有理数单元测试及答案

合集下载

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108 3.在,-4,0,这四个数中,属于负整数的是()A.B.C.0 D.4.|x|=|﹣3|,则x是()A.3 B.-3 C.D.±35.下面计算正确的是()A.﹣(﹣2)2=22B.(﹣3)2×C.﹣34=(﹣3)4D.(﹣0.1)2=0.126.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方7.如果两个有理数的积是负数,和是正数,那么这两个有理数()A.同号,且都为正数B.异号,且正数的绝对值较大C.同号,且都为负数D.异号,且负数的绝对值较大8.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.|b|>|a| B.a﹣b<0 C.a+b<0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.有理数3.1415精确到百分位结果是.10.两个有理数的和是5,其中一个加数是12,那么另一个加数是.11.某地一天早晨的气温是-7℃,中午气温上升了11℃半夜又下降了9℃,半夜的气温是℃.12.一个数在数轴上所对应的点向右移动4个单位后,得到它的相反数的对应点,则这个数是.13.如图是一个三阶幻方,图中每行、每列、每条对角线上的数字之和相等,则的值为.三、解答题:(本题共5题,共45分)14.计算(1)(2)15.计算:(1)(2)(3)16.已知|a|=10,|b|=4(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a-b的值。

有理数单元测试(含答案)

有理数单元测试(含答案)

第一部分有理数单元测试1.下列说法错误的是( )A.零是非负数B.零是整数C.零的相反数是零D.零的倒数是零2.下列说法正确的是( )A.绝对值等于3的数是-3B.绝对值小于113的整数是1和-1C.绝对值最小的有理数是1D.3的绝对值是33.下列判断正确的是( )A.12004的相反数是2004; B.12004的相反数是-2004;C.12004的相反数是-12004; D.12004的相反数是12004-4.下列四组有理数大小的比较正确的是( )A.1123->-;B. 11-->-+;C.1123<;D.1123->-5.有理数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b>a>cB.b>-a>cC.a>c>bD.│b│>-a>-c6.数-216不是( )A.有理数B.整数C.负有理数D.自然数7.下列说法正确的是( )A.正整数和负整数统称为整数B.零表示不存在,所以零不是有理数C.非负有理数就是正有理数D.整数和分数统称为有理数8.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等A.3个B.2个C.1个D.0个9.下列说法正确的是( ).①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确B.仅③正确C.仅③④正确D.①②④正确10.数a的相反数是-a,那么a表示( )A.负有理数B.正有理数C.正分数D.任意一个数二、填空1.在有理数集合中,最小的正整数是______,最大的负整数是______.2.绝对值最小的有理数是_______.3.相反数最小的负整数是______,相反数最大的正整数是______.4.2.5的相反数是_______,倒数是_____,绝对值是______.5.如果a表示一个有理数,那么-a表示a的______,│a│表示a的_______.6.自行车车轮向顺时针方向旋转200圈记做+200圈, 那么向逆时针方向旋转150圈应记做_________.7. π-的相反数是_____,-a的相反数是________.8.若│y+5│=14,那么y=________.9.在数轴上,离开原点的距离是5的数是__________.10.在数轴上,离开表示数2的点距离是3的点表示的数是_______.三、解答1.写出所有绝对值不大于4的负整数,并在数轴上表示出来.2.若│x-3│+│y+4│+│z-5│=0,求代数式z2-y2+x的值.3.某检修小组乘汽车检修供电线路。

有理数的单元测试题及答案

有理数的单元测试题及答案

有理数的单元测试题及答案一、选择题(每题2分,共10分)1. 下列各数中,是正数的有()A. -3B. 0C. 3D. -3.52. 绝对值是5的数是()A. 5B. -5C. 5或-5D. 都不是3. 两个负数相加,和的符号是()A. 正B. 负C. 0D. 不确定4. 有理数的乘方运算中,-3的平方是()A. 9B. -9C. 3D. -35. 若a < 0,b > 0,且|a| > |b|,则a+b的值是()A. 正B. 负C. 0D. 不确定二、填空题(每题2分,共10分)1. 有理数包括整数和______。

