称的性质,可得答案.解答:证明:如图:连结AA1,AA2,OA,OA1,OA2,∵A,A1是以MN为对称轴的对称点,∴OA=OA1,∠3=∠4,同理OA=OA2,∠1=∠2.∴OA1=OA2,且∠1+∠2+∠3+∠4=2(∠2+∠4)=2×90°=180°,∴A1,A2是以O为对称中心的对称点.点评:本题考查了中心对称,利用了轴对称的性质,中心对称的性质.23.如图所示的图形是一个中心对称图形,点O是AC与BD的交点,且是对称中心.(1)若AO=4cm,那么CO的长是多少?(2)试说明△ABO≌△CDO.考点:中心对称.分析:(1)根据关于某点对称的两个图形的对应线段相等直接得到答案;(2)利用中心对称的性质,得到对应角相等,对应线段相等即可证得全等.解答:解:(1)∵点O是AC与BD的交点,且是对称中心,∴AO=CO,∵AO=4cm,∴CO=4cm;(2)∵点O是AC与BD的交点,且是对称中心,∴AO=CO,BO=DO,在△ABO和△CDO中,∴△ABO≌△CDO(SAS).点评:此题主要考查了中心对称图形的性质,中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.24.你还记得某个图形关于两平行直线依次作出某一图形的轴对称图形,其最后的图形可以由原图形经过一次平移而得到.假如把这两条平行直线换成相交直线,又能得到什么结论呢?如图,已知△ABC,直线a、b相交于点O,请先画出△ABC关于直线a对称的△A′B′C′,然后画出△A′B′′C关于直线b对称的△A″B″C″,你能发现ABC和A″B″C″有什么关系吗?猜想:在此图中,若再增加什么条件,能使得△ABC△A″B″C″关于点O成中心对称呢?考点:中心对称.分析:由轴对称的性质可得OA=OA′=OA″,再根据旋转的性质解答即可;根据中心对称的性质可得OA=OA″,根据轴对称的性质可得OA=OA′=OA″,然后判断出△AA′A″是直角三角形,AA′⊥A′A″,再根据轴对称的性质判断即可.解答:解:∵∵△ABC关于直线a对称的△A′B′C′,然后画出△A′B′C′关于直线b对称的△A″B″C″,∴OA=OA′=OA″,∴△ABC绕两直线的交点旋转得到△A″B″C″;猜想:添加条件为a⊥b.理由如下:∵△ABC与△A″B″C″关于点O成中心对称,∴OA=OA″,∵△ABC关于直线a对称的△A′B′C′,然后画出△A′B′C′关于直线b对称的△A″B″C″,∴OA=OA′=OA″,∴△AA′A″是直角三角形,∴AA′⊥A′A″,由轴对称的性质,AA′⊥a,A′A″⊥b,∴a⊥b.点评:本题考查了中心对称的性质,轴对称的性质,熟记各性质并判断出对应顶点构成的三角形是直角三角形是解题的关键.25.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.考点:中心对称.分析:(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积;(3)可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.解答:解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴2<AD<8.点评:本题考查了中心对称的定义,解题的关键是了解中心对称的定义,难度较小.(3)题考查了全等三角形的判定与性质,本题中求证△ABD≌△CDE是解题的关键.26.如图,AB∥CD,AB=CD,点E、F在BC上,BE=CF,试说明此图是中心对称图形的理由.。
中心对称与中心对称图形中档题30道解答题附答案

9.2 中心对称与中心对称图形中档题汇编(3)一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为_________ ;(3)求线段CC′的长.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD 的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有_________ ,是中心对称图形有_________ .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律._________ .①九瓣图形是_________ ;②十二瓣图形是_________ ;③十五瓣图形是_________ ;④二十六瓣图形是_________ .8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点_________ .9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O 中心对称.求证:BF=DE.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:_________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为_________ .18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b 两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa _________ Sb _________ Sc _________ Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?19.(1)能把平行四边形分成面积相等的两部分的直线有_________ 条,它们的共同特点是_________ .(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).考点:中心对称;三角形的重心.专题:作图题.分析:(1)根据平行四边形的性质可知:重心是两条对角线的交点.(2)两模块分成两个矩形,得到连接各自中心的第二条线段,指出重心.解答:(1)平行四边形的重心是两条对角线的交点.(1分)如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是▱ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,指出重心.点评:本题考查了中心对称与重心之间的关系,有一定难度,注意掌握一些特殊图形的性质.2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.考点:中心对称;勾股定理.分析:(1)根据中心对称的性质直接就得出答案即可;(2)利用点C的坐标为(0,0),即可得出点B′的坐标;(3)利用勾股定理求出即可.解答:解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.点评:此题主要考查了勾股定理以及中心对称图形的定义以及点的坐标特点等知识,中心对称图形的性质是初中阶段考查重点应熟练掌握.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?考点:中心对称图形;轴对称图形;作图-平移变换.专题:网格型.