统计学 第6章 参数估计
统计学中的参数估计方法

统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。
通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。
本文将介绍几种常用的参数估计方法及其应用。
一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。
它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。
最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。
2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。
矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。
二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。
置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。
2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。
预测区间估计在预测和判断未来观测值时具有重要的应用价值。
三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。
贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。
贝叶斯估计方法的关键是设定先验分布和寻找后验分布。
统计学参数估计教案

统计学参数估计教案统计学参数估计教案一、教学目的1. 了解参数估计在统计学中的基本概念和作用;2. 学会使用点估计和区间估计进行参数估计;3. 掌握常见的参数估计方法。
二、教学内容1. 参数估计的基本概念和作用;2. 点估计和区间估计;3. 偏差和方差;4. 常见的参数估计方法:最大似然估计、最小二乘估计、贝叶斯估计。
三、教学方法1. 讲述、演示和示范;2. 互动交流;3. 课程设计。
四、具体教学流程1. 参数估计的基本概念和作用(30min)参数估计是指利用样本数据来估计总体参数的方法。
总体参数是指总体的某种特征,如总体均值、总体方差等。
参数估计的常见目的是为了推断总体的特征和进行预测。
参数估计的基本概念:点估计和区间估计。
点估计是指用样本统计量来估计总体参数,如样本均值、样本方差等。
区间估计是指以样本统计量为中心,以一定概率包含总体参数的估计区间。
2. 点估计和区间估计(30min)点估计分为无偏估计和有偏估计。
无偏估计是指样本统计量的期望等于总体参数,即样本均值和总体均值相等。
有偏估计是指样本统计量的期望不等于总体参数。
无偏估计通常比有偏估计更准确,但有时有偏估计可以更好地适应某些特殊情况。
区间估计的概念:置信度和置信区间。
置信度是指在给定的置信水平下,总体参数被包含在区间估计内的概率。
置信区间是指在给定的置信水平下,总体参数的估计区间。
3. 偏差和方差(30min)偏差是指在大量重复实验中,样本估计值的平均值与总体参数的差异程度。
如样本均值与总体均值之间的差异就是偏差。
方差是指在大量重复实验中,样本估计值与其期望之间的差异。
偏差和方差是估计量的两个基本属性。
偏差小、方差小的估计量是优良的估计量。
4. 常见的参数估计方法(60min)最大似然估计是指选择一个参数值,使得样本观测结果发生的概率最大化。
最小二乘估计是指选择一个参数值,使得样本观测结果与拟合值之间的平方误差最小化。
贝叶斯估计是指利用贝叶斯定理,根据先验分布和样本信息,推导出后验分布,从而得到总体参数的估计量。
统计学 第 6 章 抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
《医学统计学》第六章+参数估计与假设检验

2、该地所有人收缩压的均数可能在什么范围?
医学统计学(第7版)
三、总体均数的区间估计
(一)σ 已知
➢ 如果变量 X 服从均数为 μ、标准差为 的正态分布,则: z
服从标准正态分布。则:
P X 1.96
X 1.96
0.95
(二)σ 未知
1. t 分布