2. 绝对值是数轴上表示该数的点到原点的距离,例如|-4|=______。

3. 两个有理数相除,如果被除数和除数同号,则商是______数。

4. 有理数的乘法运算中,-2乘以-3等于______。

5. 一个数的相反数是与它相加等于______的数。

三、计算题(每题5分,共20分)1. 计算下列各数的绝对值:|-7|,|0|,|5.5|。

2. 计算下列各数的和:-3 + 2 + (-1)。

3. 计算下列各数的乘积:(-4) × (-5)。

4. 计算下列各数的差:7 - (-2)。

四、解答题(每题10分,共20分)1. 某班有学生40人,其中20人喜欢数学,15人喜欢英语,5人既喜欢数学又喜欢英语。

请问喜欢数学或英语的学生有多少人?2. 某商店出售两种商品,商品A的进价是20元,售价是30元;商品B的进价是15元,售价是25元。

如果商店同时购进这两种商品各10件,商店的总利润是多少?五、应用题(每题15分,共30分)1. 某工厂有工人100名,其中60名工人每天能完成10个产品,剩余的工人每天能完成5个产品。

如果工厂每天需要生产800个产品,问工厂是否需要增加工人?2. 某公司计划在两个城市之间铺设一条铁路,已知城市A到城市B的距离是300公里。

如果铁路的铺设成本是每公里5万元,公司需要准备多少资金?答案:一、选择题1. C2. C3. B4. A5. B二、填空题1. 分数2. 43. 正4. 65. 0三、计算题1. 绝对值:7,0,5.52. 和:-23. 乘积:204. 差:9四、解答题1. 喜欢数学或英语的学生有35人。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。

7. 有理数-2和4的差是________。

8. 有理数-6和-3的乘积是________。

9. 有理数-4的倒数是________。

10. 若a是有理数,且a的相反数是-5,则a=________。

三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。

12. 解下列方程:3x - 7 = 8。

13. 计算下列各数的绝对值:-12,0,5.5。

14. 求下列数的相反数:-9,3/4,0。

四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。

请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。

请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。

请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。

有理数单元测试题及答案

有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。

答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。

答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。

答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。

答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。

答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。

答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。

答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。

答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。

有理单元测试题及答案

有理单元测试题及答案

有理单元测试题及答案一、选择题1. 下列哪个数是有理数?A. πB. √2C. 3.14D. 0.3333...答案:C2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是答案:C3. 以下哪个运算结果不是有理数?A. 2 + 3B. 4 - 6C. √4D. 2 / 3答案:B二、填空题4. 如果一个数的相反数是-7,那么这个数是________。

答案:75. 绝对值不大于5的所有整数有:-5,-4,-3,-2,-1,0,1,2,3,4,5。

三、简答题6. 请解释什么是有理数,并给出两个例子。

答案:有理数是可以表示为两个整数的比的数,即形式为a/b,其中a和b都是整数,且b≠0。

例如,1/2和3都是有理数。

7. 请解释绝对值的概念,并给出一个绝对值的例子。

答案:绝对值是一个数去掉其符号后的值,表示该数到数轴原点的距离。

例如,|-5|的绝对值是5。

四、计算题8. 计算下列表达式的值:(1) |-7|(2) 3 + (-2)(3) (-1) × 5答案:(1) 7(2) 1(3) -5五、解答题9. 某商店在一天内卖出了价值为-100元的商品(亏损),又卖出了价值为150元的商品(盈利)。

请问该商店当天的总盈利或亏损是多少?答案:该商店当天的总盈利为150 - 100 = 50元。

结束语:通过本单元测试题,我们复习了有理数的基本概念、性质以及相关的运算。

希望同学们能够通过练习加深对有理数的理解,并在实际问题中灵活运用。

有理数单元测试题(含答案)

有理数单元测试题(含答案)