分析:(1)从A和A′的位置,确定平移方法,然后按平移条件找出其他顶点的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可.解答:解:(1)如图所示.(作图正确3分)(2)新图形是轴对称图形.(6分)点评:本题的关键是作各个关键点的对应点,从而做出正确判断.4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.考点:中心对称.分析:连接AD、BC,根据对角线互相平分的四边形是平行四边形求出四边形ABCD是平行四边形,再根据平行四边形的中心对称性判断出E、F是对称点,然后根据轴对称性解答.解答:证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.点评:本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线比过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对考点:中心对称.专题:证明题.分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.解答:证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F,∴四边形AEDF是平行四边形,∴点E,F关于AD的中心对称.点评:本题考查了中心对称.平行四边形是中心对称图形,对称中心是对角线的交点.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.考点:中心对称.分析:判断两个四边形是否关于点O中心对称可以转换为判断两个四边形的顶点是否关于点O对称即可.解答:解:这两个四边形关于点O成中心对称.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵EF、AC、BD都经过点O,∴EO=FO,∴点A与点C,点B与点D,点E与点F均关于点O成中心对称,∴这两个四边形关于点O成中心对称.点评:本题考查了中心对称的知识,解题的关键是判断对应的顶点关于O点中心对称,难度不大.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E ,是中心对称图形有A,C,E .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.考点:中心对称图形;轴对称图形.专题:规律型.分析:(1)根据轴对称图形和中心对称图形的性质可知三个图形中轴对称的为A,B,C,D,E.是中心对称的为A,C,E;(2)利用轴对称图形和中心对称图形的性质得出规律即可;解答:解:(1)以上5个图形中是轴对称图形的有 A,B,C,D,E,是中心对称图形有 A,C,E.故答案为:A,B,C,D,E;A,C,E;(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.故答案为:当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形;(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是轴对称图形;②十二瓣图形是轴对称图形也是中心对称图形;③十五瓣图形是轴对称图形;④二十六瓣图形是轴对称图形也是中心对称图形.故答案为:①轴对称图形;②轴对称图形也是中心对称图形;③轴对称图形;④轴对称图形也是中心对称图形.点评:本题主要考查了中心对称和轴对称的关键,做这些题时,掌握他们的性质是关键.所以学生对一些定义,性质类的知识一定要牢记.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.考点:中心对称;轴对称图形.专题:压轴题;数形结合.分析:(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形.解答:解:(1)根据分析可得,下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;根据中心对称的定义可得,(1)中关于点P成中心对称的点为:(0,0)点和(4,2)点;(0,2)点和(4,0)点.点评:本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.考点:中心对称.专题:作图题.分析:思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.解答:解:如图所示,有三种思路:点评:本题需利用矩形的中心对称性解决问题.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.考点:中心对称;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:连接AD、BC,根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据平行四边形的对角线互相平分可得BO=DO,根据E、F关于点O中心对称可得OE=OF,然后利用“边角边”证明△BOF和△DOE全等,根据全等三角形对应边相等即可得证.解答:证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O中心对称,∴OF=OE,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴BF=DE.点评:本题考查了中心对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,作辅助线构造出平行四边形,然后证明得到BO=DO是证明三角形全等的关键,也是解决本题的难点.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)分析:(1)根据中心对称的定义和性质,找直角△ABC两条边的中点作图是解题的关键;(2)根据中心对称的定义和性质,找直角△ABC一条边的中点,另一条边非中点作图是解题的关键.解答:解:(说明:两图各(2分);图中没有标记点中点,累计扣(1分),未利用中心对称扣1分.)参考图:点评:中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称点.中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.考点:中心对称;待定系数法求一次函数解析式;矩形的性质.分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线比过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.解答:解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.点评:本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请考点:中心对称;等腰三角形的判定;菱形的判定;矩形的性质.