数与式知识点总结(最新整理)

合集下载

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时,易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。

注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。

易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

三、函数易错点1:各个待定系数表示的意义。

(完整版)《数与式》知识点(最新整理)

(完整版)《数与式》知识点(最新整理)

第一部分《数与式》知识点π⎧⎪⎧⎪⎨⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:单项式:系数与次数分类多项式整式数与式()01;;(),();();1;m m n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧+-=-⎪⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫== ⎪⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎩⎡≥⎤⎧=⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于二次根式的性质:最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩第二部分《方程与不等式》知识点2⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义与解:一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法二元一次方程(组)简单的三元一次方程组:方程简单的二元二次方程组:定义与判别式(△=b -4ac)一元二次方程解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):分式方程解法:去分母化为整方程与不等式 1.2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)4.数字问题:(数位变化)类型5.图形问题:(周长与面积(等积变换))6.销售问题:(利润与利率)方程的应用7.储蓄问题:(利息、本息和、利息税)8.分配与方案问题:线段图示法:常用方法列表法:直观模型法:1.2.3.4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎪⎪⎪⎪⎩一般不等式解法一元一次不等式条件不等式解法解法:(借助数轴)不等式与不等式不等式(组)不等式与方程一元一次不等式组应用不等式与函数最佳方案问题5.最后一个分配问题第三部分《函数与图象》知识点O x x ⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩①各象限内点的特点:x 轴:纵坐标y=0;②坐标轴上点的特点y 轴:横坐标x=0.③平行于轴,y 轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于轴对称(x 相同,y 相反)⑤对称点的坐标关于y 轴对称(x 相反,y 相同)关于原点对称(x ,y 都相反)正比例函数:y=kx(k ≠0)(一点求解析式)函数表达式一次函数函数11221212112212.,.1.k k b b k k ⎧⎧⎪⎨⎨⎩⎪⎩==-A 一、三象限角平分线:y=x 二、四象限角平分线:y=-x 一次函数:y=kx+b(k ≠0)(两点求解析式)增减性:y=kx 与y=kx+b 增减性一样,k >0时,x 增大y 增大;k <0,x 增大y 减小平移性:y=kx+b 可由y=kx 上下平移而来;若y=k x+b 与y=k x+b 平行,则≠垂直性:若y=k x+b 与y=k x+b 垂直,则求交点:00(0)(00y y x x x k y k x k k k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=⎧⎨⎩(联立函数表达式解方程组)正负性:观察图像>与<时,的取值范围(图像在轴上方或下方时,的取值范围)表达式:≠一点求解析式)①区域性:>时,图像在一、三象限;<时,图像在二、四象限.k >0在每个象限内,y 随x 的增大而减小;②增减性反比例函数性质k <0在每个象限内,y 随x 的增大而减小.③恒值性:(图形面积与值有关)④对称性:既是221212,(0),(),(0),()(),(0)y ax bx c a y a x k h a y a x x x x a x x x ⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎧++≠⎪-+≠⎨⎪--≠⎩轴对称图形,又是中心对称图形.求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:=其中表达式②顶点式:=其中(k,h)为抛物线顶点坐标;③交点式:=其中,、是函数图象与轴交点的横坐标;性质二次函数2220042444242a a b a a x y x y a x y x y b ac b a a b ac b b ac b a a a ⎧⎨⎩---最小值最大值①开口方向与大小:a >0向上,a <0向下;越大,开口越小;越小,开口越小.②对称性:对称轴直线x=->,在对称轴左侧,增大减小;在对称轴右侧,增大增大;③增减性<,在对称轴左侧,增大增大;在对称轴右侧,增大减小;④顶点坐标:(-,⑤最值:当a >0时,x=-,y =;a <0时,x=-y =22.44c a x y a c b b ac a b a b c ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩-++-+示意图:画示意图五要素(开口方向、顶点、对称轴、与、交点坐标)与:开口方向确定a 的符号,抛物线与y 轴交点纵坐标确定c 的值;的符号:b 的符号由a 与对称轴位置有关:左同右异.符号判断Δ=:Δ>0与x 轴有两个交点;Δ=0与x 轴有两个交点;Δ<0与x 轴无交点:当x=1时,y=a+b+c 的值.:当x=-1时,y=a-b+c 的值...⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩①求函数表达式:②求交点坐标:函数应用③求围成的图形的面积(巧设坐标):④比较函数的大小第四部分《图形与几何》知识要点0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:,;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行000000000R 130cos302cos4545110cos60,tan302R .t ααααααα⎧⎪⎪⎪⎧===⎪⎪⎪⎪⎪⎪⎪⎨===⎨⎪⎪⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩的对边的邻边的对边定义:在t A B C 中,si n =cos =,t an =斜边斜边的邻边si n 三角函数特殊三角函数值si n45;si n6应用:要构造△,才能使用三角函数1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩A A 相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r (距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩A 于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R +r ),内含(d <R -r )圆和圆的位置关系相切:外切(d=R +r ),内切(d=R -r )相交:R -r <d <R +r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:P第五部分《图形的变化》知识点⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩A 行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=,相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩A第六部分《统计与概率》知识要点21(x x n →⎧⎨⎩→⎧⎪→⎨⎪→⎩⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩=-普查:总体与个体(研究对象中心词)两查抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数加权平均数三数众数(可能不止一个)中位数(排序、定位)方差:s 统计与概率三差222122)()()(n x x x x n n n ⎧⎡⎤+-++-⎪⎣⎦⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎧⎨⎪⎨⎩⎪⎩ 一组数据整体被扩大倍,平均数扩大倍,方差扩大倍);(一组数据整体被增加m ,平均数增加m ,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)必然事件:(概率为1)确定事件事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(两率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩试验值,多次试验后频率会接近理论概率)比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)Ccr。