第一章有理数单元测试一、选择题(共10小题)1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A. B. -2 C. 0 D. ﹣3.4【答案】D2.下列四个数中,其倒数的相反数是正整数的是()A. 3B.C. -2D.【答案】D3.2018年五一小长假,杭州市公园、景区共接待游客总量617.57万人次,用科学计数法表示617.57万的结果是( )A. B. C. D.【答案】B4.a,b是有理数,它们在数轴上的对应点的位置如图所示,则下列结论正确的是()A. a+b>0B. a+b<0C. a﹣b=0D. a﹣b>0【答案】B5.若有理数a与3互为相反数,则a的值是()A. 3B. -3C.D. -【答案】B6.数据26000用科学记数法表示为2.6×10n,则n的值是()A. 2B. 3C. 4D. 5【答案】C7.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A. 美美B. 多多C. 田田D. 乐乐【答案】D8.下列说法中正确的是()A. 减去一个数等于加上这个数B. 两个相反数相减得0C. 两个数相减,差一定小于被减数D. 两个数相减,差不一定小于被减数【答案】D9.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷×(﹣2)=16.其中正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】C10.下列说法中正确的是()A. 若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0【答案】D二、填空题(共10小题)11.若约定向北走5km记作+5km,那么向南走3km记作________ km.【答案】﹣312.比较大小:4 ________5【答案】<13.若x=4,则|x﹣5|=________.【答案】114.(2016•镇江)计算:(﹣2)3=________.【答案】-815.设[x]表示不超过x的最大整数,计算[2.7]+[﹣4.5]=________.【答案】﹣316.到原点的距离不大于3的整数有________ 个【答案】717. 截止2017年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为________【答案】3.39×10918.﹣1减去与的和,所得的差是________【答案】19.数轴上A点表示原点左边距离原点3个单位长度、B点在原点右边距离原点2个单位长度,那么两点所表示的有理数的和与10的差是________【答案】—1120.对有理数a、b定义运算“﹡”如下:a﹡b= ,则(﹣3)﹡4=________.【答案】-12三、解答题(共5题)21.写出数轴上所有大于-4,且小于2的整数;【答案】—3、—2、—1、0、122.规定a※b=a﹣b,求4※(﹣6)的值.【答案】解:4※(﹣6)=4﹣(﹣6)=4+6=10.23.计算:(1)4×(﹣5)+|5﹣8|+24÷(﹣3)(2).【答案】(1)解:原式=﹣20+3﹣8=﹣25(2)解:原式=﹣1﹣=﹣24.今年的“十•一”黄金周是8天的长假,某风景区在8天假期中每天旅游人数变化如表(正号表示人数比前一天多,符号表示比前一天少)日期1日2日3日4日5日6日7日8日人数变化单位:万人+1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4 ﹣1.2(1)若9月30日的游客人数为4.2万人,则10月4日的旅客人数为________万人;(2)八天中旅客人数最多的一天比最少的一天多________万人?(3)如果每万人带来的经济收入约为100万元,则黄金周八天的旅游总收入约为多少万元?【答案】(1)4.9(2)4.3(3)解:根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).25.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+19、﹣3 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?【答案】(1)解:+8﹣9+4+7﹣2﹣10+19﹣3=14,东边14千米(2)解:(+8+|﹣9|+4+7+|﹣2|+|﹣10|+19+|﹣3|)×0.3=18.3升,答:从A地出发到收工时,共耗油18.3升。

2024-2025学年七年级数学上册 第一章 有理数 单元测试题(含详解)

2024-2025学年七年级数学上册 第一章  有理数  单元测试题(含详解)

