定积分知识点汇总
定积分知识点总结数学

定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。
定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。
2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。
3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。
当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。
4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。
二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。
2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。
3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。
4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。
5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。
三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
大专定积分知识点总结

大专定积分知识点总结一、初等函数的不定积分1. 一元函数的不定积分(1)定义:设f(x)是定义在一个区间上的函数,F(x)是它的一个原函数,则在这个区间上有F'(x)=f(x),记为∫f(x)dx=F(x)+C,其中C为任意常数,这个过程称为不定积分,或者原函数的求法。
(2)基本积分公式:① ∫kdx=kx+C② ∫xⁿdx=x^(n+1)/(n+1)+C,n≠-1③ ∫dx=x+C④ ∫(1/x)dx=ln|x|+C⑤ ∫e^xdx=e^x+C⑥ ∫aˣdx=aˣ/ln(a)+C(3)分部积分法:2. 函数的定积分(1)定义:设f(x)是定义在[a,b]上的函数,P:{a=x₀<x₁<...<xₙ=b}是[a,b]的一个分划,则δxᵢ=xᵢ-xᵢ₋₁, ξᵢ∈[xᵢ-₁,xᵢ],S(P,f)=Σf(ξᵢ)δxᵢ称为f(x)在[a,b]上P的积分和。
(2)引入定义:如果有两个数I*,I使得|S(P,f)-I|<ε对任意的分划P均成立,即对任意的ε>0,总存在一个正数δ,对任意的分划P的细分P',当δ(P')<δ时,有|S(P',f)-I|<ε,则称函数f(x)在[a,b]上可积,且I是f(x)在[a,b]上的定积分,记作∫f(x)dx。
(3)定积分的性质:① ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx② ∫(kf(x))dx=k∫f(x)dx③ 若f(x)≤g(x),则∫f(x)dx≤∫g(x)dx3. 定积分的计算(1)牛顿-莱布尼兹公式:设F(x)是f(x)在[a,b]上的一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)(2)变上限积分:设f(x)在区间[a,b]上连续,则Ψ(x)=∫[a,x]f(t)dt是F(x)的一个原函数,即Ψ'(x)=f(x)。
(3)定积分的几何意义:设f(x)在[a,b]上连续,则∫[a,b]f(x)dx表示曲线y=f(x),直线x=a,x=b和y轴所围成的平面图形的面积。
积分知识点总结公式

积分知识点总结公式一、基本概念1. 定积分定积分是对函数f(x)在区间[a, b]上积分的概念,表示为∫f(x)dx。
它的几何意义是函数f(x)与x轴所围成的面积。
定积分的概念可以表示成:∫f(x)dx = lim[n→∞]∑[i=1]ⁿ f(xᵢ)Δx其中,Δx = (b - a)/n,xᵢ = a + iΔx。
求解定积分通常使用牛顿-莱布尼茨公式:∫[a, b]f(x)dx = F(b) - F(a)其中,F(x)是f(x)的不定积分。
2. 不定积分不定积分是对函数f(x)的积分的概念,表示为∫f(x)dx。
它的几何意义是求解函数f(x)的原函数F(x)。
求解不定积分的常用方法包括换元法、分部积分法、特殊积分法等。
3. 曲线的长、面积、体积通过积分的方法可以求解曲线的长度、曲线围成的面积以及体积。
曲线的长度可以表示成:L = ∫[a, b]√(1 + (dy/dx)²)dx曲线围成的面积可以表示成:S = ∫[a, b]f(x)dx体积可以表示成:V = ∫[a, b]A(x)dx其中A(x)是截面积。
二、常见积分公式1. 基本积分公式基本积分公式包括:∫xⁿdx = (1/(n+1))x^(n+1) + C,其中n≠-1∫eˣdx = eˣ + C∫aˣdx = (1/lna)aˣ + C,其中a>0,a≠1∫sinxdx = -cosx + C∫cosxdx = sinx + C∫sec²xdx = tanx + C∫csc²xdx = -cotx + C∫secxtanxdx = secx + C∫cscxcotxdx = -cscx + C∫1/(1+x²)dx = arctanx + C∫1/√(1-x²)dx = arcsinx + C∫1/(x²+a²)dx = (1/a)arctan(x/a) + C2. 分部积分公式分部积分公式是对两个函数的积分的概念,表示为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。
定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。
一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。
在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。
1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。
则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。
我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。
对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。
1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。
当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。
当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。
1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。
例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。
定积分知识点汇总