➢ 事实上,总体标准差 通常是未知的,这时我们可以用其估计量S代替 ,但
在这种情况下,( X ) / ( S /
n)
已不再服从标准正态分布,而是服从著名的 t 分布。
William Gosset
不同自由度的t分布图
医学统计学(第7版)
2. 可信区间的计算
S12 S22
n1 n2
2 ,v
医学统计学(第7版)
例题
➢ 例6-4 评价复方缬沙坦胶囊与缬沙坦胶囊对照治疗轻中度高血压的有效性,将102名患
者随机分为两组,其中试验组和对照组分别为54例和48例。经六周治疗后测量收缩压,
试验组平均下降15.77mmHg,标准差为13.17mmHg;对照组平均下降9.53mmHg,标准
样本率的标准差称为率的标准误(standard error of rate),可用来描述样
本率抽样误差的大小。率的标准误越小,则率的抽样误差越小,率的标
准误越大,则率的抽样误差越大。公式为:
p
(1 )
n
2. 率的标准误的估计
在一般情况下,总体率 π 往往是未知的,此时可用样本率 P 来估计总体
标准差与标准误的比较
标 准 差
标 准 误
统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
应用统计学第6章置信区间估计

X 和 S2 分别为样本均值和样本方差。 可以证明,
2
(n 1)S 2
2
~
2 (n 1)
由
P{12 / 2 (n 1)
(n 1)S 2
2
2 / 2 (n 1)} 1
可得
(n 1)S 2
P{ 2 / 2 (n 1)
2
(n
2 1
/2
1)S 2 }
(n 1)
1
从而 2 的置信度为1-
的置信区间为:
样本成数
p 5 / 300 1.67%
d Z /2 p(1 p) / n
1.96 0.0167(1 0.0167) / 300 1.45%
该厂产品次品率的置信度为95%的置信区间为
( p d, p d ) (0.22%, 3.12%)
22
案例思考题
国外民意调查机构在进行民意调查时,通常要求 在95%的置信度下将调查的允许误差(即置信区间的 d 值)控制在3%以内。
(n
2 /
1)S 2 2 (n 1)
,
(n
2 1
/2
1)S 2 (n 1)
f (x)
/2
1-
/2
012 /2 (n 1)
2/2 (n 1) x
8
【例2】求例1中元件寿命方差 2 的 95% 置信区间。
解:由例1,S2 =196.52,n =10,/2=0.025,
1-/2=0.975,
2 0.025
(9)
19.023,
2 0.975
(9)
2.7
(n-1)S2/
2 0.025
(9)
=
9196.52/19.023
统计学第6章习题答案

一、选择题1、在用样本的估计量估计总体参数时,评价估计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为(B)A、无偏性B、有效性C、一致性D、充分性2、根据一个具体的样本求出的总体均值95%的置信区间(D)A、以95%的概率包含总体均值B、有5%的可能性包含总体均值C、绝对包含总体均值D、绝对包含总体均值或绝对不包含总体均值3、估计量的无偏性是指(B)A、样本估计量的值恰好等于待估的总体参数B、所有可能样本估计值的期望值等于待估总体参数C、估计量与总体参数之间的误差最小D、样本量足够大时估计量等于总体参数4、下面的陈述中正确的是(C)A、95%的置信区间将以95%的概率包含总体参数B、当样本量不变时,置信水平越大得到的置信区间就越窄C、当置信水平不变时,样本量越大得到的置信区间就越窄D、当置信水平不变时,样本量越大得到的置信区间就越宽5、总体均值的置信区间等于样本均值加减估计误差,其中的估计误差等于所求置信水平的临界值乘以(A)A、样本均值的标准误差B、样本标准差C、样本方差D、总体标准差6、95%的置信水平是指(B)A、总体参数落在一个特定的样本所构造的区间内的概率为95%B、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为95%C、总体参数落在一个特定的样本所构造的区间内的概率为5%D、用同样的方法构造的总体参数的多个区间中,包含总体参数的区间的比例为5%7、一个估计量的有效性是指(D)A、该估计量的期望值等于被估计的总体参数B、该估计量的一个具体数值等于被估计的总体参数C、该估计量的方差比其他估计量大D、该估计量