第1章 有理数(单元重点综合测试)考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.−3的相反数是( )A .−3B .3C .−13D .132.如果把收入2024元记作+2024,那么支出2024元记作( )A .2024B .12024C .|2024|D .−20243.下列运算结果为负数的是( )A .|−3|B .|−(−3)|C .−(−3)D .−|−3|4.下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .不是所有有理数都可以在数轴上表示D .整数和分数统称为有理数5.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个6.如图,数轴上被墨水遮盖的数的绝对值可能是( )A .−72B .−52C .72D .527.已知a =−|−3|,b =+(−0.5),c =−1,则a 、b 、c 的大小关系是( )A .b >c >aB .a >c >bC .a >b >cD .c >b >a8.凝固点是晶体物质凝固时的温度,标准大气压下,下列物质中凝固点最低的是( )物质钨水银煤油水凝固点3412℃−38.87℃−30℃0℃A .钨B .水银C .煤油D .水9.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A.a>−1B.b>1C.−a<b D.−b>a10.数轴上点A表示的数是−2,将点A沿数轴移动3单位长度得到点B,则点B表示的数是()A.−5B.1C.−1或5D.−5或1二、填空题(本大题共6小题,每小题3分,共18分)11.用“>”“<”“=”号填空:−76−6 7.12.化简:|−35|=;−|−1.5|=;|−(−2)|=.13.我国古代数学名著《九章算术》中已经用正负数来表示相反意义的量.如果节约50cm3的水记为+50cm3,那么浪费10cm3的水记为.14.如图,在数轴上有A、B两点,点A表示的数是−2024,点O为原点,若OA=OB,则点B表示的数是.15.若|x−1|+|y−5|=0,那么x=,y=.16.如图,在数轴上,点A表示的数是10,点B表示的数为50,点P是数轴上的动点.点P沿数轴的负方向运动,在运动过程中,当点P到点A的距离与点P到点B的距离比是2:3时,点P表示的数是.三、(本大题共4小题,每小题6分,共24分)17.某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?18.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:−3;3.5;−(−212);−|−1|.19.有理数a,b在数轴上的对应点的位置如图所示.(1)判断:−a_______1(填“>”,“<”或“=”);(2)用“<”将a,a+1,b,−b连接起来(直按写出结果)20.把下面各数填在相应的大括号里(将各数用逗号分开):−18,3.14,0,2024,−3,5 80%,π,−|−5|,−(−7).2负整数集合{……}整数集合{……}正分数集合{……}非负整数集合{……}有理数{……}四、(本大题共3小题,每小题8分,共24分)21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{−1,−4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C{______,______},C→B{______,______}:(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M、N,且M→A{1−a,b−5},M→N{5−a,b−2},则A→N应记为什么?直接写出你的答案.22.数轴上表示有理数a,b,c,d的点的位置如图所示:(1)请将有理数a,b,c,d按从小到大的顺序用“<”连接起来:______;(2)如果|a|=4,表示数b的点到原点的距离为6,|c|=2,c与d距离原点的距离相等,则a= ______,b=______,c=______,d=______.23.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意;当x<0时,方程可化为:x−2x=3,解得x=−3,符合题意.所以,原方程的解为x=1或x=−3.请根据上述解法,完成以下问题:解方程:x+2|x−1|=3;五、(本大题共2小题,每小题12分,共24分)24.点A、B、C、D、E在数轴上位置如图所示(1)点A、B、C、D、E所表示的有理数分别是______,用“<”把它们连接起来是______.(2)点F所对应的有理数是−5,请在数轴上标出点F的位置2(3)A、B之间的距离是多少?A、E之间的距离是多少?若数轴上有两点M、N,且它们对应的有理数分别是a和b,则M、N之间的距离是多少?(用含a,b的代数式表示)25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合的思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和−10的两点之间的距离是;(2)数轴上表示x和−2的两点之间的距离表示为;(3)若x表示一个有理数,|x−1|+|x+3|有最小值吗?若有,请求出最小值,若没有写出理由.(4)若x表示一个有理数,求|x+4|+|x−5|+|x+6|的最小值.参考答案:1.B【分析】本题考查了相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解答此题的关键.根据符号不同,绝对值相同的两个数互为相反数即可求得答案.【详解】解:−3的相反数是3.故选:B2.D【分析】本题考查正数和负数,理解具有相反意义的量是解题的关键.