第九章 神经系统的功能
鱼类学1.9第九章--神经系统

二、脊髓的构造与机能
构造:背中沟、腹中沟、髓管或中心管。肩膨 大、腰膨大。灰质、白质、腹角、背角、脊膜。
9-10
机能:神经传导路径和简单反射中枢。脊髓通过 分节排列的脊神经对鱼体的皮肤、肌肉和色素进行分 节神经支配,是低级反射中枢;脊髓另一部分神经纤 维是连结脊髓和脑部的种种上行纤维和下行纤维,通 过这些神经纤维传导兴奋。
第九章 神经系统 The nervous system
功能:掌管全身的正常生理和协调,负责鱼类与 外界环境的互相联系,接受外界刺激并产生相应反应。
中枢神经系统 脊 脑髓 神经系统外周神经系统 脊 脑神 神经 经
植物性神经系统交 副感 交神 感经 神 经
系混合性神经。
9-22
10·迷走神经
起源于延脑侧面,是 脑神经中最粗大的一对, 它分出三大分支,即鳃支、 内脏支及侧线支,其功用 是支配咽区和内脏的动作, 并司咽部的味觉,躯部皮 肤的各种感觉以及侧线感 觉。
是一对混合性神经。
9-20
8.听神经
起源于延脑的侧面, 分布到内耳的椭圆囊、球 状囊以及各壶腹上。
系感觉性神经。
9-21
9.舌咽神经
起源于延脑侧面,主 干上有一神经节,节后分 出两支,一在第一鳃裂之 前(可称为孔前支),一 在第一鳃裂之后(可称为 孔后支)。它们分布到口 盖、咽部以及头部侧线系 统中。
功用是主持颌部的动作, 同时接受来自皮肤、唇部、 鼻部及颌部的感觉刺激,是 一混合神经。
9-18
6.外展神经
从延脑腹面伸出,分 布到眼球的外直肌上。
为运动性神经,支配 眼球的运动。
9-19
7.面神经
由延脑侧面发出,是一 对十分粗大且分支较多的脑 神经。
my-9-神经系统的功能

二、突触传递
概念
神经元之间和神经元与效应细胞 间相互联系与信息传递的特化结 构和区域。
突触(synapse)传递
经典突触
化学突触(神经递质) 电突触(局部电流)
(定向突触)
非定向突触
26
(一)经典的突触传递
1.结构
1、突触结构: ①突触前膜:递质、受体 ②突触间隙:宽约10-50nm,
水解酶
(2)肾上腺素能纤维及分布:
(除汗腺和骨骼肌血管之外)多数交感神经节后纤维
(3)肾上腺素能受体效应
—G蛋白和蛋白激酶途径
① α受体( α1 α2 )
α1:血管、胃肠括约肌、有孕子宫、辐射状肌、 竖毛肌、心肌( ) α2:小肠、突触前膜(抑制NA释放)( )
② β受体( β1 β2 β3 )
β1:心脏、β3脂肪( ) β2:血管、支气管、胃肠道、膀胱、无 孕子宫、 突触前膜(促进NA释放)( )
③突触后膜:受体、离子通道
2.突触的分类:
⑴接触部位:
轴-胞突触 轴-树突触 轴-轴突触
树-树突触
(2)结合形式: 包围式 依傍式
(3)机能活动: 兴奋性
抑制性
2.经典的突触分类
突触的其他类型
3.突触传递过程(电-化学-电传递)
2+ Ca
电-化学-电传递
经典突触传递过程
突触前神经元兴奋 去极化 Ca2+通道开放 突触前膜 突触小泡释 突触
8.嘌呤类 ATP、腺苷:抑制性调质 P1受体:腺苷 P2受体:ATP P1受体:A1、A2、A3 P2受体:P2Y、P2U P2X、P2Z 9.其他递质 NO、CO PG、糖皮质激素、性激素等
四、神经反射
(一)反射活动的分类及中枢控制
第九章神经系统的感觉功能

二、自主神经系统的功能特点(图)
1.双重神经支配; 2.拮抗作用; 3.自主神经的作用与效应器的功能态度有关; 4.紧张性作用; 5.主要功能是维持内环境的稳定:
交感神经主要参与应急反应,而副交感神经 主要在于保护机体、休整、恢复、贮存能量。
二、神经递质和受体
神经递质
由突触前神经元合成并在末梢处释 放,经突触间隙扩散,特异性地作用于 突触后神经元或效应器细胞上的受体, 产生效应的化学物质。
2.非特异性投射系统
由丘脑(第三类细胞群) 弥散地投射到皮层广泛区 域的纤维。
三、丘脑和感觉投射系统的功能
(一)特异性投射系统 1、定义:指经丘脑换元后向大脑皮层的特
定区域点对点投射,并引起特定感觉的投 射系统。(具有点对点的投射关系)。 2、功能:引起特定的感觉,并激发大脑皮 层发出神经冲动。
激动剂:结合并产生生物效应 拮抗剂:结合但不产生生物效应 *受体与配体结合的特性 特异性;饱和性;可逆性。
胆碱能受体
a.毒蕈碱受体(M-R):产生M样作用 阻断剂:阿托品 分布:胆碱能纤维所支配的效应器上。
Ⅱ.倒置安排: 除头面部是直立外
Ⅲ.皮层投射区的大小 与感觉分辨的精细 程度呈正比:
如:舌和拇指的投射区
特异性和非特异性投射系统的区别
特异性投射系统
非特异性投射系统 (上行唤醒作用)
传入途径 专一性
传入神经元 三级神经元 的接替
投射区域 特定区域
投射区与感 有点对点的对应 觉的关系
非专一性 多级神经元
时发生的牵张反射,为多突触反射。 特点:肌紧张反射收缩力不大;表现为同一肌肉的
不同运动单位进行交替性收缩,不是同步收缩;不易产 生疲劳。
生理意义:维持站立姿势。 检查牵张反射的意义 。
神经系统和功能神经系统功能

神经系统和功能:神经系统功能第九章神经系统和功能1、兴奋性突触后电位(EPSP ):突触后膜在某种神经递质作用下发生局部去极化电位变化称为兴奋性突触后电位2、抑制性突触后电位(IPSP ):突触后膜在某种神经递质作用下发生局部超极化电位变化,称为抑制性突触后电位。
3、传入侧支性抑制:传入纤维进入中枢后,一方面通过突触联系引起某一中枢神经元产生兴奋,另一方面发出侧支,兴奋-抑制性中间神经元,转而再抑制另一中枢神经元,这种抑制称为传入侧支性抑制。
4、回返性抑制:中枢神经元兴奋时,传出冲动沿轴突外传,同时又经轴突侧支兴奋-抑制中间神经元,后者释放抑制性物质反过来抑制原先发生兴奋的神经元及统一中枢的其他神经元,这种抑制称为回返性抑制。
5、突触前抑制:突触前抑制是通过改变突触前膜的活动而使突出后神经元产生抑制的现象,其结构基础是轴-轴突触。
6、特意投射系统:丘脑特异感觉接替核及其投射至大脑皮层的神经通路称为特意投射系统7、非特异投射系统:丘脑非特异投射核及其投射至大脑皮层的神经通路称为非特异投射系统8、牵涉痛:某些内脏疾病引起的远隔体表部位发生疼痛或痛觉过敏,这种现象称为牵涉痛9、牵张反射:是指有完整神经支配的骨骼肌受到外力牵拉伸长时引起的被牵拉的同一肌肉收缩的反射。
10、腱反射:指快速牵拉肌腱时发生的牵张反射11、肌紧张:肌紧张是指缓慢持续牵拉肌腱时发生的牵张反射,其表现为受牵拉的肌肉处于持续、轻度的收缩状态,但不表现为明显的动作。
12、试比较中枢兴奋传播的特征和神经纤维传导兴奋的特征神经纤维传导兴奋地特征:生理完整性、绝缘性、双向导向性、相对不疲劳性中枢兴奋传播的特征:单性传播、中枢延搁、兴奋的总和、兴奋节律的改变、后发放、对内环境变化的敏感和易疲劳。