定积分知识点汇总关键信息项:1、定积分的定义2、定积分的几何意义3、定积分的基本性质4、定积分的计算方法5、定积分的应用1、定积分的定义11 定积分的概念定积分是微积分的重要概念之一。
如果函数 f(x) 在区间 a, b 上连续,用分点 a = x₀< x₁< x₂<< xₙ = b 将区间 a, b 分成 n 个小区间,在每个小区间 xᵢ₋₁, xᵢ上任取一点ξᵢ(i = 1, 2,, n),作和式∑f(ξᵢ)Δxᵢ,当 n 无限增大且Δxᵢ的最大值趋于零时,如果和式的极限存在,这个极限就叫做函数 f(x) 在区间 a, b 上的定积分,记作∫ₐᵇf(x)dx 。
12 定积分的几何定义如果在区间 a, b 上函数 f(x) 连续且非负,那么定积分∫ₐᵇf(x)dx 表示由曲线 y = f(x) 、直线 x = a 、 x = b 和 x 轴所围成的曲边梯形的面积。
如果函数 f(x) 在区间 a, b 上连续且有正有负,那么定积分∫ₐᵇf(x)dx 表示介于 x 轴上方和下方的面积的代数和。
2、定积分的几何意义21 以 x 轴上方的面积为正,x 轴下方的面积为负当函数图像在 x 轴上方时,对应的定积分值为正,表示该部分区域的面积;当函数图像在 x 轴下方时,对应的定积分值为负,表示该部分区域面积的相反数。
22 定积分表示曲线围成的面积对于一般的连续函数,定积分的值等于曲线与 x 轴之间所围成的有向面积。
3、定积分的基本性质31 线性性质若函数 f(x) 和 g(x) 在区间 a, b 上可积,k 为常数,则∫ₐᵇkf(x)dx =k∫ₐᵇf(x)dx ,∫ₐᵇf(x) ± g(x)dx =∫ₐᵇf(x)dx ±∫ₐᵇg(x)dx 。
32 区间可加性若函数 f(x) 在区间 a, c 和 c, b 上都可积,其中 a < c < b ,则∫ₐᵇf(x)dx =∫ₐᶜf(x)dx +∫ᶜᵇf(x)dx 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分
一.定积分的几何意义
①
()0f x >时,()b
a
f x dx S =⎰
()0f x <时,
()b
a
f x dx S =-⎰
()f x 有正有负时,
1(),
b
a
f x dx S =⎰2(),
c
b
f x dx S =-⎰
3()d
c
f x dx S =⎰
面积和123()()()b
c
d
a
b
c
S S S f x dx f x dx f x dx ++=-+⎰
⎰⎰
[()()]b
a
f x
g x dx S -=⎰
二.定积分基本性质 ①当a b =时,()0b
a
f x dx =⎰
.
②()()b
b a
a
kf x dx k f x dx =⎰
⎰
③1212[()()()]()()()b
b b b
n n a
a
a
a
f x f x f x dx f x dx f x dx f x dx
±±⋅⋅⋅±=±±÷⋅⋅±⎰
⎰⎰⎰
④
12
1
()()()()n
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++⋅⋅⋅+⎰
⎰⎰⎰
⑤若奇函数()y f x =在[,]a a -上连续不断,则()0a
a f x dx -=⎰
⑥若偶函数()y f x =在[,]a a -上连续不断,则0()2()a
a
a
f x dx f x dx -=⎰
⎰
123()()()().d b
c d a a
b
c
f x dx f x dx f x dx f x dx S S S =++=-+⎰
⎰
⎰⎰
微分基本定理:如果()f x 是区间[,]a b 上的连续函数,且'()()F x f x =,则 ()()
()()b
b a
a
f x dx F x F b F a ==-⎰
(牛顿—莱布尼兹公式)
1.直线0,,0x x y π===与曲线sin y x =所围成图形的面积用定积分表示为
2.用定积分表示抛物线2
23y x x =-+与直线3y x =+所围成图形的面积为
3.曲线2
1,2,0,0y x x x y =-===围成的阴影部分的面积用定积分表示为
4.由曲线24,4,0,0y x x x y =-===和x 轴围成的封闭图形的面积是( )
4
2
.(4)A x dx -⎰ 4
20
.|(4)|B x dx -⎰
420
.|4|C x dx -⎰ 24
2202
.(4)(4)D x dx x dx -+-⎰⎰
5.计算下列定积分 (1)3
23
9x dx --⎰
(2)1
21
44x dx --⎰
(3)2
1
1
(1)
dx x x +⎰
(4)10(2)x x e dx +⎰
(5)2
cos 2
x
dx π
⎰
(6)91(1)x x dx +⎰
6.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2
y x
=上,如图,若将一质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是
7.已知函数2
y x =与y kx =的图象所围成的阴影部分的面积是4
,3
则k =
8.求曲线2
4y x =与直线24y x =-围成的图形面积
9.已知函数3
2
()f x x ax bx =++的图象如图所示,它与直线0y =在原点处相切,此切线与函数图象所围区域的面积是27
,4
求a .。