《有理数》单元测试题(基础)
有理数单元测试(含答案)

第一部分有理数单元测试1.下列说法错误的是( )A.零是非负数B.零是整数C.零的相反数是零D.零的倒数是零2.下列说法正确的是( )A.绝对值等于3的数是-3B.绝对值小于113的整数是1和-1C.绝对值最小的有理数是1D.3的绝对值是33.下列判断正确的是( )A.12004的相反数是2004; B.12004的相反数是-2004;C.12004的相反数是-12004; D.12004的相反数是12004-4.下列四组有理数大小的比较正确的是( )A.1123->-;B. 11-->-+;C.1123<;D.1123->-5.有理数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b>a>cB.b>-a>cC.a>c>bD.│b│>-a>-c6.数-216不是( )A.有理数B.整数C.负有理数D.自然数7.下列说法正确的是( )A.正整数和负整数统称为整数B.零表示不存在,所以零不是有理数C.非负有理数就是正有理数D.整数和分数统称为有理数8.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等A.3个B.2个C.1个D.0个9.下列说法正确的是( ).①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确B.仅③正确C.仅③④正确D.①②④正确10.数a的相反数是-a,那么a表示( )A.负有理数B.正有理数C.正分数D.任意一个数二、填空1.在有理数集合中,最小的正整数是______,最大的负整数是______.2.绝对值最小的有理数是_______.3.相反数最小的负整数是______,相反数最大的正整数是______.4.2.5的相反数是_______,倒数是_____,绝对值是______.5.如果a表示一个有理数,那么-a表示a的______,│a│表示a的_______.6.自行车车轮向顺时针方向旋转200圈记做+200圈, 那么向逆时针方向旋转150圈应记做_________.7. π-的相反数是_____,-a的相反数是________.8.若│y+5│=14,那么y=________.9.在数轴上,离开原点的距离是5的数是__________.10.在数轴上,离开表示数2的点距离是3的点表示的数是_______.三、解答1.写出所有绝对值不大于4的负整数,并在数轴上表示出来.2.若│x-3│+│y+4│+│z-5│=0,求代数式z2-y2+x的值.3.某检修小组乘汽车检修供电线路。
有理数的单元测试题及答案

有理数的单元测试题及答案一、选择题(每题2分,共10分)1. 下列各数中,是正数的有()A. -3B. 0C. 3D. -3.52. 绝对值是5的数是()A. 5B. -5C. 5或-5D. 都不是3. 两个负数相加,和的符号是()A. 正B. 负C. 0D. 不确定4. 有理数的乘方运算中,-3的平方是()A. 9B. -9C. 3D. -35. 若a < 0,b > 0,且|a| > |b|,则a+b的值是()A. 正B. 负C. 0D. 不确定二、填空题(每题2分,共10分)1. 有理数包括整数和______。
2. 绝对值是数轴上表示该数的点到原点的距离,例如|-4|=______。
3. 两个有理数相除,如果被除数和除数同号,则商是______数。
4. 有理数的乘法运算中,-2乘以-3等于______。
5. 一个数的相反数是与它相加等于______的数。
三、计算题(每题5分,共20分)1. 计算下列各数的绝对值:|-7|,|0|,|5.5|。
2. 计算下列各数的和:-3 + 2 + (-1)。
3. 计算下列各数的乘积:(-4) × (-5)。
4. 计算下列各数的差:7 - (-2)。
四、解答题(每题10分,共20分)1. 某班有学生40人,其中20人喜欢数学,15人喜欢英语,5人既喜欢数学又喜欢英语。
请问喜欢数学或英语的学生有多少人?2. 某商店出售两种商品,商品A的进价是20元,售价是30元;商品B的进价是15元,售价是25元。
如果商店同时购进这两种商品各10件,商店的总利润是多少?五、应用题(每题15分,共30分)1. 某工厂有工人100名,其中60名工人每天能完成10个产品,剩余的工人每天能完成5个产品。
如果工厂每天需要生产800个产品,问工厂是否需要增加工人?2. 某公司计划在两个城市之间铺设一条铁路,已知城市A到城市B的距离是300公里。
如果铁路的铺设成本是每公里5万元,公司需要准备多少资金?答案:一、选择题1. C2. C3. B4. A5. B二、填空题1. 分数2. 43. 正4. 65. 0三、计算题1. 绝对值:7,0,5.52. 和:-23. 乘积:204. 差:9四、解答题1. 喜欢数学或英语的学生有35人。
第一章 有理数单元测试卷(含解析)

第一章 有理数有理数单元测试(时间120分钟 总分150分)姓名;__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、-12016的相反数是( )A .2016B .-2016 C.2016 D .-20162、在有理数|-1|,(-1)2012,-(-1),(-1)2013,-|-1|中,负数的个数是( )A .0个B .1个C .2个D .3个 3、将161000用科学记数法表示为( )A .0.161×106B .1.61×105C .16.1×104D .161×1034、绝对值为1的实数共有( ).A. 0个B. 1个C. 2个D. 4个5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )A.1000B.1C.0D.