正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解:收入2024元记作+2024,那么支出2024元记作−2024,故选:D3.D【分析】本题考查了有理数的绝对值、相反数等,解题的关键是正确理解有理数的绝对值以及相反数的意义.|−3|=3,结果为正数,故A错误;|−(−3)|=3,结果为正数,故B错误;−(−3)=3,结果为正数,故C错误;−|−3|=−3,结果为负数,故D正确.【详解】解:A、|−3|=3,结果为正数,故A错误;B.|−(−3)|=3,结果为正数,故B错误;C.−(−3)=3,结果为正数,故C错误;D.−|−3|=−3,结果为负数,故D正确.故选:D.4.D【分析】本题考查数轴,有理数,绝对值,关键是掌握有理数、整数的概念,由有理数和整数的概念,即可判断.【详解】解:A、0是整数,故A不符合题意;B、绝对值等于本身的数是0或正数(非负数),故B不符合题意,C、所有理数都可以在数轴上表示,故C不符合题意;D、整数和分数统称为有理数,正确,故D符合题意.故选:D.5.B【分析】本题考查了非负数的定义,解题的管计划司掌握非负数的定义.根据“零和整数统称为非负数”,即可求解.【详解】解:非负数有:3.1415,0,2.010010001…,共3个,故选:B.6.C【分析】本题主要考查了有理数与数轴,求一个数的绝对值.根据数轴确定该数的绝对值在3到4之间即可判断.【详解】解:由题意得,遮住的数在−4到−3之间,∴遮住的数的绝对值在3到4之间,∴四个选项中只有C选项符合题意,故选:C.7.A【分析】此题考查了绝对值,多重符号化简,有理数的大小比较,先化简个数,再根据有历史大小比较的方法比较即可.【详解】解:∵a=−|−3|=−3,b=+(−0.5)=−0.5,c=−1,∴−0.5>−1>3,∴b>c>a,故选:A.8.B【分析】本题考查了正负数,绝对值越大的负数反而越小,据此即可作答.【详解】解:∵|−38.87℃|=38.87℃,|−30℃|=30℃,38.87℃>30℃,∴−38.87℃<−30℃,∴下列物质中凝固点最低的是水银,故选:B.9.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A:∵点a在−1的左边,∴a<−1,故该选项不符合题意;B:∵点b在1的左边,∴b<1,故该选项不符合题意;C:∵a<−1,∴−a>1,又∵b<1,∴−a>b,故该选项不符合题意;D :∵ b <1,∴ −b >−1,又∵ a <−1,∴ −b >a ,故该选项符合题意;故选:D .10.D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:−2−3=−5,可得点A 向右移动时:−2+3=1,综上可得点B 表示的数是−5或1,故选D .11.<【分析】本题考查了有理数的大小比较,解决本题的关键是掌握两个负数大小的比较,绝对值大的其值反而小.根据两个负数,绝对值大的其值反而小即可比较.【详解】解:∵ |−76|=76,|−67|=67,而76>67,∴ −76<−67.故答案为:<.12. 35 −1.5 2【分析】本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .【详解】解:|−35|=35,−|−1.5|=−1.5,|−(−2)|=2,故答案为:35,−1.5,2.13.−10cm 3【分析】本题考查正数和负数,正数和负数是一组具有相反意义的量,据此即可求得答案,熟练掌握具有相反意义的量是解决此题的关键【详解】解:如果节约50cm 3的水记为+50cm 3,那么浪费10cm 3的水记为−10cm 3,故答案为:−10cm 3.14.2024【分析】本题考查了数轴上两点间的距离,相反数的意义.根据数轴上两点间的距离,即可求解.【详解】解:∵点A 表示的数是−2024,OA =OB ,∴点A 点B 表示的数互为相反数,∴点B 表示的数为:−(−2024)=2024,故答案为:2024.15. 1 5【分析】本题考查了绝对值的非负性和解一元一次方程,熟练掌握任何数的绝对值都是非负数是解题的关键,据此作答即可.【详解】∵|x−1|+|y−5|=0,|x−1|≥0,|y−5|≥0,∴x−1=0,y−5=0,解得x =1,y =5,故答案为:1,5.16.26或−70【分析】本题考查了数轴上的动点问题、数轴上两点间的距离.可分为“当点P 运动到点A 右侧时”和“当点P 运动到点A 左侧时”两种情况讨论,根据“点P 到点A 的距离与点P 到点B 的距离比是2:3”,列式计算即可,根据数轴得到两点间的距离是解题的关键.【详解】解:∵在点P 运动过程中,点P 到点A 的距离与点P 到点B 的距离比是2:3,∴PA:PB =2:3,当点P 运动到点A 右侧时,PA =23+2AB =25×(50−10)=16,∴此时点P 表示的数是10+16=26;当点P 运动到点A 左侧时,PA =23−2AB =2×(50−10)=80,∴此时点P 表示的数是10−80=−70,综上所述,点P 表示的数是26或−70.故答案为:26或−7017.合格,过程见详解【分析】本题考查用正负数表示变化的量,在用正负数表示变化的量时,先规定其中的一个为正(或负),则其相反意义的量就用负(或正)表示.理解500±30(mL )的意义,根据题意进行判断即可.【详解】解:“500±30(mL )”是500 mL 为标准容量,470~530(mL )是合格范围,故503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.18.(1)见解析(2)−3<−|−1|<−(−212)<3.5【分析】本题主要考查了用数轴表示有理数,根据数轴比较有理数的大小,化简绝对值和多重符号:(1)先规定向右为正方向,以及单位长度,再化简绝对值和多重符号,最后表示出各数即可;(2)根据数轴上左边的数小于右边的数用小于号将各数连接起来即可.