13、试述经典的突触传递的过程经单的突触传递过程:当动作电位扩布到突触前神经元轴突末梢时,突触前膜去极化,去极化达到一定水平,前膜上电压门控式Ca 2+通道开放,Ca 2+内流,轴浆内Ca 2+浓度瞬间升高,触发突触小泡的出胞,释放神经递质;神经递质与突触后膜受体相结合,改变突触后膜对Na +、K +、Cl -的通透性,导致某些带电离子进出突触后膜,从而使突触后膜产生EPSP 和IPSP,如果突触后神经元兴奋,若引起其超极化,突触后神经元抑制。
动物生理学第九章神经生理

神经冲动传导的原理 无髓纤维的传导 局部电流 有髓纤维的传导 郎飞氏结处形成局部电流
(二)神经纤维 的分类 (三)神经纤维 的轴浆运输
添加标题
突触
添加标题
轴-树突触
添加标题
突触的分类和基本 结构
添加标题
轴-胞突触
添加标题
突触的分类
添加标题
轴-轴突触
添加标题
根据突触的接触部 位不同
二.根据突触对下一个神经元的影响不同 一类是兴奋性突触,另一类为抑制性突触 二.根据突触工作的方式不同,分为电突触和化
具有精细定位
添加标题
04
支配不同部位有不同的 定位区
添加标题
椎体系统
05
添加标题
06
椎体外系统
添加标题
07
第五节 神经系统 对内脏活动的调节
添加标题
பைடு நூலகம்
08
交感神经和副交感 神经特征
二.交感神经和副交感神经的功能 三.植物性神经末梢的兴奋传递 四.神经递质 胆碱能纤维: 肾上腺素能纤维: 胆碱能纤维又分为烟碱型作用(N型),
添加标题
去大脑僵直
添加标题
基底神经节对躯体 运动的调节
添加标题
脑干对姿势反射的 调节
添加标题
小脑对躯体运动的 调节
添加标题
状态反射
添加标题
小脑的结构
添加标题
翻正反射
小脑的功能
原始小脑
旧小脑
新小脑
大脑皮质对躯 体运动的调节
添加标题
01
添加标题
02
添加标题
03
大脑皮层运动区
特点:1.两侧交叉
单击添加副标题
第 九章 神经生理
中枢抑制和中枢易化

速度 (m/s) 70~120 30~70 15~30 12~30 3~15 0.7~2.3 0.5~2.0
相当于 Ia、Ib
II
III
IV IV
(2)轴浆运输
指借助轴突内轴浆流 动而进行运输物质的 现象。
顺向运输 轴浆运输
快速:细胞器 慢速:微管和微丝
逆向运输:神经生长因子、狂犬病毒、 破伤风毒素等
↓ 递质扩散至后膜与受体结合
↓ 后膜对某些离子通透性改变,
离子跨膜流动变化 ↓
后膜发生一定程度的去极化或超极化, 即产生突触后电位
兴奋性突触后电位(EPSP)
• 兴奋性突触后电位(EPSP)
概念:突触前膜释放的兴奋性递质作用于突触后膜上 的受体,引起的突触后膜的去极化电位变化。
机制:兴奋性递质作用于突触后膜上受体,增大后膜 对Na+和K+的通透性,主要是Na+内流,后膜发生 去极化的电位变化。
总和后有三种结果: ①兴奋:总和后达阈电位,
产生AP ②易化:总和后去极化接
近阈电位,兴奋性升高 ③抑制:总和后超极化远
离阈电位,兴奋性降低
➢非定向突触传递
代表:交感神经支配的血管平滑 肌或心肌处的神经-肌接头,称 曲张体,末梢释放去甲肾上腺素)
传递特征 ①无突触前、后膜的特化结构; ②不存在一对一支配关系; ③曲张体与效应器间距大于典型突触间隙间距; ④递质扩散距离较远, ⑤释放递质能否发挥效应,取决于效应器细胞上有无相应受体。
❖ 神经纤维的功能: 主要功能是传导兴奋 轴浆运输 营养作用
(1)神经纤维的兴奋的传导
➢ 神经纤维传导兴奋的特征
⑴完整性 结构完整性:损伤或切断兴奋传导障碍 功能完整性:麻醉药,麻醉区离子跨膜运动受阻, 兴奋传导障碍
第九章神经系统 (2)

《解剖学基础》 神经系统
3.软膜
分为软脑膜和软脊膜,薄而透明,富含血管
《解剖学基础》 神经系统