2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结2024年高考数学考试的大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

下面将对每个部分的知识点进行总结,以方便复习。

一、数与式1.实数实数的概念、实数的四则运算、有理数与无理数的关系、开方运算2.立方根立方根的概念、立方根的计算、立方根的性质3.代数式与多项式代数式的概念、等价代数式的判定、多项式的概念、多项式的加减乘除、单项式与多项式的乘法、多项式的因式分解、特殊的多项式4.分式分式的概念、分式的四则运算、分式的化简、分式方程二、函数1.一次函数一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用2.二次函数二次函数的概念、二次函数的图像、二次函数的性质、二次函数的应用、二次函数的最值3.绝对值函数绝对值函数的概念、绝对值函数的图像、绝对值函数的性质、绝对值函数的应用4.反比例函数反比例函数的概念、反比例函数的图像、反比例函数的性质、反比例函数的应用5.复合函数复合函数的概念、复合函数的性质、复合函数的应用三、几何与变换1.空间坐标系空间直角坐标系、点的坐标、点到平面的距离、点到直线的距离2.向量向量的概念、向量的线性运算、向量的模、向量的夹角、向量的共线与垂直、向量的投影、向量的应用3.三角函数弧度与角度的关系、三角函数的概念、三角函数的性质、三角函数的图像、三角函数的应用4.几何相似相似三角形的判定、相似三角形的性质、相似三角形的应用、相似三角形的面积比5.平面向量与平面几何平面向量的几何意义、平面向量的坐标表示、平面向量的线性运算、向量共线的判定、平行四边形的面积、三角形的面积、平面图形的位置关系四、统计与概率1.统计图与统计量频数分布表与频率分布表、频率直方图、频率多边形、统计图的应用、统计量的计算与性质2.概率的概念随机事件与样本空间、事件的概率、几何概型与排列、分子概型与组合、概率的加法定理、概率的乘法定理、条件概率、独立事件、概率的应用以上是2024年高考数学大纲的知识点总结。