【详解】(1)解:−(−212)=212,−|−1|=−1(2)解;由数轴可得,−3<−|−1|<−(−212)<3.5.19.(1)<(2)−b<a<a+1<b.【分析】(1)利用数轴和相反数的意义解答即可;(2)利用数轴和相反数的意义解答即可.【详解】(1)解:∵−1<a<0,∴0<−a<1.故答案为:<;(2)解:∵−1<a<0,b>1,∴0<a+1<1,−b<−1,如图,∴−b<a<a+1<b.20.见解析【分析】本题考查了正数,负数,整数,分数,有理数,以及无理数的概念,解题的关键是熟练掌握相关定义,要注意的是本题中的π2是无限不循环小数,为无理数.【详解】解:∵ −|−5|=−5,−(−7)=7,3.14=3750,80%=45,∴ 这些数可按如下分类,负整数集合{−18,−|−5|……}整数集合{−18,0,2024,−|−5|,−(−7)……}正分数集合{3.14,80%……}非负整数集合{0,2024,−(−7)……}有理数{−18,3.14,0,2024,−35,80%,−|−5|,−(−7)……}21.(1)3,4;−2,0(2)10(3)(4,3)【分析】本题考查了正负数在网格线中的运动路线问题,数形结合,明确运动规则,是解题的关键.(1)根据向上向右走均为正,向下向左走均为负,分别写出各点的坐标即可;(2)分别根据各点的坐标计算总长即可;(3)将M→A ,M→N 对应的横纵坐标相减即可得出答案.【详解】(1)解:图中A→C {3,4},C→B {−2,0}故答案为:3,4;−2,0.(2)解:由已知可得:A→B 表示为{1,4},B→C 记为{2,0},C→D 记为{1,−2},则该甲虫走过的路程为:1+4+2+1+2=10.(3)解:由M→A {1−a,b−5},M→N {5−a,b−2},可知:5−a−(1−a )=4,b−2−(b−5)=3,∴点A 向右走4个格点,向上走3个格点到点N ,∴A→N 应记为(4,3).22.(1)a <c <d <b(2)−4,6,−2,2【分析】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出答案是解题关键.(1)利用数轴上a,b,c,d的位置进而得出大小关系;(2)利用绝对值的意义以及结合数轴得出答案【详解】(1)由题意得:a<c<d<b,故答案为:a<c<d<b;(2)∵|a|=4,a<0,∴a=−4,∵数b的点到原点的距离为6,b>0,∴b=6,∵|c|=2,c<0,∴c=−2,∵c与d距离原点的距离相等,d>0,∴d=2.故答案为:−4,6,−2,2.23.x=−1或x=53【分析】本题考查了含绝对值符号的一元一次方程,分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案是解题关键,以防遗漏.【详解】当x<1时,方程可化为:x+2(1−x)=3,解得x=−1,符合题意;,符合题意;当x≥1时,方程可化为:x+2(x−1)=3,解得x=53.所以,原方程的解为:x=−1或x=5324.(1)−3,2,3.5,0,−1;−3<−1<0<2<3.5(2)见详解(3)5;2;|a−b|【分析】本题主要考查了数轴表示有理数、利用数轴比较大小和数轴上两点之间的距离.(1)根据数轴写出对应点的有理数,然后利用数轴比较有理数的大小即可.(2)根据有理数的大小在数轴上标出即可.(3)根据数轴上两点的距离公式求解即可.【详解】(1)解:如图,点A、B、C、D、E所对应的有理数分别是:−3,2,3.5,0,−1利用数轴从左到右依次增大,可得A<E<D<B<C.即−3<−1<0<2<3.5故答案为:−3,2,3.5,0,−1;−3<−1<0<2<3.5在−2和−3的正中间,标示如下:(2)−52(3)A、B之间的距离是:|2−(−3)|=5;A、E之间的距离是:|(−3)−(−1)|=|−2|=2,M、N之间的距离是|a−b|25.(1)8;12(2)|x+2|(3)|x−1|+|x+3|有最小值,最小值为4(4)11【分析】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.(1)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(2)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(3)根据题意可得|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,即可;(4)根据题意可得|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,即可.【详解】(1)解:|10−2|=8;|2−(−10)|=12;故答案为:8;12.(2)数轴上表示x和−2的两点之间的距离表示为|x−(−2)|=|x+2|;故答案为:|x+2|.(3)解:|x−1|+|x+3|有最小值,根据题意得:|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,∵1−(−3)=4,∴|x−1|+|x+3|有最小值,最小值为4;(4)解:根据题意得:|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,∴当x=−4时,有最小值,最小值为5−(−4)+(−4)−(−6)=11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数单元测试及答案
有理数单元检测试题
一、填空题(本题共有9个小题,每小题2分,共18分)
1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将
2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。