的方差比其他估计量小8、一个估计量的一致性是指(C)A、该估计量的期望指等于被估计的总体参数B、该估计量的方差比其他估计量小C、随着样本量的增大该估计量的值越来越接近被估计的总体参数D、该估计量的方差比其他估计量大9、支出下面的说法哪一个是正确的(A)A、一个大样本给出的估计量比一个小样本给出的估计量更接近总体参数B、一个小样本给出的估计量比一个大样本给出的估计量更接近总体参数C、一个大样本给出的总体参数的估计区间一定包含总体参数D、一个小样本给出的总体参数的估计区间一定不包含总体参数10、用样本估计量的值直接作为总体参数的估计值,这一估计方法称为(A)A、点估计B、区间估计C、无偏估计D、有效估计11、将构造置信区间的步骤重复多次,其中包含总体参数真值的次数所占的比例称为(C)A、置信区间B、显著性水平C、置信水平D、临界值12、在总体均值和总体比例的区间估计中,估计误差由(C)A、置信水平确定B、统计量的抽样标准差确定C、置信水平和统计量的抽样标准差确定D、统计量的抽样方差确定13、在置信水平不变的条件下,要缩小置信区间,则(A)A、需要增加样本量B、需要减少样本量C、需要保持样本量不变D、需要改变统计量的抽样标准差14、估计一个正态总体的方差使用的分布是(C)A、正态分布B、t分布C、卡方分布D、F分布15、当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是(B)A、正态分布B、t分布C、卡方分布D、F分布16、当正态总体的方差未知,在大样本条件下,估计总体均值使用的分布是(A)A、正态分布B、t分布C、卡方分布D、F分布17、在其他条件不变的条件下,要使估计时所需的样本量小,则应该(A)A、提高置信水平B、降低置信水平C、使置信水平不变D、使置信水平等于118、使用t分布估计一个总体均值时,要求(D)A、总体为正态分布且方差已知B、总体为非正态分布C、总体为非正态分布但方差已知D、正态总体方差未知,且为小样本19、在大样本条件下,总体均值在(1-)置信水平下的置信区间可以些为(C)A、B、C、D、20、正态总体方差已知时,在小样本条件下,总体均值在置信水平下的置信区间可以写为(C)A、B、C、D、21、正态总体方差未知时,在小样本条件下,总体均值在置信水平下的置信区间可以写为(B)A、B、C、D、22、指出下面的说法哪一个是正确的(A)A、样本量越大,样本均值的抽样标准差就越小B、样本量越大,样本均值的抽样标准差就越大C、样本量越小,样本均值的抽样标准差就越小D、样本均值的抽样标准差与样本量无关23、抽取一个样本量为100的随机样本,其均值为,标准差。
统计学参数估计公式

统计学参数估计公式统计学参数估计公式指的是通过统计学方法估计参数的一组数学公式。
不同的统计学参数估计公式各有特点、应用场景和优劣,它们通常用来估计描述性统计或者回归系统的参数。
本文将讨论统计学参数估计公式,并详细说明下面常见参数估计公式:极大似然估计、贝叶斯估计、最小二乘估计、局部加权线性回归和最小化重要性采样。
极大似然估计(MLE)也叫最大似然估计,是一种基于极大似然法的估计统计量的方法。
它的目的是最大化制定概率模型的参数的后验概率。
MLE得出的结果往往比矩估计更加精确。
与贝叶斯估计不同,MLE不需要选择先验分布,且不考虑实证概率,只考虑已知数据。
贝叶斯估计(Bayesian Estimation)是基于概率模型进行参数估计时,结合预先取得的知识,使用条件概率的方法。
基于已有的先验知识,贝叶斯估计将未知参数的概率分布转化为后验的概率,以此来进行估计。
贝叶斯估计法可以克服极大似然估计出现的不平滑问题,而且还能考虑实证概率的影响。
最小二乘估计(Least Square Estimation,LSE)是一种基于数据拟合的参数估计方法。
它将未知数参数表示为一个函数,并使得残差平方和最小,最小化残差平方和来估计未知参数,也就是拟合曲线最适合数据点。
实际运用中往往会遇到过度拟合和欠拟合等问题,所以LSE在多项式回归时需要采用正则化项依据损失函数来控制模型的复杂度,以避免过拟合的情况。
局部加权线性回归(Local Weighted Linear Regression,LWLR)是一种用来解决非线性问题的回归方法。
它的特点是对未知的值的预测引入了权重,在线性回归的基础上引入一个滑动窗口,把预测点以外的点的权重不断减少,越靠近预测点的点的权重越大,这样做的目的是为了使参数估计更加准确和稳定。