初中数学知识归纳数与式的关系及应用

初中数学知识归纳数与式的关系及应用

初中数学知识归纳数与式的关系及应用数与式是初中数学中的重要知识点,它们的关系及其应用十分广泛。

本文将对初中数学中数与式的关系进行归纳整理,并介绍数与式在实际问题中的应用。

一、数与式的基本概念及关系1. 数的概念:数是用来表示事物的多少或者位置的概念。

它可以用自然数、整数、有理数、无理数和实数等形式来表示。

数可以进行加减乘除等基本运算。

2. 式的概念:式是用数和运算符号组成的数学表达式。

它可以包含数、变量、运算符号等,但没有等号。

式可以通过运算得到一个数值结果。

3. 数与式的关系:数和式是密切相关的,可以相互转化和应用。

例如,数可以通过运算得到式;而式可以通过求解得到数。

数与式是数学中两个重要的概念,它们之间的关系贯穿了数学的始终,是数学运算和问题求解的基础。

二、数与式的应用1. 运算律的应用:数与式的基本运算律包括交换律、结合律和分配律等。

这些运算律在数与式的应用中起着至关重要的作用。

通过灵活应用这些运算律,可以简化计算过程,提高计算效率。

2. 方程与不等式的建立与求解:方程是一个等式,表达了两个式子相等的关系;不等式则表达了式子的大小关系。

在实际问题中,通过建立方程或不等式,可以将问题转化为数学运算和求解问题,从而得到问题的解答。

3. 几何问题的解决:数与式在几何中也有着广泛的应用。

通过建立几何关系的数学模型,可以通过数与式的运算求解几何问题。

如利用解析几何中的坐标系和距离公式,可以求解线段长度、角度等问题。

4. 统计与概率问题的分析:统计与概率是数学中的重要分支,也离不开数与式的应用。

通过建立统计模型和概率模型,可以通过数与式的运算分析和预测各种统计和概率问题。

5. 实际问题的建模与求解:数与式在实际问题中的应用更为丰富。

通过数学建模的方法,将实际问题转化为数与式的关系,然后利用数与式的运算和求解方法,得到问题的解答。

例如,通过建立适当的函数关系,可以求解运动问题、经济问题等。

结语:数与式是初中数学知识中的重要内容,它们的关系及应用贯穿了数学的方方面面。

高一数学数与式知识点总结

高一数学数与式知识点总结

高一数学数与式知识点总结数与式是高一数学中的基础知识点,它们是我们学习数学的基础。

本文将对高一数学数与式的相关知识进行总结与归纳。

一、数的性质与运算1. 数的分类整数、有理数、无理数、实数等是我们常见的数的分类。

整数包括自然数、零、负整数,而有理数则指可以表示为两个整数的比值的数,无理数则无法表示为有理数的根号形式。

2. 数的绝对值与相反数绝对值是一个数到零的距离,用符号“|x|”表示。

相反数是指一个数与其绝对值相等且符号相反的数,如-5与5就是相反数。

3. 数的加减乘除运算数的加减乘除是我们常见的运算方式,加法是两个数的和,减法是两个数的差,乘法是两个数的积,除法则是两个数的商。

二、方程与不等式1. 方程的定义与解方程是等号连接的两个代数式构成的等式,包括一元一次方程、二元一次方程等。

解方程就是找出使得方程成立的未知数值。

2. 不等式的定义与解不等式是用不等号连接两个代数式构成的不等关系,解不等式就是找出使得不等式成立的解集。

三、一次函数与二次函数1. 一次函数的性质与表示一次函数又称为线性函数,其图像为一条直线。

一次函数可以表示为y = kx + b的形式,其中k是斜率,b是截距。

2. 二次函数的性质与表示二次函数的图像为抛物线,其一般形式为y = ax² + bx + c。

其中a决定了抛物线的开口方向,b决定了抛物线的位置,c决定了抛物线与y轴的位置。

四、等差数列与等比数列1. 等差数列的概念与性质等差数列是指数与数之间的差值保持恒定的数列。

等差数列的通项公式为an = a₁ + (n-1)d,其中a₁为第一项,d为公差,n为项数。

2. 等比数列的概念与性质等比数列是指数与数之间的比值保持恒定的数列。

等比数列的通项公式为an = a₁ * r^(n-1),其中a₁为第一项,r为公比,n为项数。

五、四边形与三角形1. 四边形的性质与分类四边形是指具有四条边的多边形,包括矩形、正方形、菱形、梯形等。

九年级数与式知识点归纳总结

九年级数与式知识点归纳总结

九年级数与式知识点归纳总结在九年级数学学习中,数与式是一个非常重要的知识点。

数与式的概念理解和运用,对于学生的数学学习和解题能力的提升具有至关重要的作用。

在本文中,我将对九年级数与式的知识点进行归纳总结,旨在帮助同学们更好地掌握数与式的相关知识。

一、数与式的基本概念1. 数:数是我们用来计数和度量的工具。

可以分为自然数、整数、有理数、无理数等等。

2. 代数式:由数字和运算符号组成的式子,可以包含变量。

3. 方程:由含有未知数的等式所组成的式子。

4. 不等式:由含有不等号的式子构成,表示数之间的大小关系。

5. 基本运算:数与式中的基本运算包括加法、减法、乘法和除法。

二、数与式的运算法则1. 加法法则:加法交换律、加法结合律和加法逆元等。

2. 减法法则:减法的性质和减法的计算规则。

3. 乘法法则:乘法交换律、乘法结合律和乘法分配律等。