-1 6、已知a >0,b <0,|a|<|b|<1,那么下列判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b C .1+a >1-b >a >-b D .1-b >1+a >-b >a7、已知:a =-2+(-10),b =-2-(-10),c =-2×(-110),下列判断正确的是( )A .a >b >cB .b >c >aC .c >b >aD .a >c >b8、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和 9、20032004)2(3)2(-⨯+- 的值为( ).A .20032- B .20032 C .20042- D .2004210、如果a +b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <011、如图,在数轴上有六个点,且AB=BC=CD=DE=EF ,则这条数轴的原点在( )A.在A 与B 之间B.在B 与C 之间C.在D 与C 之间D.在E 与F 之间 12、已知:a ,b 在数轴上位置如图所示,则下列结论中正确的是( )A. a <﹣a <bB. |a|>b >﹣aC. ﹣a >|a|>bD. |a|>|﹣1|>|b| 二、填空题(共6小题,每小题4分,共24分)13、在知识抢答中,如果用+10表示得10分,那么扣20分表示为__ __ 14、若|2x-3|=3-2x ,则x 的取值范围是______. 15、若|a|=5,b=﹣2,且ab >0,则a+b=_____. 16、如果,则x-y=_______.17、数轴上到原点的距离小于221个单位长度的点中,表示整数的点共有______个. 18、已知四个有理数a ,b ,x ,y 同时满足以下关系式:b >a ,x+y=a+b ,y ﹣x <a ﹣b .请将这四个有理数按从小到大的顺序用“<”连接起来是________ 三、解答题(共8小题,共78分) 19、(8分)计算:(1)13+(-15)-(-23) (2)-17+(-33)-10-(-16)20、(8分)计算:(1)(-3)×6÷(-2)×12 (2)-14-16×[3-(-3)2]21、(8分)把下列各数填在相应的括号里:-8,0.275,227,0,-1.04,-(-3),-13,|-2|.正数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负数集合{ …}.22、(8分)已知a 、b 互为相反数,c 、d 互为倒数,|m|=2,求代数式2m ﹣(a+b ﹣1)+3cd 的值.23、(10分)一只小虫沿一根东西方向放着的木杆爬行,小虫从某点A 出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+5,-3,+11,-8,+12,-6,-11. (1)小虫最后是否回到了出发点A ?为什么? (2)小虫一共爬行了多少厘米?24、(10分)有理数a ,b ,c 在数轴上的位置如图所示,化简:|b ﹣a|﹣|c ﹣b|+|a+b|.25、(12分)观察下列三行数并按规律填空:-1,2,-3,4,-5,___,__ _,…;1,4,9,16,25,____,___,…;0,3,8,15,24,____,___,….(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3)取每行数的第10个数,计算这三个数的和.26、(14分)已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。
有理数单元测试题及答案

有理数单元测试题(满分100分 考试时间:90分钟)一.判断题:(每小题4分,共20分)1.有理数可分为正有理数与负有理数 . ( ) 2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( ) 3.两个有理数的差一定小于被减数. ( ) 4.任何有理数的绝对值总是不小于它本身. ()5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( ) 二.填空题:(每小题4分,共28分)1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 . 2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 . 4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = .5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 .6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:(每小题4分,共24分)1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdba cd p的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a <<C .a a a <<21D .aa a 12<<4.下列说法中正确的是 ( ). A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a 5.ccb b a a ++的值是 ( ) A .3± B .1± C .3±或1± D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2 四.计算题(每小题4分,共16分) 1.