最小化重要性采样(Minimum Importance Sampling,MIS)是一种非参数估计参数的方法,它不会估计参数本身,而是通过采样数据而且采样频次是以后验分布的形式定义的,从而用采样数据来估计参数的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偶然的东西是没有根据的,因为它是偶然的;但同 样因为它是偶然的,它又是有根据的。 ——黑格尔
见一落叶,而知岁之将暮,睹瓶中之冰,而知天下之 寒,以近论远。 ——《淮南子说山训》
10 - 1
6.1 参数与参数估计的概念 6.2 总体均值的估计
6.3 总体比例的估计
6.4 总体方差的估计
影响区间宽度的因素
总体数据的离散程度,用 来测度
x 样本容量,
信区间随着样本容量的增大而减小,即较 大样本所提供的有关总体的信息要比较小 的样本多 置信水平 (1 - ),影响 z 的大小。当样本 容量确定时,置信区间随着置信水平的增 大而增大
10 - 15
n。当置信水平固定时,置
10 - 20
(三)一致性
当样本单位数达到充分大的时候,样本统计量也会越来越接近总体参数。就是说,随 着样本单位数 n 的无限增加,样本统计量和被估计的总体参数之差的绝对值小于任意小的 正数,它的可能性也将趋近于必然性,或者说实际上是几乎肯定的。用公式可以表示为:
lim P ˆ 1
由于 n N 20 100 0.2 0.05,因此需要用修正系数对样本均值的方差进行修正, 把相关数据代入公式,可得:
x z 2
N n 10 100 20 52.3 1.96 52.3 3.94 n N 1 20 100 1
即 48.36,56.24 ,表明这批货物的平均重量的置信区间为 48 .36 ~ 56.24 千克。这也说明 了在同样的置信水平下,抽样比越大,给出的置信区间宽度越窄。
10 - 19
(二)有效性
2 ˆ 和 ˆ 都是参数 的无偏估计量,若 2 ˆ ˆ 假设 ˆ ˆ ,则说明估计量 1 比 2 更有效。 1 2
1 2
即作为优良估计量的方差应该比其他估计量的方差小。
^
1
的抽样分布
^
2
的抽样分布
图 6.2 两个无偏点估计的抽样分布 对于同一总体参数的两个不同的无偏点估计,我们会偏好于采用方差较小的点估计, 因为它给出的估计更为可靠。图 6.2 给出了同一总体参数的两个无偏估计的情形,由于估
样本统计量 (点估计) 10 - 7
置信下限
置信上限
区间估计
68.27%
95.45% 99.73%
x
-3σ -2σ
-σ
+σ
+2σ +3σ
图3-12 常用的正态概率值
(在一般正态分布及标准正态分布中)
10 - 8
置信区间与置信水平
样本均值的抽样分布
/2
x
1 –
10 - 28
解:已知 10 , n 20 ,置信水平为 95%时临界值 z 2 1.96 由样本数据计算的样本均值为 x 52 .3 代入公式得:
x z 2
n 52.3 1.96 10 20 52.3 4.38
即 47.92,56.68 ,表明这批货物的平均重量的置信区间为 47 .92 ~ 56 .68 千克。
1.
x z ~ N (0,1) n
3. 总体均值 在1- 置信水平下的置信区间为
x z 2
10 - 25
n
或 x z 2
s n
( 未知)
(一)总体方差已知
10 - 26
总体方差已知(续)
图6.3 总体均值的置信区间
10 - 27
【例 6.1】某公司为了对运来的一批原料货物的平均重量进行估计,从一批 2000 包原 料货物中随机抽取 20 包,测得的数据为(单位:千克) : 38 48 35 39 61 52 52 54 47 60 59 47 43 76 65 51 50 60 52 57 假设这批货物的重量服从正态分布,标准差为 10 千克,试给出这批货物的平均重量的置信 区间,置信水平取 95%。
1490 1460
1510
1530 1470
1520
1510 1470
总体均值的区间估计
(例题分析)
解:已知X~N(,2),n=16, 1- = 95%,t/2=2.131 根据样本数据计算得:x 1490 , s 24.77 总体均值在1-置信水平下的置信区间为
x t
2
该食品平均重量的置信区间为101.44g~109.28g
10 - 31
【例6.3】若例6.1中这批货物总量为100包, 其它数据一样,试给出这批货物平均重量的 置信水平为95%的置信区间。