在脑室附近,软脑 膜、毛细血管和室 管膜上皮共同突入 脑室内构成脉络丛, 是产生脑脊液的主 要结构
《解剖学基础》 神经系统
(二)脑和脊髓的血管
《解剖学基础》 神经系统
脊髓表面有6条纵行的沟裂
前正中裂
前外侧沟 前根
后正中沟 后外侧沟
脊神经 后根
《解剖学基础》 神经系统
颈髓(8节)
每对脊神经前、后根相连的 一段脊髓,称为一个脊髓节 胸髓(12节)
段,共31个节段
腰椎穿刺常在第3、4或 第4、5腰椎之间进行
腰髓(5节) 骶髓(5节)
尾髓(1节)
3.第四脑室
为延髓、脑桥与 小脑之间的腔隙
《解剖学基础》 神经系统
第四脑室的底即菱形 窝,顶朝向小脑,下 通中央管,向上借中 脑水管通第三脑室, 借一个中央孔和两个 外侧孔通蛛网膜下隙
《解剖学基础》 神经系统
(三)间脑
位于中脑和端脑之间 主要由背侧丘脑和下 丘脑组成
《解剖学基础》 神经系统
1.背侧丘脑(丘脑)
2)非脑神经核
主要是薄束核和楔束核、红核和黑质
《解剖学基础》 神经系统
(2)白质
上行纤维束 内侧丘系,脊髓丘脑束,三叉丘系
下行纤维束 锥体束 皮质脊髓束 皮质核束
(3)网状结构
《解剖学基础》 神经系统
3.脑干的功能
(1)传导功能 (2)反射功能
延髓内有呼吸中枢和心血管活动中枢(生命中枢), 脑桥内有角膜反射中枢,中脑内有瞳孔对光反射中枢 (3)网状结构的功能
生理学笔记——第九章神经系统

⼀、神经元和神经纤维 1.神经元即神经细胞,是神经系统的基本结构和功能单位。
神经元由胞体和突起两部分组成,胞体是神经元代谢和营养的中⼼,能进⾏蛋⽩质的合成;突起分为树突和轴突,树突较短,⼀个神经元常有多个树突,轴突较长,⼀个神经元只有⼀条。
胞体和突起主要有接受刺激和传递信息的作⽤。
2.神经纤维即神经元的轴突,主要⽣理功能是传导兴奋。
神经元传导的兴奋⼜称神经冲动,是神经纤维上传导的动作电位。
神经元轴突始段的兴奋性较⾼,往往是形成动作电位的部位。
3.神经胶质:主要由胸质细胞构成,在神经组织中起⽀持、保护和营养作⽤。
⼆、神经冲动在神经纤维上传导的特征 1.⽣理完整性:包括结构和功能的完整,如果神经纤维被切断或被⿇醉药作⽤,则神经冲动不能传导。
2.绝缘性:⼀条神经⼲内有许多神经纤维,每条神经纤维上传导的神经冲动互不⼲扰,表现为传导的绝缘性。
3.双向传导:神经纤维上任何⼀点产⽣的动作电位可同时向两端传导,表现为传导的双向性,但在整体情况下是单向传导的。
4.相对不疲劳性:神经冲动的传导以局部电流的⽅式进⾏,耗能远⼩于突触传递。
5.不衰减性:这是动作电位传导的特征。
6.传导速度:与下列因素有关: (1)与神经纤维直径成正⽐,速度⼤约为直径的6倍。
(2)有髓纤维以跳跃式传导冲动,故⽐⽆髓纤维传导快。
(3)温度降低传导速度减慢。
三、神经纤维的轴浆运输与营养性功能 1.轴浆运输: 轴浆是经常在胞体和轴突末梢之间流动的,这种流动发挥物质运输的作⽤。
轴浆运输是双向性的,包括顺向转运和逆向转运。
顺向转运⼜分快速转运和慢速转运,含有递质的囊泡从胞体到末梢的运输属于快速转动,⽽⼀些⾻架结构和酶类则通过慢速转运。
轴浆运输的特点:耗能,转运速度可以调节。
2.营养性功能:神经纤维对其所⽀配的组织形态结构、代谢类型和⽣理功能特征施加的缓慢的持久性影响或作⽤。
神经纤维的营养性功能与神经冲动⽆关,如⽤局部⿇醉药阻断神经冲动的传导,则此神经纤维所⽀配的肌⾁组织并不发⽣特征性代谢变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章神经系统的功能视觉部分1.近点(near point):可用来表示晶状体的最大调节能力,指眼作充分调节时眼所能看清楚的眼前最近物体所在之处。