4. 除法法则:除法的计算规则和整数除法原则等。

三、整式的简化与展开1. 合并同类项:将含有相同字母和相同指数的代数式相加或相减。

2. 展开式的求解:通过乘法分配律将一个式子展开为多个项的和。

四、一元一次方程与不等式1. 一元一次方程:只含有一个未知数的一次方程。

2. 一元一次不等式:只含有一个未知数的一次不等式。

五、二元一次方程与不等式1. 二元一次方程:含有两个未知数的一次方程。

2. 二元一次不等式:含有两个未知数的一次不等式。

六、平方根与立方根1. 平方根:一个数的平方根是指另一个数的平方等于它。

2. 立方根:一个数的立方根是指另一个数的立方等于它。

七、根式的运算1. 同底数幂的运算:指数相同、底数相同的幂的运算。

2. 分式指数幂的运算:利用指数的运算规律进行运算。

3. 根式的加减法:将根式写为相同的底数,进行加减运算。

八、实数的性质1. 有理数和无理数的概念与区别。

2. 实数的比较大小:利用数轴和大小比较法则进行实数的大小比较。

九、函数与方程1. 函数的概念与函数图像:自变量和因变量之间的对应关系。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。

其中,既不属于正数也不属于负数的数是零。

无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。

有理数包括正有理数、负有理数和零。

负无理数和正无理数的定义很明确。

2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。

3.数轴有三个要素:原点、正方向和单位长度。

实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。

4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。

5.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。

知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。

数轴上的每个点都对应着一个实数,反之亦然。

3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。

a的倒数是1/a(a≠0)。

6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。

确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。

7.近似数是一个与实际数值很接近的数。

它的精确度由四舍五入到哪一位来决定。

例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。

第1部分 数与式 知识点

第1部分   数与式    知识点

第1课时 实数的概念与运算1.实数的分类(1)按定义分类 (2)按正负性分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负分数正分数分数负整数正整数整数有理数实数0 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数正无理数正分数正整数正有理数正实数实数0 有理数: 有限小数或无限循环小数;无理数: 无限不循环小数。

2.数轴: 规定了原点、正方向和单位长度的直线叫做数轴。

数轴上的点与实数是一一对应的关系。

3.相反数: 只有符号不同的两个数互为相反数。

数 的相反数是— ;若 和 互为相反数, 则 + =0。

4.绝对值: 在数轴上, 表示数 的点到原点的距离, 叫做数 的绝对值, 记作 。

正数的绝值是它的本身, 负数的绝对值是它的相反数, 0的绝对值是0。

即5、倒数: 乘积为1的两个数互为倒数。

数 的倒数是 ;若 和 互为倒数, 则6、科学记数法:把一个数表示成 , 为不等于0的整数)形式的方法叫做科学记数法。

7、近似数与有效数字:一个与实际值很接近的数叫做近似数。

一般地, 近似数由四舍五入取得, 四舍五入到哪一位, 就说这个近似数精确到哪一位。

这时, 从左边第一个不是0的数字起, 到精确到的这位止, 所有的数字都叫做这个数的有效数字。

8、平方根、算术平方根、立方根:(1)若 , 则称 为 的平方根, 记作 , 其中 叫做 的算术平方根, 0的算术平方根是0。

同样 , 则称 为 的立方根, 记作 , 0的立方方根是0。

(2)一个正数的平方根有两个, 它们互为相反数。

负数没有平方根。

一个数的立方根只有一个。

9、实数的大小比较:(1)数轴表示法: 将两个实数分别表示在数轴上, 右边的数总比左边的数大。

(2)代数比较法:正数大于0, 0大于负数;两个负数比较, 绝对值大的反而小。

(3)根式比较:若 > ≥0, 则 > 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实数、二次根式的有关概念1. 为了表示具有 的量我们引进负数。