分析:(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出▱BCFE是菱形.解答:解:(1)∵AD∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠BEC=∠BCE,∴△BCE是等腰三角形.(2)∵在Rt△ABE中,∠ABE=45°,∴∠AEB=∠ABE=45°,∴AB=AE=1.∴,∴.(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,∴OB=OF,OE=OC,∴四边形BCFE是平行四边形,又∵BC=BE,∴四边形BCFE是菱形.点评:本题考查了矩形的性质,等腰三角形的判定、性质,勾股定理,中心对称的性质以及平行四边形和菱形的判定,知识点较多,需熟练掌握.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.考点:中心对称;全等三角形的判定;平行四边形的性质;旋转的性质.分析:(1)根据已知条件证出∠CDO=∠ABO,∠DEO=∠BFO.,再根据点O是平行四边形的对称中心,得出OD=OB,即可证出△DEO≌△BFO.(2)首先要判断四边形是什么形状,然后根据题意首先证明△OAD是等腰直角三角形,然后证明OE=OF,再根据已知条件即可证出四边形AECF的形状.解答:(1)证明:在平行四边形ABCD中,CD∥AB,∴∠CDO=∠ABO,∠DEO=∠BFO.又∵点O是平行四边形的对称中心,∴OD=OB.∴△DEO≌△BFO.(2)解:∵在△ABD中,DB=2,AD=1,AB=,∴DB2+AD2=AB2.∴△ABD是直角三角形,且∠ADB=90°∵OD=OB=DB=1,∴AD=OD=1.∴△OAD是等腰直角三角形,∴∠AOD=45°.当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,∴∠AOE=90°∵△DEO≌△BFO,∴OE=OF又∵点O是平行四边形的对称中心,∴OA=OC∴四边形AECF是平行四边形∴四边形AECF是菱形.点评:此题考查了中心对称,是一道综合型试题,比较难,证明三角形全等必须要找出三个条件相等,按照判定四边形形状的定义证明该四边形为何形状.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.考点:中心对称;菱形的判定;矩形的性质.分析:(1)根据菱形的判定以及中心对称图形的性质得出即可;(2)利用中心对称图形的性质得出四边形BDEG的面积=2×矩形ABCD面积,即可得出答案.解答:解:(1)是菱形,∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG是菱形;(2)∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG的面积=2×矩形ABCD面积=2×2=4.点评:此题主要考查了矩形的性质、菱形的判定和中心对称的性质,利用中心对称的性质得出是解题关键.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.考点:中心对称.分析:由中心对称的特征可知点A是对称中心,将点B,C,D分别绕A点旋转180°后,B与G重合,C与H重合,D与E重合.解答:解:点A是对称中心.图中A,B,C,D的对称点分别是A、G、H、E.点评:本题实际考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,由此可以得出对称中心A的位置.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求B B′的长为8 .考点:中心对称.分析:在直角三角形ABC中,根据30°的余弦求出AB的长,再根据中心对称的性质得到BB′的长.解答:解:在直角三角形中,根据cosB===,解得:AB=4.再根据中心对称图形的性质得到:BB′=2AB=8.故答案为:8.点评:此题主要考查了解直角三角形的知识和中心对称图形的性质,根据题意得出AB的长是解题关键.18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa = Sb = Sc = Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?考点:中心对称.专题:探究型.分析:(1)由于四边形AEFD≌四边形BEFC,则Sa=Sb=S,同样,△ACD≌△CAD,∴Sc=Sd=S矩形ABCD.从而得矩形ABCD出结果.(2)只要过矩形中心的任意一条直线,都可把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.解答:解:(1)a,b,c,d的面积关系是S=S b=S c=S d;a(2)无数种.如图,DE=BF,直线EF把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.点评:中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.19.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.考点:中心对称.专题:方案型.分析:(1)根据平行四边形的性质可知能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)延长BC交EF于点M,连接AM、BF交于点P,连接CE、DM交于点Q,P、Q分别为四边形ABMF、四边形CDEM的对称中心,直线PQ即为所求.(3)根据题意先作出图形,分别找到两个图形的对称中心,连接即可.解答:解:(1)无数.均经过两条对角线的交点.(2)延长BC交EF于点M,连接AM、BF交于点P,连接CE、DM交于点Q,过P、Q的直线将这个图形分成面积相等的两部分,因为PQ既将平行四边形ABMF的面积平分,又将平行四边形CDEM的面积平分,所以直。
2014年江苏省无锡市崇安区东林中学八年级下第9章《中心对称图形》单元测试卷含答案解析(word版)