2、如果数轴上的点A对应有理数为-2,那么与A点相距
3个单位长度的点所对应的有理数为-5.
3、某数的绝对值是5,那么这个数是-5或5.(保留四个
有效数字)
4、(4/3)²=16/9,(-4/3)²=16/9.
5、数轴上和原点的距离等于3的点表示的有理数是-3或3.
6、计算:(-1)+(-1)=-2.
7、如果a、b互为倒数,c、d互为相反数,且m=-1,则
代数式2ab-(c+d)+m=-1.
8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.
9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。

二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)
10、下列说法正确的是(C)。

A。

整数就是正整数和负整数
B。

负整数的相反数就是非负整数
C。

有理数中不是负数就是正数
D。

零是自然数,但不是正整数
11、下列各对数中,数值相等的是(A)。

A。

-2与(-2)
B。

-3与(-3)
C。

-3×2与-3×2
D。

-( -3)与-( -2)
12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数
是(D)。

A。

-12
B。

-9
C。

-0.01
D。

-2
13、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。

A。

-1
B。

1
C。

0
D。

或1
14、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。

A。

8
B。

7
C。

6
D。

5
15、计算:(-2)+(-2)的是(D)。

A。

2
B。

-1
C。

-2
D。

-4
16、比-7.1大,而比1小的整数的个数是(B)。

A。

6
B。

7
C。

8
D。

9
17、2003年5月19日,XXX特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为xxxxxxxx枚,用科学记数法表示正确的是(C)。