(近点离眼越近,晶状体的弹性越好,眼的调节能力越强。
正常人随年龄的增长,近点将逐渐移远。
9,11,83)近点移远,老视,凸透镜。
2.远点(far point):当眼注视6m以外的物体(远物)时,从物体发出的所有进入眼内的光线可被认为是平行光线,对正常眼来说,不需做任何调节即可在视网膜上形成清晰的像。
通常将人眼不作任何调节时所能看清楚的最远物体所在之处称为远点。
理论上可无限远但由于光线太弱或被视物体太小可看不清。
3.暗适应(dark adaptation)和明适应(light adaptation):当人长时间在明亮环境中而突然进入暗处时,最初看不见任何东西,经过一定时间后,视觉敏感度才逐渐提高,能逐渐看见在暗处的物体,这种现象称为暗适应(是视色素特别是对光敏感度较高的视杆色素在暗处合成增加的结果);当人长时间在暗处而突然进入明亮处时,最初感到一片耀眼的光亮,也不能看清物体,稍等片刻后才能恢复视觉,这种现象称为明适应(几秒内即可完成;机制:视杆细胞在暗处蓄积了大量的视紫红质,遇强光迅速分解,产生耀眼光感。
只有在较多的视杆色素迅速分解之后,对光相对不敏感的视锥色素才能在亮处感光而恢复视觉)。
4、视杆细胞感暗光,无色觉。
视锥细胞感强光,为什么会产生色觉?阐述三原色学说。
1)颜色视觉(color vision):对不同颜色的识别是视锥细胞的功能特点之一。
颜色视觉简称色觉,是指不同波长的可见光刺激人眼后在脑内产生的一种主观感觉,是一种复杂的物理-心理现象。
正常人眼可分辨波长380~760nm之间的150种左右不同的颜色,每种颜色都与一定波长的光线相对应。
在可见光谱的范围内,波长长度只要有3~5nm的增减,就可被人视觉系统分辨为不同的颜色。
2)三色学说(trichromatic theory):在视网膜中存在分别对红、绿和蓝光敏感的三种不同的视锥细胞,分别含有视红质、视绿质和视蓝质为其感光色素,当某一波长的光线作用于视网膜时,可以一定的比例使三种不同的视锥细胞发生兴奋,信息传至中枢,就产生某一种颜色的感受。
如果红、绿、蓝三种色光按各种不同的比例作适当的混合,就会产生任何颜色的感觉。
可解释色盲、色弱。
(色盲:一种对全部颜色或某些颜色缺乏分辨能力的色觉障碍,分为全色盲和部分色盲。
)视网膜的两种感光换能系统正因为所含视色素的不同,两种感光细胞在功能上存在明显的差异。
神经系统部分1.皮层诱发电位(evoked cortical potential):指刺激感觉传入系统或脑的某一部位时,在大脑皮层一定部位引出的电位变化。
皮层诱发电位可由刺激感受器、感觉神经或感觉传入通路的任何一个部位而引出。
诱发电位一般包括主反应、次反应和后发放三部分。
相关概念1)平均诱发电位(averaged evoked potential):诱发电位的波幅较小,又发生在自发脑电的背景上,故常被自发脑电淹没而难以辨认出来。
应用电子计算机将诱发电位叠加和平均处理,能使诱发电位突显出来,经叠加和平均处理后的电位称为平均诱发电位。
已成为研究人类感觉功能、神经系统疾病、行为和心理活动的方法之一。
2)体感诱发电位(somatosensory evoked potential,SEP):体感诱发电位是指刺激一侧肢体,从对侧对应于大脑皮层感觉投射区位置头皮引出的电位。