2014年江苏省无锡市崇安区东林中学八年级下册第9章《中心对称图形》单元测试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D. 1个分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按逆时针方向旋转而得,则旋转的角度为()A.30° B.45° C.90°D.135°考点:旋转的性质.专题:压轴题;网格型;数形结合.分析:△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.解答:解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.点评:本题考查了旋转的性质,旋转前后对应角相等,本题也可通过两角互余的性质解答.3.(3分)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.A B=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(3分)如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B. AC=BDC.AC⊥BD D.▱ABCD是轴对称图形考点:平行四边形的性质.分析:由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.解答:解:∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选:A.点评:此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.5.(3分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形考点:平行四边形的判定;作图—复杂作图.专题:压轴题.分析:利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.解答:解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.点评:本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.6.(3分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B 落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D. 1cm考点:矩形的性质;翻折变换(折叠问题).分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.7.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是()A.25 B.20 C.15 D.10考点:菱形的性质;等边三角形的判定与性质.分析:由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.解答:解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.点评:本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.8.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()A.18米B.24米C.28米 D. 30米考点:三角形中位线定理.分析:根据D、E是OA、OB的中点,即DE是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.解答:解:∵D、E是OA、OB的中点,即CD是△OAB的中位线,∴DE=AB,∴AB=2CD=2×14=28m.故选C.点评:本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.9.(3分)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形考点:矩形的判定;三角形中位线定理.分析:此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选C.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.10.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A. 1 B. C.4﹣2D. 3﹣4考点:正方形的性质.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每空2分,共18分)11.(2分)如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=4.考点:三角形中位线定理;平行四边形的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故答案为:4.点评:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.12.(2分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=2.考点:平行四边形的性质.分析:根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.解答:解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.点评:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.13.(2分)如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足AE=CF的条件时,四边形DEBF是平行四边形.考点:平行四边形的判定与性质.分析:当AE=CF时四边形DEBF是平行四边形;根据四边形ABCD是平行四边形,可得DO=BO,AO=CO,再由条件AE=CF可得EO=FO,根据对角线互相平分的四边形是平行四边形可判定四边形DEBF是平行四边形.解答:解:当AE=CF时四边形DEBF是平行四边形;∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵AE=CF,∴EO=FO,∴四边形DEBF是平行四边形,故答案为:AE=CF.点评:此题主要考查了平行四边形的判定与性质,关键是掌握对角线互相平分的四边形是平行四边形.14.(4分)如图,DE∥BC,DE=EF,AE=EC,则图中的四边形ADCF是平行四边形,四边形BCFD是平行四边形.(选填“平行四边形、矩形、菱形、正方形”)考点:平行四边形的判定;全等三角形的判定与性质.分析:根据对角线互相平分的四边形是平行四边形可得四边形ADCF是平行四边形;首先证明△ADE≌△CFE可得∠A=∠ECF,进而得到AB∥CF,再根据两组对边分别平行的四边形是平行四边形可得四边形BCFD是平行四边形.解答:解:连接DC、AF,∵DE=EF,AE=EC,∴四边形ADCF是平行四边形;在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,∴AB∥CF,又∵DE∥BC,∴四边形BCFD是平行四边形;故答案为:平行四边形;平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形;两组对边分别平行的四边形是平行四边形.15.(2分)如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为60度时,四边形ABFE为矩形.考点:矩形的判定.专题:计算题.分析:根据矩形的性质和判定.解答:解:如果四边形ABFE为矩形,根据矩形的性质,那么AF=BE,AC=BC,又因为AC=AB,那么三角形ABC是等边三角形,所以∠ACB=60°.故答案为60.点评:本题主要考查了矩形的性质:矩形的对角线相等且互相平分.16.