A。

1.205×10
B。

1.20×10⁷
C。

1.21×10⁷
D。

1.205×10⁴
18、下列代数式中,值一定是正数的是(D)。

A。

xB。

|x-1|C。

(-x)+2D。

-x+1
已知8.62=73.96,求x的值,其中x=0.7396.
20.计算:
1) 8+(-5)-(-0.25)
2) -82+72÷36
3) 7×1÷(-9+19)
4) 25×(-18)+(-25)×12+25×(-10)
5) (-79)÷2+(-29)
6) (-1)-(1-7)÷3×[3-(-3)]
7) 2(x-3)-3(-x+1)
8) -a+2(a-1)-(3a+5)
21.XXX在山脚测得的温度是4℃,XXX此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降
0.8℃,问这个山峰有多高?
22.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.另有四个有理数3,-5,7,-13,可通过运算式(4)使其结果等于24.
23.下表列出了国外几个城市与北京的时差(带正号的数
表示同一时刻比北京的时间早的时数)。

现在的北京时间是上午8∶00
1) 求现在纽约时间是多少?
2) XXX现在想给远在巴黎的姑妈打电话,你认为合适吗?
城市纽约巴黎东京芝加哥时差/时 -13 -7 +1 -14
24.画一条数轴,并在数轴上表示:3.5和它的相反数,-4
和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来。

25.体育课上,全班男同学进行了100米测验,达标成绩
为15秒,下表是某小组8名男生的成绩斐然记录,其中“+”表
示成绩大于15秒。

0.8 +1 -1.2 0 -0.7 +0.6 -0.4 -0.1
1) 这个小组男生的达标率为多少?
2) 这个小组男生的平均成绩是多少秒?
1.从第二个数起,每个数都等于“1与它前面那个数的差的倒数”,已知a1=1/2,求a2、a3、a4、a5.
答案:a2=2,a3=-1,a4=1/2,a5=2.这排数的规律是:
1/2,2,-1循环。

根据规律可得a2004=-1.
2.(1) |5-(-2)|=7;(2) 符合条件的整数是-4和2;(3) 对于任何有理数x,|x-3|+|x-6|有最小值,最小值为2.
3.若a、b、c均为整数,且|a-b|+|c-a|=1,求|a-c|+|c-b|+|b-a|的值。

解答:由|a-b|+|c-a|=1,可得|c-b|=1-|a-b|,将其代入|a-c|+|c-b|+|b-a|中,得到:
a-c|+|c-b|+|b-a|=|a-c|+1-|a-b|+|b-a|
根据绝对值的性质,可将上式拆分为四种情况讨论:
① a>c>b:|a-c|+1-|a-b|+|b-a|=a-c+1-(a-b)+(b-a)=2;
② a>b>c:|a-c|+1-|a-b|+|b-a|=a-c+1-(a-b)+(a-b)=2a-c-b+1;
③ b>a>c:|a-c|+1-|a-b|+|b-a|=c-a+1-(a-b)+(b-a)=2b-a-c+1;
④ c>a>b:|a-c|+1-|a-b|+|b-a|=c-a+1-(b-a)+(a-b)=2c-b-a+1.
综上所述,|a-c|+|c-b|+|b-a|的值为2、2a-c-b+1、2b-a-c+1
或2c-b-a+1中的一个。

满足|x+5|+|x-2|=7的整数有-5,-4,-3,-2,-1,0,1,2.
猜想对于任何有理数x,|x-3|+|x-6|的最小值为3.因为
当x在3到6之间时,x到3的距离与x到6的距离的和是3,且是最小的。

当x<3和x>6时,x到3的距离与x到6的距
离的和都>3.
解323:由于∣a-b∣+∣c-a∣=1,且a、b、c均为整数,因此∣a-b∣和∣c-a∣只能为0或1.当∣a-b∣=1时,
∣c-a∣=0,则c=a,且∣c-b∣=1,因此∣a-c∣+∣c-b∣+∣b-a∣=0+1+1=2.当∣a-b∣=0时,∣c-a∣=1,则b=a,且∣c-b∣=1,因此∣a-c∣+∣c-b∣+∣b-
a∣=1+1+0=2.。

相关文档
最新文档