[]24)3(2611--⨯-- 2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-解答题:(每小题4分,共12分)五、2++b a 与4)12(-ab 互为相反数,求代数式++-+ba abab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×1 52-32=8×2 72-52=8×3 92-72=8×4…… 观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.参 考 答 案一.判断题:×√×√√二.填空题:(1)1,—1,0;(2)±16,±8,—4;(3)0,±1,非负数,0和±1; (4)367-,73±;(5)1或5;(6)c <a <b . 三.选择题:(1)B (2)B (3)B (4)D (5)C (6)C 四.1.61;2.1;3.100; 4.原题应改为223200120003)21(24)32(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-=—34.五.1253六.当a <0或a >1时,a < a 2;0< a <1,a > a 2;当a =0或a =1时,a =a 2. 七.n n n 8)12()12(22=--+,8000.。
有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 有理数-3和5的和是多少?A. -8B. 2C. -2D. 83. 哪个是有理数的相反数?A. 3B. -3C. 0D. 1/24. 绝对值是5的有理数有几个?A. 1B. 2C. 3D. 45. 下列哪个表达式等于0?A. -3 + 3B. -3 - 5C. -3 × 0D. -3 ÷ 3二、填空题(每题2分,共20分)6. 有理数-7的绝对值是________。
7. 有理数-2和4的差是________。
8. 有理数-6和-3的乘积是________。
9. 有理数-4的倒数是________。
10. 若a是有理数,且a的相反数是-5,则a=________。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(-3) × (-2) + 4 ÷ (-2)。
12. 解下列方程:3x - 7 = 8。
13. 计算下列各数的绝对值:-12,0,5.5。
14. 求下列数的相反数:-9,3/4,0。
四、解答题(每题10分,共30分)15. 某商店在一天内卖出了价值为-500元的商品(亏损),同时又购入了价值为300元的商品。
请问这一天商店的净亏损是多少?16. 某工厂在一个月内生产了200件产品,每件产品的成本是5元,销售价格是10元。
请问工厂这个月的纯利润是多少?17. 某学生在一次数学测验中得了85分,第二次测验得了90分,第三次测验得了75分。
请问该学生这三次测验的平均分是多少?答案一、选择题1. D2. C3. B4. B5. A二、填空题6. 77. -68. 189. -1/410. 5三、计算题11. 412. x = 513. 12,0,5.514. 9,-3/4,0四、解答题15. 净亏损200元16. 纯利润1000元17. 平均分81.67分(保留两位小数)结束语本测试题旨在检验学生对有理数的基本概念、运算规则和实际应用的理解。
有理数单元测试题

有理数单元测试题1. 基本概念题:- 定义有理数,并给出至少两个正有理数和两个负有理数的例子。
2. 正负数判断题:- 下列数中,哪些是正有理数?哪些是负有理数?- 3.5, -2, 0, 1/3, -1.75, 2/53. 绝对值计算题:- 计算下列有理数的绝对值:|-3|, |4|, |-5/2|。
4. 有理数的四则运算题:- 计算下列表达式的值:- (-2) + 3- 4 - (-3)- (-1/2) * 3- 2/3 + 1/45. 分数的加减法题:- 给定两个分数 3/4 和 2/5,计算它们的和。
6. 分数的乘除法题:- 给定两个分数 3/4 和 2/3,计算它们的乘积和商。
7. 有理数的比较大小题:- 将下列有理数按从小到大的顺序排列:-3, -1/2, 0, 1/3, 2, 3.5。
8. 有理数的混合运算题:- 计算下列表达式的值:(2 - 1/2) * (3 + 1/3)。
9. 有理数的化简题:- 将下列分数化简为最简形式:6/12, 8/-16。
10. 有理数的因式分解题(如果适用):- 对表达式 x^2 - 4 进行因式分解。
11. 有理数的应用题:- 一个数的1/3加上它的2/5等于1,求这个数。
12. 有理数的方程题:- 解方程:3x + 2 = 5x - 1。
13. 有理数的不等式题:- 解不等式 2x - 5 < 3x + 1。
14. 有理数的数列题:- 给定数列 2, 4, 6, ...,找出第10项的值。
15. 有理数的几何应用题:- 如果一个直角三角形的两条直角边分别为3和4,求斜边的长度。
请注意,这些题目覆盖了有理数的基本概念、运算规则、比较大小、方程求解以及实际应用等多个方面,适合用于单元测试。
有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。
答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。
答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。
答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。
答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。
答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。