(2分)如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=22°.考点:旋转的性质.分析:根据旋转的性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.解答:解:解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣44°)=68°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.点评:本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.17.(2分)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.考点:菱形的性质.分析:根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.解答:解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.点评:本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.18.(2分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=()n﹣1.考点:正方形的性质.专题:压轴题;规律型.分析:求a2的长即AC的长,根据直角△ABC中AB2+BC2=AC2可以计算,同理计算a3、a4.由求出的a2=a1,a3=a2…,a n=a n﹣1=()n﹣1,可以找出规律,得到第n个正方形边长的表达式.解答:解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=a1=,同理a3=a2=2,a4=a3=2,…由此可知:a n=()n﹣1,故答案为:()n﹣1.点评:本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.三、解答题(共52分)19.(6分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.解答:证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.点评:本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.20.(6分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.21.(6分)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数.解答:解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.点评:本题主要考查正方形的性质,解答本题的关键是熟练掌握全等三角形的判定与性质,以及勾股定理等知识.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB 的中点.(1)求∠A的度数;(2)求EF的长.考点:三角形中位线定理;含30度角的直角三角形.分析:(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;(2)由“30度角所对的直角边等于斜边的一半”求得AB=2BC,则BC=4cm.然后根据三角形中位线定理求得EF=BC.解答:解:(1)如图,∵在Rt△ABC中,∠C=90°,∠B=60°,∴∠A=90°﹣∠B=30°,即∠A的度数是30°;(2)∵由(1)知,∠A=30°.∴在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,∴BC=AB=4cm.又E、F分别为边AC、AB的中点,∴EF是△ABC的中位线,∴EF=BC=2cm.点评:本题考查了三角形中位线定理、含30度角的直角三角形.在直角三角形中,30°角所对的直角边等于斜边的一半.23.(7分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.考点:矩形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“边角边”证明△ABF和△DCE全等即可;(2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.解答:证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠BAF=∠EDC,∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,∴∠DAF=∠EDA,∴△AOD是等腰三角形.点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的判定,熟记性质确定出三角形全等的条件是解题的关键.24.(7分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.考点:菱形的性质;矩形的判定.分析:(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==3,所以,S菱形ABCD=8×3=24.点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.25.(7分)如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.考点:正方形的判定;三角形中位线定理;平行四边形的判定.专题:证明题.分析:通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.解答:证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.点评:主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.26.(7分)如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:压轴题.分析:(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接EC、AF,则EF与AC满足EF=AC是,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明.解答:(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD.∴∠E=∠F.∵在△AOE与△COF中,,∴△AOE≌△COF(AAS);(2)连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形,理由如下:由(1)可知△AOE≌△COF,∴OE=OF,∵AO=CO,∴四边形AECF是平行四边形,∵EF=AC,∴四边形AECF是矩形.