3)听觉或视觉诱发电位(auditory evoked potential,AEP;visual evoked potential,VEP):以短声或光照刺激一侧外耳或视网膜,分别从相应头皮(对应于颞叶和枕叶皮层位置)引出的电位则为听觉或视觉诱发电位。
2.突触的可塑性(synaptic plasticity):指突触的形态和功能可发生较持久改变的特性或现象;但从生理学的角度看,突触的可塑性主要是指突触传递效率的改变。
突触的可塑性普遍存在于中枢神经系统中,与未成熟神经系统的发育以及成熟后的学习、记忆和脑的其他高级功能活动密切相关。
形式:1)强直后增强(posttetanic potentiation,PTP):重复刺激突触前神经元使突触后电位幅度短时性发生改变。
强直刺激使大量钙离子进入突触前末梢内,细胞内钙库暂时饱和,钙离子积蓄且可激活对其敏感的酶,使递质持续大量释放。
(通常数分钟,多则数小时)2)习惯化(habituation)和敏感化(sensitization):前者由反复的平和刺激而引起,由于突触前末梢钙通道逐渐失活,钙离子内流减少,递质释放减少所致;后者是对原有刺激反应增强和延长的表现,一般由伤害性刺激所触发,一次或多次外加的伤害性刺激可使平和刺激所引起的反应增强。
由于突触前末梢中钙通道开放时间延长,钙离子内流增多,递质释放增加所致,实质是突触前易化。
(短时程,有时可持续数小时或数周)3)长时程增强(long-term potentiation,LTP)和长时程压抑(long-term depression,LTD):前者指突触前神经元在短时间内受到快速重复的刺激后,在突触后神经元快速形成的持续时间较长的EPSP增强,由突触后神经元胞质内钙离子浓度增加所致,多见于与学习记忆有关的脑区,是脊椎动物学习和记忆的细胞学基础。
后者指突触强度的长时程减弱。
3.突触前易化(presynaptic facilitation):如果到达神经末梢的动作电位时程延长,则钙通道开放的时间延长,进入神经末梢的Ca2+量增多,释放递质就增多,最终使运动神经元的兴奋性突触后电位(excitatory postsynaptic potential,EPSP)增大,即产生突触前易化。
神经末梢动作电位时程延长,可能是轴突-轴突式突触的突触前末梢释放某种递质(如5-羟色胺),使神经末梢内cAMP水平升高,钾通道发生磷酸化而关闭,结果导致动作电位的复极化过程延缓。
敏感化发生机制就是突触前易化。
感觉传导通路中多见,可调节感觉传入活动。
4.感觉柱(sensory column):中央后回皮层的细胞呈纵向柱状排列,从而构成感觉皮层最基本的功能单位,称为感觉柱。
同一个柱内的神经元对同一感受野的同一类感觉刺激起反应,是一个传入-传出信息整合处理单位。
一个细胞柱兴奋时,其相邻细胞柱则受抑制,形成兴奋和抑制镶嵌模式。
5.去大脑僵直(decerebrate rigidity):在麻醉动物,于中脑上、下丘之间切断脑干,当麻醉药作用过去后,动物即表现为抗重力肌(伸肌)的肌紧张亢进:四肢伸直,坚硬如柱,头尾昂起,脊柱挺硬,呈角弓反张状态,这一现象称为去大脑僵直。
产生原因:在中脑水平切断脑干后中断了大脑皮层、纹状体等部位与脑干网状结构之间的功能联系,造成抑制区和易化区之间的活动失衡,使抑制区的活动大为减弱,易化区的活动明显占优势。
类型:γ僵直(网状脊髓束);α僵直(前庭脊髓束)6.感觉性记忆:指由感觉系统获取的外界信息在脑内感觉区短暂储存的过程,这个阶段一般不超过1秒。
没有进行加工处理的记忆信息会很快消失,人们往往感觉不到。