2. 和分数统称为有理数, 叫无理数,有理数和无理数统称为 。

3. 整数可分为 和负整数。

分数可分为 。

有理数也可分为:正有理数、 和 。

0既不是 ,也不是 。

4. 规定了 、 和 的直线叫做数轴。

5. 只有 不同的两个数称为相反数。

绝对值最小的数是 ,互为相反数的两数的和为 ,在数轴上表示互为相反数的两个点位于原点的 ,且到 的距离 。

6. 在数轴上,表示数a 的点与 的距离叫做数a 的绝对值。

︱a ︱=_____________________________7. 等于a ,那么这个数叫做a 的平方根,记作 ,其中a 是 。

正数a 的正的平方根叫做a 的 ;一个正数的平方根有 个,它们是 ,0的平方根和算术平方根都是 ,负数 。

求 的运算叫做开平方。

0(a>0)。

a 8. 如果一个数的 等于a ,那么这个数叫做a 的立方根,求 的运算叫做开立方。

9、二次根式的概念:形如(a ≥0)的式子,叫做二次根式。

a 10、二次根式的性质:(1)= (a 0)(2)==2)(a 2a a_____________________________(3)= · (a ≥0,b ≥0);(4)= (a ≥0,b ≥0).ab ba 11、最简二次根式要满足以下两个条件:(1)被开方数的因数是 数,因式是 式;(2)被开方数中不含能开得尽方的 数或 式。

12、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数 ,这几个二次根式叫做同类二次根式。

二、实数、二次根式的运算1、有理数的加减乘除、乘方、开方的法则分别是什么?①有理数的加法:同号两数相加,取与 相同的符号,并把 相加;绝对值不相等的异号两数相加,取绝对值 的加法的符号,并用 的绝对值减去 的绝对值,互为相反数的两个数相加得 ;一个数同0相加,仍得 。

②有理数的减法:减去一个数等于加上这个数的 。

③有理数的乘法:两数相乘,同号得 ,异号得 ,并把 相乘;任何数与0相乘都得 。

④有理数的除法:除以一个数等于乘以这个数的 ;注意: 不能做除法。

⑤有理数的乘方:求n 个 的因数的积的运算叫做乘方,即=a n .其中负数的 次方是负数,负 个n a a a a 数的 次方是正数;= (a ≠0);= (a ≠0,n 是正整数)。

0a n a ⑥有理数的开方:如果一个数的n 次方(n 是大于1的整数)等于a ,这个数叫做a 的 ;即若,则x a x n 叫做a 的 。

求一个数的方根的运算叫做开方。

a一般地,正数的二次方根有两个,它们互为,负数二次方根,即:正数a的n次方根为±,其中,a是正数a的;正数的三次方根是一个,负数的三次方根是一个,即:a的三次方根为3a;0的n次方根都是。

2、实数的运算顺序:(1)按照第三级运算(乘方、开方),第二级运算(乘除),第一级运算(加减)的运算顺序进行计算。

(2)在同一级运算中应该从左到右依次计算。

(3)有括号时,应先算括号里面的,并按照小括号、中括号、大括号的顺序进行运算。

(4)如果符合运算定律和性质,可变更运算顺序。

3、近似数。

近似数的精确度:①0.1(十分位)、0.01(百分位)0.001(千分位)……②个位、十位、百位、千位……4、有效数字:从一个近似数的左边第一个不是的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字。

n5、科学记数法:若绝对值大于10的数可以记成a×10的形式,其中a的范围是,n的取值是;n绝对值小于1的数也可以记成a×10的形式,其中a和n的条件分别是,。

6、实数的大小比较;①在数轴上表示的两个数,_______边的数比_______边的数大;②______大于0;______小于0;_______大于一切负数;两个负数,绝对值大的反而______。

7、运算律:(1)加法交换律:a+b=b+a; (2)加法结合律:(a+b)+c= ;(3)乘法交换律:a·b= ;(4)乘法结合律:(a·b)·c= ;(5)乘法分配律:(a+b)·c= .8、二次根式的加减:把各个二次根式化成后,再分别合并同类二交根式。

9、二次根式的乘除:把被开方数相,根指数。

10、分母有理化:把分母中的根号化去。

(注意:分子分母要同时乘以分母的有理化因式)代数式1.代数式:用运算符号(加、减、乘、除、乘方、开方)把或表示数的连结而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。