10 - 32
解:根据例 6.1 知:
10 , n 20 ,置信水平为 95%时临界值 z 2 1.96 , x 52 .3
/2
x
(1 - ) 区间包含了
x
的区间未包含
10 - 9
区间估计的图示
x z 2 x
- 2.58x -1.65 x -1.96x
x
+1.65x +2.58x
+1.96x
90%的样本
95% 的样本
99ห้องสมุดไป่ตู้ 的样本
10 - 10
6.1.1 点估计与区间估计 点估计
用样本统计量去估计总体的参数 –用样本均值 x 估计总体均值μ –用样本方差s2去估计总体方差σ2 –用样本比率p估计总体比率π
10 - 6
区间估计
区间估计:在点估计的基础上,给出总体
参数估计的一个区间范围,该区间由样本 统计量加减抽样误差而得到的 根据样本统计量的抽样分布能够对样本统 计量与总体参数的接近程度给出一个概率 度量 –某班级平均分数在75~85之间,置信水 平是95% 置信区间
(例题分析)
解:已知X~N(,102),n=25, 1- = 95%,z/2=1.96。根据 样本数据计算得: x 105.36 总体均值在1-置信水平下的置信区间为
x z
2
10 105.36 1.96 n 25 105.36 3.92 101.44,109.28
区间估计的图示
x z 2 x
- 2.58x -1.65 x -1.96x
x
+1.65x +2.58x
+1.96x
90%的样本
95% 的样本
99% 的样本
10 - 16
6.1.2 估计量优劣的评价标准
估计总体参数时,估计量一般不是唯一的,可能会有多个。如估计总体平均数时,可 以用样本平均数,也可以用样本中位数、众数等等。那么,究竟应当以哪一种样本统计量 来估计总体参数才是最优的呢?为解决这一问题,需要给出一定的评价标准,以下就是统 计学家在实际中常用来评价估计量优良与否的一些标准。
t
10 - 36
总体均值的区间估计
(例题分析)
【例】已知某种灯泡的寿命服从正态分布,现从一 批灯泡中随机抽取 16只,测得其使用寿命 (小时)如 下。建立该批灯泡平均使用寿命95%的置信区间
16灯泡使用寿命的数据 1510 1520 1480 1500
1450
1480 1460
10 - 37
1480
6.5 样本容量的确定
6.6 SPSS在统计推断中的应用—参数估计
10 - 2
学习目的与要求
掌握参数估计、估计量和估计值等基本概念 了解参数估计量的特性——无偏性、有效性和一致性 熟练求出一个总体均值、总体比例和总体方差的置信
区间
了解不同情形下两个总体均值之差、总体比例之差和
总体方差比置信区间的求法。
掌握总体均值和总体比例估计时样本容量的确定
10 - 3
参数估计在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
10 - 4
6.1 参数与参数估计的概念
估 计 方 法
点
估
计
区间估计
矩估计法 顺序统计量法 最大似然法 最小二乘法
10 - 5
6.1 参数与参数估计的概念
25袋食品的重量
112.5
102.6 100.0
101.0
107.5 123.5
103.0
95.0 102.0
102.0
108.8 101.6
100.5
115.6 102.2
116.6
136.8 10 - 30
95.4
102.8
97.8
101.5
108.6
98.4
105.0
93.3
总体均值的区间估计
置信区间
由样本统计量所构造的总体参数的估计区
间称为置信区间,其中区间的最小值称为 置信下界,最大值称为置信上界
统计学家在某种程度上确信这个区间会包
含真正的总体参数,所以给它取名为置信 区间
10 - 11
区间估计
10 - 12
置信水平
将构造置信区间的步骤重复很多次,置信
区间包含总体参数真值的次数所占的比率 称为置信水平 表示为 (1 - 为总体参数未在区间内的比率 常用的置信水平值有 99%, 95%, 90% 相应的 为0.01,0.05,0.10
10 - 13
常用置信水平
在构造置信区间时,一般用所希望的值作为置
信水平。比较常用的置信水平及标准正态分布 曲线下右侧面积为α/2时的z值(zα/2)
常用置信水平zα/2值
置信水平
α
α/2
zα/2
90% 95% 99%
10 - 14
0.10 0.05 0.01