点评:本题主要考查了全等三角形的性质与判定、平行四边形的性质以及矩形的判定,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《中心对称图形》单元测试卷参考答案与试题解析(1)9章《中心对称图形》单元测试卷..参考答案与试题解析..一、选择题(每题3分,共30分)..1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的有()B.3 1个个个C.2个D.A.4后能够与原图形完全重合即是中心对称图形,°分析:根据中心对称图形的定义旋转180 以及轴对称图形的定义即可判断出.后能与原图形重合,∴此图形是中心对称图°解答:解:第一个图形,∵此图形旋转180 形,也是轴对称图形,故此选项正确;后不能与原图形重合,∴此图形不是中心对称图形,是轴第二个图形,∵此图形旋转180°对称图形,故此选项错误;后能与原图形重合,此图形是中心对称图形,也是轴对称图第三个图形,此图形旋转180°形,故此选项正确;∴此图形是中心对称图形,也是轴对第四个图形,∵此图形旋转后能与原图形重合,.180°称图形,故此选项正确.B.故选:根据定义得出图形形状是解决问题此题主要考查了中心对称图形与轴对称的定义,点评:的关键.OAOB绕点OA分)如图,点、B、C、D、都在方格纸的格点上,若△COD是由△.2(3 )..按逆时针方向旋转而得,则旋转的角度为(A.30°B.45°C.90°D.135°考点:旋转的性质.专题:压轴题;网格型;数形结合.分析:△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答...解答:解:如图,设小方格的边长为1,得,..1 / 17.AC=4AO=,=OC==,,22=16∵OC+AO=+,22 =16,AC=4 AOC是直角三角形,∴△°.∴∠AOC=90 C.故选旋转前后对应角相等,本题也可通过两角互余的性质解答.点评:本题考查了旋转的性质,)ABCD中,下列结论一定正确的是(3.(3分)在?∠B=AD D.°C.ABD A.AC⊥B.∠A+∠B=180C ∠A≠平行四边形的性质.考点:.B=180°∥BC,即可证得∠A+∠是平行四边形,可得分析:由四边形ABCDAD 是平行四边形,解:∵四边形ABCD解答:,∥BC∴AD .B=180°∴∠A+∠.故选B 此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.点评:)O,下列结论正确的是(AC分)如图,?ABCD的对角线、BD相交于点4.(3AC=BD .=4S B A.S AOB□ABCD△是轴对称图形?ABCD⊥BD D.AC C.平行四边形的性质.考点:,根据平行四边形的性质求解即可求得答相交于点O的对角线AC、BD 分析:由?ABCD 案,注意排除法在解选择题中的应用.,BD相交于点O?解:∵ABCD的对角线AC、解答:是中心对称图形,ABCD),?OB=ODBD,=4S∴SAC与互相平分(OA=OC,AOB□ABCD△不是轴对称图形.错误.C,D,正确,故AB .故选:A2 / 17.点评:此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.5.(3分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形考点:平行四边形的判定;作图—复杂作图.专题:压轴题.分析:利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.解答:解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.点评:本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.6.(3分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B处,折痕与边BC交于点E,则CE的长为()1A.6cm B.4cm C.2cm D.1cm考点:矩形的性质;翻折变换(折叠问题).分析:根据翻折的性质可得∠B=∠ABE=90°,AB=AB,然后求出四边形ABEB是正方111形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B处,1∴∠B=∠ABE=90°,AB=AB,11又∵∠BAD=90°,∴四边形ABEB是正方形,1∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB 是正方形是解题的关键.13 / 17.7.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()25 B.10 C.15 D.A.20菱形的性质;等边三角形的判定与性质.考点:,ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°分析:由于四边形,的周长是15,从而可求AB=BC=5ABC而AB=BC=AC,易证△BAC是等边三角形,结合△那么就可求菱形的周长.解:∵四边形ABCD是菱形,AC是对角线,解答:,CAD=∠∴AB=BC=CD=AD,∠BAC=∠BAD ,∴∠BAC=60°是等边三角形,∴△ABC ,的周长是15∵△ABC ,∴AB=BC=5 20.ABCD∴菱形的周长是B.故选解题等边三角形的判定和性质.菱形的对角线平分对角,点评:本题考查了菱形的性质、是等边三角形.ABC的关键是证明△,测得O(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点8.B间的距离是()DE=14OA、OB的中点分别是点D、E,且米,则A、A.18米B.24米C.28米D.30米考点:三角形中位线定理.分析:根据D、E是OA、OB的中点,即DE是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.解答:解:∵D、E是OA、OB的中点,即CD是△OAB的中位线,DE=AB,∴4 / 17.∴AB=2CD=2×14=28m.故选C.点评:本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.9.(3分)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形考点:矩形的判定;三角形中位线定理.分析:此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选C.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.10.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()3﹣.4.C ﹣2DB A.1 .4正方形的性质.考点:专题:压轴题.5 / 17.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,BD=4,∴DE=4﹣4,∴BE=BD﹣∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,2.