这种记忆大多属于视觉和听觉的记忆。
大题1、牵张反射的类型和特征:1)定义:牵张反射(stretch reflex)是指有完整神经支配的骨骼肌在受外力牵拉伸长时引起的被牵拉的同一肌肉发生收缩的反射。
2)类型:腱反射和肌紧张A.腱反射(tendon reflex):是指快速牵拉肌腱时发生的牵张反射,如叩击股四头肌肌腱引起股四头肌收缩的膝反射、叩击跟腱引起小腿腓肠肌收缩的跟腱反射等。
腱反射的效应器主要是收缩较快的快肌纤维。
完成一次腱反射的时间很短,据测算兴奋通过中枢的传播时间仅约0.7ms,只够一次突触传递所需的时间,可见腱反射是单突触反射。
B.肌紧张(muscle tonus):是指缓慢持续牵拉肌腱时发生的牵张反射,表现为受牵拉的肌肉处于持续,轻度的收缩状态,但不表现为明显的动作。
例如:在人取直立体位时,支持体重的关节由于重力影响而趋向于弯曲,从而使神级的肌梭受到持续的牵拉,引起被牵拉的肌肉收缩,使背部的骶棘肌、颈部以及下肢的伸肌群肌紧张加强,以对抗关节的屈曲,保持抬头、挺胸、伸腰、直腿的直立姿势。
因此,肌紧张是维持身体姿势最基本的反射活动,也是随意运动的基础。
肌紧张的效应器主要是收缩较慢的慢肌纤维。
肌紧张常表现为同一肌肉的不同运动单位交替进行收缩,故能持久进行而不易疲劳。
肌紧张中枢的突触接替不止一个,所以是一种多突触反射。
2、脊休克(spinal shock)的定义及表现:1)定义:当人和动物的脊髓在与高位中枢离断后,反射活动能力暂时丧失而进入无反应状态的现象,简称脊休克。
2)表现:脊休克的主要表现为横断面以下的脊髓所支配的躯体与内脏反射均减退以致消失,如骨骼肌紧张降低,甚至消失,外周血管扩张,血压下降,发汗反射消失,粪、尿潴留。
在发生脊休克后,一些以脊髓为基本中枢的反射可逐渐在不同程度上恢复。
其恢复的速度与动物进化程度有关,因为不同动物的脊髓反射对高位中枢的依赖不同。
例如:蛙在脊髓离断后数分钟内反射即可恢复;狗可于数天后恢复;而人类因外伤等原因引起脊休克时,则需数周以至数月反射才能恢复。
各种反射的恢复也有先后,比较简单和较原始的反射(如屈肌反射和腱反射)恢复较早,相对较复杂的反射(如对侧伸肌反射、搔爬反射)恢复则较慢。
血压也回升到一定水平,排便、排尿反射也在一定程度上有所恢复。
但此时的反射往往不能很好地适应机体生理功能的需要。
离断面水平以下的知觉和随意运动能力将永久丧失。
3、脊休克产生恢复能说明什么问题?脊休克恢复后的动物在第一次离断水平下方行第二次脊髓离断术,脊休克现象不再出现,说明脊休克的发生是因为离断面下的脊髓突然失去高位中枢的调控,而非切断脊髓的损伤刺激本身。
可见,脊髓具有完成某些简单反射的能力,但这些反射平时受高位中枢的控制而不易表现出来。
脊休克恢复后,通常是伸肌反射减弱而屈肌反射增强,说明高位中枢平时具有易化伸肌反射和抑制屈肌反射的作用。
4、睡眠分哪些时相,不同时相的表现以及生理意义。
人在睡眠时会出现周期性的快速眼球运动,因此,根据睡眠过程中眼电图、肌电图和脑电图的变化观察。
可将睡眠分为非快眼动睡眠和快眼动睡眠。
1)非快眼动睡眠(non-rapid eye movement sleep,NREM sleep):A.特征:NREM睡眠中,感觉传入冲动很少,大脑皮层神经元活动趋向步调一致,脑电以频率逐渐减慢、幅度逐渐增高、δ波所占比例逐渐增多为特征(慢波睡眠),表现出同步化趋势。
视、听、嗅和触等感觉以及骨骼肌反射、循环、呼吸和交感神经活动等均随睡眠的加深而降低,且相当稳定。