2.代数式的书写格式:(1)数学与字母相乘,应写在的前面,且“×”、“·”一般都应省略;(2)除法一般写成分数形式;(3)系数为分数且不是真分数时与字母相乘时要写成假分数形式。

3.代数式的值:用代替代数式中的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。

通常在求代数式的值时,应先把代数式尽可能化简,再用数值代替字母求值。

4.代数式的分类:代数式分为有理式和,有理式分为整式和,分母中不含的代数式称为整A 式,整式分为和;一般地,用A、B表示两个整式,若B中含有字母,且B≠0,则式子叫B 做;整式(运算、公式)1、整式分式单项式和多项式;叫做单项式,单项式的系数指的是,单项式的次数是之和;叫做多项式,组成多项式的每个叫做多项的项,其中叫做常数项,(注意多项式中的项包括前面所带的符号)多项式的次数指的是,所以多项式有几项几次式的说法。

2、合并同类项:所含字母,并且字母的指数也分别的单项式叫做同类项,几个常数项也是同类项;把多项式中的同类项,叫做合并同类项;合并同类项的法则是:各同类项的字母因式,把各个同类项的作为。

3、去括号与添括号:去括号时,若括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都变号;若括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都变号。

添括号时,若括号前面是“+”号,括到括号里的各项都 变号;若括号前面是“—”号,括到括号里的各项都 变号。

4、整式的加减法:即是合并 ,如有括号,应先去括号,再合并 。

5、同底数幂的乘法:底数 ,指数 。

即:a m ·a n = ______。

6、同底数幂的除法:底数 ,指数 。

即:a m ÷a n =_______(a≠0)。

7、幂的乘方:底数 ,指数 。

即:(a m )n =______。

8、积的乘方:先把积的各个因式分别 ,再把所得的结果 ,即:(ab )n =_______。

9、单项式乘以单项式:系数 ,同底数幂 ,再把所得结果相乘;10、单项式除以单项式:系数 ,同底数幂 ,再把所得结果相乘。

11、单项式与多项式的乘法: 把单项式同多项式的 相乘,再把所的结果 。

即:m(a+b+c)= ; =________ _____。

)32()2(c y x a -+⋅-12多项式除以单项式:把多项式的 都除以单项式,再把所得的结果相加。

13、多项式乘多项式: 把一个多项式的每一项都同另一个多项式的 相乘,再把所得的结果相加,即:(m+n )(a+b)= ; =_______________.)9)(4(y x y x 14、乘法公式:(1)平方差公式:(a+b )(a-b)= ;(2)完全平方公式:(a+b)2 = ;(a-b )2=_____ ___ __.因式分解1、 因式分解的概念:把一个多项式化成几个整式的的形式,叫做把这个多项式因式分解,也叫做分解因式。

分解因式要进行到每一个因式都不能再分解为止。

2、 因式分解的方法:(1) 提公因式法:;(2) 运用公式法:平方差公式:= 完全平方公式:= *(3)十字相乘法:3、因式分解的一般步聚:(1)一“提”:先看多项式的各项是否有公因式,若有公因式必须先提出来;(2)二“套”:若多项式的各项无公因式(或已提出公因式)第二步则看能不能用公式法;(3)三“查”:可以用整式乘法检查因式分解的结果是否正确。

分式1、有理式: 式和 式统称有理式。

2、分式的概念:形如的式子(A ,B 均为整式,且B 中含有字母,B 0)。

3、分式的基本性质:分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为=( )。

4、符号性质:分式的分子、分母与分式本身的符号,改变其中任意两个,分式的值不变。

5、分式的运算:公式, = ,, = ,。

6、分式的混合运算,应先计算,再算,最后算;如果有括号,先算括号内的。

1、若分式有意义,则的取值范围是() A. B. C.﹥ D.﹤2、函数自变量的取值范围是() A. B. C. D.3、下列运算中,错误的是()A.(c≠0) B. C. D.4、若x<2,则的值是()A.-1 B.0 C.1 D.25、若,则的值是() A. B. C. D.6、计算:的值为() A、 B. C. D.1、若分式的值是0,则的值等于 .2、分式方程的解是 .3、若分式无意义,则的取值范围是 .4、函数中,自变量的取值范围是 .5、化简: .6、计算: .7、若,则的值为 .1、计算2、计算3、计算。

相关文档
最新文档