﹣4﹣4∴)EF=×BE=(=4故选C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每空2分,共18分)11.(2分)如图,在?ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=4.考点:三角形中位线定理;平行四边形的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,BC=×8=4.∴EF=故答案为:4.点评:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.12.(2分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F 点,则CF=2.6 / 17.平行四边形的性质.考点:,∠32,再根据两直线平行,内错角相等可得∠2=分析:根据角平分线的定义可得∠1=∠,CE=CF,再根据等角对等边的性质可得AD=DE,∠3,∠4=∠F∠1=∠F,然后求出∠1= 根据平行四边形对边相等代入数据计算即可得解.,AE平分∠DAB解答:解:如图,∵,1=∠2∴∠,∥BCAB∥CD,AD平行四边形ABCD中,,∠F2=∠3,∠1=∴∠,4(对顶角相等)又∵∠3=∠F,3,∠4=∠1=∴∠∠CE=CF,∴AD=DE,AD=3,∵AB=5,3=2,﹣AD=5﹣∴CE=DC﹣DE=AB .CF=2∴.故答案为:2平行线的性角平分线的定义,本题考查了平行四边形对边相等,对边平行的性质,点评:质,比较简单,熟记性质是解题的关键.上(不同ACF在直线0,点E、ABCD13.(2分)如图,在平行四边形中,对角线交于点是平行四边形.的条件时,四边形AE=CF DEBFEC),当、F的位置满足、于A平行四边形的判定与性质.考点:可得ABCD是平行四边形,DEBFAE=CF时四边形是平行四边形;根据四边形分析:当,根据对角线互相平分的四边形是平行四EO=FO,再由条件AE=CF可得AO=CODO=BO,是平行四边形.边形可判定四边形DEBF 是平行四边形;AE=CF时四边形DEBF解:当解答:是平行四边形,∵四边形ABCD7 / 17.∴DO=BO,AO=CO,∵AE=CF,∴EO=FO,∴四边形DEBF是平行四边形,故答案为:AE=CF.点评:此题主要考查了平行四边形的判定与性质,关键是掌握对角线互相平分的四边形是平行四边形.14.(4分)如图,DE∥BC,DE=EF,AE=EC,则图中的四边形ADCF是平行四边形,四边形BCFD是平行四边形.(选填“平行四边形、矩形、菱形、正方形”)考点:平行四边形的判定;全等三角形的判定与性质.分析:根据对角线互相平分的四边形是平行四边形可得四边形ADCF是平行四边形;首先证明△ADE≌△CFE可得∠A=∠ECF,进而得到AB∥CF,再根据两组对边分别平行的四边形是平行四边形可得四边形BCFD是平行四边形.解答:解:连接DC、AF,∵DE=EF,AE=EC,∴四边形ADCF是平行四边形;在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,∴AB∥CF,又∵DE∥BC,∴四边形BCFD是平行四边形;故答案为:平行四边形;平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形;两组对边分别平行的四边形是平行四边形.15.(2分)如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为60度时,四边形ABFE为矩形.8 / 17.矩形的判定.考点:计算题.专题:根据矩形的性质和判定.分析:ABFE为矩形,根据矩形的性质,解答:解:如果四边形AC=BC,那么AF=BE,,又因为AC=AB 是等边三角形,那么三角形ABC .所以∠ACB=60°.故答案为60 本题主要考查了矩形的性质:矩形的对角线相等且互相平分.点评:′恰好落CC′,点,得到Rt△AB′A(2分)如图,把Rt△ABC绕点逆时针旋转44°.16 .°′=22BB在边AB上,连接′,则∠BB′C旋转的性质.考点:,然后根据等腰三角形两底角相等=44°AB=AB′,∠BAB′分析:根据旋转的性质可得ABB′,再利用直角三角形两锐角互余列式计算即可得解.求出∠′,AB′C△A逆时针旋转40°得到RtABC解答:解:解:∵Rt△绕点,′=44°∴AB=AB′,∠BAB°,44°)=68°180﹣∠BAB′)°=(180﹣ABB在△′中,∠ABB′=(,C=90=∠°∵∠AC′B′,C′⊥AB∴B′.°=22°﹣ABB′C=90°﹣∠′=90°68′∴∠BB °.22故答案为:比较简单,直角三角形的两锐角互余,本题考查了旋转的性质,等腰三角形的性质,点评:熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.9 / 17.17.(2分)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,.则菱形的面积为考点:菱形的性质.分析:根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.解答:解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,=,∴sinB=AE=2,∴=8,×2∴菱形的面积=48.故答案为点评:本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.18.(2分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、(.,…,再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边n1﹣)a,则a=a,长记为a按上述方法所作的正方形的边长依次为a,a,n2n413考点:正方形的性质.专题:压轴题;规律型.222、同理计算a=AC根据直角△ABC中AB+BC可以计算,的长即分析:求aAC的长,321n﹣个正(),可以找出规律,得到第a…=a,a==anaa.由求出的a=,1n22n143﹣方形边长的表达式.222,AB,且在直角△ABC中,+BC=AC=AC 解答:解:∵a2=a,∴a=12,同理a=a=223aa==2,3410 / 17.…n1﹣()由此可知:a=,n1n﹣()故答案为:.考查了学生找规本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,点评:a的规律是解题的关键.律的能力,本题中找到n52分)三、解答题(共,并且F⊥E,CFAD,垂足为点(6分)如图,已知:AB∥CD,BE⊥AD,垂足为点19..AE=DF 是平行四边形.求证:四边形BECF考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.解答:证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.点评:本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.20.