答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。
答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。
答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。
有理数单元测试题题及答案

有理数单元测试题题及答案一、选择题(每题2分,共20分)1. 有理数-3和5的和是多少?A. 2B. -2C. -8D. 82. 下列哪个数是负数?A. 0B. -3C. 5D. 73. 如果a是一个正数,b是一个负数,那么a-b的结果是:A. 正数B. 负数C. 0D. 无法确定4. 绝对值是它本身的数是:A. 任何数B. 正数C. 0D. 负数5. 有理数的乘积为负数,那么这两个数:A. 都是正数B. 都是负数C. 一个是正数,一个是负数D. 无法确定二、填空题(每题2分,共20分)6. 若|a|=5,则a可以是________或________。
7. 两个互为相反数的有理数相加的结果是______。
8. 有理数的除法可以转化为乘法运算,即a÷b=a×______。
9. 有理数的乘方运算中,负数的奇数次幂是______数。
10. 若a=-3,b=2,则a+b=______。
三、计算题(每题5分,共30分)11. 计算下列各题,并写出计算过程:(1) (-3) × 2 + 5(2) (-2) × (-3) × 412. 化简下列各数的绝对值:(1) |-7|(2) |5|四、解答题(每题10分,共30分)13. 某数的相反数是-8,求这个数。
14. 某数的绝对值是5,求这个数。
15. 一个数的平方是25,求这个数。
答案:一、选择题1. B2. B3. A4. B, C5. B二、填空题6. 5,-57. 08. 1/b9. 负10. -1三、计算题11. (1) (-3) × 2 + 5 = -6 + 5 = -1(2) (-2) × (-3) × 4 = 6 × 4 = 2412. (1) |-7| = 7(2) |5| = 5四、解答题13. 这个数是8。
14. 这个数可以是5或-5。
15. 这个数可以是5或-5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数》单元测试题(基础)
一、选择题
1.某地财政收入达到11478亿元,用四舍五入法保留两个有效数字的近似值为()万元
A.4
11⨯ D.3
10
3.
11⨯
4.
10
1.1⨯ B.5
10
1.1⨯ C.3
10
2.大于–
3.5,小于2.5的整数共有()个。
A.6
B.5
C.4
D.3
3.已知数a、b在数轴上对应的点在原点两侧,并且到原点的位置相等;数y
x,是互为倒数,那么xy
|2-
+的值等于()
|
a2
b
A.2
B.–2
C.1
D.–1
4.如果两个有理数的积是正数,和也是正数,那么这两个有理数()
A.同号,且均为负数
B.异号,且正数的绝对值比负数的绝对值大
C.同号,且均为正数
D.异号,且负数的绝对值比正数的绝对值大
5.在下列说法中,正确的个数是()
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A.1
B.2
C.3
D.4
6.如果一个数的相反数比它本身大,那么这个数为()
A.正数
B.负数
C.整数
D.不等于零的有理数
7.下列说法正确的是()
A.几个有理数相乘,当因数有奇数个时,积为负;
B.几个有理数相乘,当正因数有奇数个时,积为负;
C.几个有理数相乘,当负因数有奇数个时,积为负;
D.几个有理数相乘,当积为负数时,负因数有奇数个;
8.在有理数中,绝对值等于它本身的数有()
A.1个
B.2个
C. 3个
D.无穷多个
9.下列计算正确的是()
A.-22=-4
B.-(-2)2=4
C.(-3)2=6
D.(-1)3=1 10.如果a<0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题(每题3分,共36分) 1. (
)252
=。
2.比2
1
1-大而比513小的所有整数的和为 。
3.甲乙两数的和为-23.4,乙数为-8.1,甲比乙大 。
4.在数轴上表示两个数,左边的数总比右边的 。
(用“大”“小”填空)
5.仔细观察、思考下面一列数有哪些..规律:-2 ,4 ,-8 ,16 ,-32 ,64 ……,第7个数是 。
6.若│-a │=5,则a
1= 。
7.若0<a <1,则a,a 2,的大小关系是 。
8.数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是 。
9.计算:()()()
2000
2
1
111-+-+- = 。
10.已知()02|4|2
=-++b a a ,则a+2b= 。
11.-3和-8在数轴上所对应两点的距离为 。
12.已知|a|=3,|b|=5,且a<b ,则a-b 的值为 。
三、解决问题 13.计算题
()()()5
4
3
21111---⨯---
)3
1()21(54)32(21-+-++-+
)
1611318521(48-+-⨯-
(-81)÷214×(-4
9)÷(-16)
()()43223133213423-⨯⎥⎥⎦
⎤⎢⎢⎣⎡---⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-
16.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km)
(1)收工时距A地多远?
(2)在第几次纪录时距A地最远?
(3)若每km耗油0.2升,问共耗油多少升?。