(6分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.11 / 17.平行四边形的性质.考点:证明题.专题:同再根据两直线平行,∥EF,根据平行四边形的对边平行且相等可得分析:AD=EF,AD,然B,从而得到∠FEB=∠∠FEB,根据等边对等角求出∠ACB=∠B位角相等可得∠ACB= 后根据等角对等边证明即可.为平行四边形,证明:∵四边形ADEF解答:,∥EF,∴AD=EFAD ,∠FEB∴∠ACB= ,∵AB=AC ,∠B∴∠ACB= ,∠B∴∠FEB= ,∴EF=BF AD=BF.∴等角对等边的性质,本题考查了平行四边形对边平行且相等的性质,平行线的性质,点评:熟练掌握各性质是解题的关键.,垂足分⊥BPBP,CF为正方形ABCD的边AD上的一个动点,AE⊥621.(分)如图,P22 +CF的值是一个常数.,F,已知AD=4,试说明AE别为点E正方形的性质;全等三角形的判定与性质;勾股定理.考点:,≌△BCFBCFABE=∠,证明△ABE∠分析:由已知∠AEB=BFC=90°,AB=BC,结合∠22222 AE+CF=BF+CF=BC=16为常数.,于是可得AE=BF 是正方形,ABCD解答:解:∵四边形AB=BC,,AEB=∴∠∠BFC=90°∠又∵∠ABE+∠FBC=BCF+∠FBC,∠ABE=BCF,∴∠和△在△ABEBCF中,,12 / 17.∴△ABE≌△BCF(AAS),∴AE=BF,222222∴AE+CF=BF+CF=BC=AD=16为常数.点评:本题主要考查正方形的性质,解答本题的关键是熟练掌握全等三角形的判定与性质,以及勾股定理等知识.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB 的中点.(1)求∠A的度数;(2)求EF的长.考点:三角形中位线定理;含30度角的直角三角形.分析:(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;(2)由“30度角所对的直角边等于斜边的一半”求得AB=2BC,则BC=4cm.然后根据三角EF=BC.形中位线定理求得解答:解:(1)如图,∵在Rt△ABC中,∠C=90°,∠B=60°,∴∠A=90°﹣∠B=30°,即∠A的度数是30°;(2)∵由(1)知,∠A=30°.∴在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,BC=AB=4cm.∴又E、F分别为边AC、AB的中点,∴EF是△ABC的中位线,EF=BC=2cm.∴点评:本题考查了三角形中位线定理、含30度角的直角三角形.在直角三角形中,30°角所对的直角边等于斜边的一半.23.(7分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.13 / 17.矩形的性质;全等三角形的判定与性质;等腰三角形的判定.考点:证明题.专题:边“,然后求出BF=CE,再利用B=∠C=90°,AB=DC1分析:()根据矩形的性质可得∠全等即可;ABF和△DCE角边”证明△,然后根据EDA,然后求出∠DAF=∠2)根据全等三角形对应角相等可得∠BAF=∠EDC(等腰三角形的定义证明即可.,,AB=DC中,∠B=∠C=90°解答:证明:(1)在矩形ABCD ,﹣BE﹣FC,CE=BC∵BE=CF,BF=BC ,∴BF=CE中,ABF和△DCE,在△);≌△DCE(SAS∴△ABFDCE,)∵△ABF≌△(2 EDC,∴∠BAF=∠,°﹣∠EDCDAF=90°﹣∠BAF,∠EDA=90∵∠,DAF=∠EDA∴∠是等腰三角形.∴△AOD熟记性质等腰三角形的判定,本题考查了矩形的性质,全等三角形的判定与性质,点评:确定出三角形全等的条件是解题的关键.、AE、BCAD的中点,连接,ABCDAB=AC,E、F分别是(24.7分)如图,已知菱形.CF 是矩形;)求证:四边形AECF(1 AB=6,求菱形的面积.)若(2菱形的性质;矩形的判定.考点:是等边三角形,,然后判断出△ABCAB=BC 分析:(1)根据菱形的四条边都相等可得再根据菱形的对边平行且,AEC=90,⊥然后根据等腰三角形三线合一的性质可得AEBC∠°14 / 17.相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,EC=BC,AF=AD,∴∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);=3,AE= )解:在(2Rt△ABE中,=8×.3=24所以,S ABCD菱形点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.25.(7分)如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;EF=BC,证明:平行四边形EGFH是正方形.,且⊥)的条件下,若)在((21EFBC15 / 17.考点:正方形的判定;三角形中位线定理;平行四边形的判定.专题:证明题.分析:通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添EF=BC 后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH且加了条件EF⊥BC,)就可证明是正方形.解答:证明:(1)∵G,F分别是BE,BC的中点,GF=EC.GF∴∥EC且EH=EC,又∵H是EC的中点,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,GH=BC.BC且∴GH∥EF=BC且BC,又∵EF⊥又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.点评:主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.26.(7分)如图,?ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.16 / 17.平行四边形的性质;全等三角形的判定与性质;矩形的判定.考点:专题:压轴题.1)根据平行四边形的性质和全等三角形的证明方法证明即可;分析:(是矩形,首先证明四边是,四边形AECFAC满足EF=ACEF2)请连接EC、AF,则与(AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明.形是平行四边形,)证明:∵四边形(1ABCD解答:.AB∥CD∴AO=OC,.E=∠F∴∠,中,∵在△AOE与△COF )AAS;AOE≌△COF(∴△是矩形,时,四边形满足EF=ACAECF、)连接ECAF,则EF与AC(2 理由如下:,≌△COF)可知△由(1AOE ,∴OE=OF AO=CO,∵AECF是平行四边形,∴四边形,∵EF=AC 是矩形.∴四边形AECF首平行四边形的性质以及矩形的判定,点评:本题主要考查了全等三角形的性质与判定、先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题17 / 17.。