功能近红外光谱技术

合集下载

近五年我国近红外光谱分析技术研究与应用进展

近五年我国近红外光谱分析技术研究与应用进展

近五年我国近红外光谱分析技术研究与应用进展一、本文概述近红外光谱分析技术,作为一种重要的分析手段,在化学、生物、医药、农业、食品、石油等多个领域具有广泛的应用前景。

近年来,随着科学技术的不断发展,我国近红外光谱分析技术也取得了显著的研究与应用进展。

本文旨在全面梳理和评述近五年我国近红外光谱分析技术的研究动态和应用实践,以期为推动该领域的技术创新和产业发展提供参考。

在概述部分,我们将首先介绍近红外光谱分析技术的基本原理和特点,阐述其在不同领域中的应用价值。

随后,我们将简要回顾近五年我国近红外光谱分析技术的发展历程,包括关键技术的突破、仪器设备的升级以及应用领域的拓展等方面。

在此基础上,本文将重点分析近五年内我国近红外光谱分析技术的主要研究成果,包括理论创新、方法优化以及应用案例等。

我们将展望近红外光谱分析技术的未来发展趋势,探讨其在我国各领域的潜在应用前景和面临的挑战。

二、近五年我国近红外光谱分析技术研究进展近五年来,我国近红外光谱分析技术研究取得了显著进展,不仅在理论深度上有所提升,还在技术应用上实现了突破。

在理论研究方面,我国的科研团队深入探索了近红外光谱与物质分子结构之间的关系,提出了一系列新的分析模型和算法。

这些模型不仅提高了光谱解析的精度,还拓展了近红外光谱技术的应用范围。

同时,随着计算机技术的快速发展,近红外光谱数据处理和分析的速度也得到了显著提升。

在技术应用方面,近红外光谱分析技术在多个领域实现了广泛应用。

例如,在农业领域,通过近红外光谱技术可以快速准确地检测农产品的品质和成分,为农业生产提供了有力支持。

在医药领域,近红外光谱技术被用于药物成分的分析和药品质量控制,确保了药品的安全有效。

在环保、石油化工等领域,近红外光谱技术也发挥着重要作用。

值得一提的是,我国在近红外光谱仪器研发方面也取得了重要进展。

国内科研机构和企业相继推出了一系列性能稳定、操作简便的近红外光谱仪器,为我国近红外光谱技术的普及和推广提供了有力保障。

近红外光谱分析技术 ppt课件

近红外光谱分析技术  ppt课件

PPT课件
33
一、近红外光谱的定量分析
• (一) 具有代表性的建模样品的收集
• 建模样品为从总体中抽取的有限个(一般是几十个)能代表研究对象总体的适合分析 的样品。 • 代表性指的是同一材料中的不同举型、不同品种、不同来源以及待测组分含量分布 等。
• (二) 建模样品被测组分化学分析值的测定
• 校正模型是由建模样品被测组分的化学值和相关近红外光谱的吸光度或光密度值经 回归得到的,因此模型预测结果的准确性很大程度上取决于标准方法测得的化学值 的稳定性。 • 保证化学值的准确性: • ①选用国际或国内标准方法测定建模样品;②在不同时间测定2-3 个平行样品, 平行样之间的相对误差不能大于方法允许的误差范围;③测定结果建议以干基 含量表示,这样表示的结果不会因空气湿度的变化而波动。
PPT课件 8
(中)红外光谱主要对应分子中官能团的谐性振动吸收,与此不同 近红外光谱则主要对应由于分子振动非谐性而产生的从基态向高振 动能级跃迁时的倍频和合频吸收,主要包括含氢基团X-H(X,C、N、 O)振动。由于不同基团或同一基团在不同化学环境中的吸收波长和 吸收强度有着明显的差别,所以近红外谱能够反映丰富的结构和组 成信息。 主要基团合频与各级 倍频吸收带的近似位 置:
指该近红外光谱 仪器所能记录的 光谱范围。
波长范围
仪器的 分辨率
波长的 精确度
PPT课件
指仪器所显示的波长 值和分光系统实际输 出单色光的波长值之 间的相符程度。
波长的 准确度
指对同一样品进行 多次扫描,光谱谱 峰位置间的差异程 度或重复性。
30
指仪器对某物质 进行透射或漫反 射测量时,所测 光度值与该物质 真实值之差。
PPT课件
9

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展一、本文概述近红外光谱(Near-Infrared Spectroscopy,NIRS)是一种基于物质对近红外光的吸收和散射特性的分析技术。

近年来,随着光谱仪器设备的不断改进和计算机技术的飞速发展,现代近红外光谱技术在分析化学、生物医学、农业食品等领域的应用日益广泛。

本文旨在综述现代近红外光谱技术的最新进展,特别是在仪器设备、数据处理方法、化学计量学以及应用领域的最新发展。

文章首先介绍了近红外光谱的基本原理和技术特点,然后重点论述了现代近红外光谱技术在不同领域的应用实例和取得的成果,最后展望了未来发展方向和潜在应用前景。

通过本文的阐述,旨在为读者提供一个全面、深入的现代近红外光谱技术及应用进展的概述。

二、现代近红外光谱技术的理论基础现代近红外光谱技术,作为一种高效、无损的分析手段,其理论基础源自电磁辐射与物质相互作用的原理。

近红外光谱区域通常是指波长在780 nm至2500 nm范围内的电磁波,其能量恰好对应于分子振动和转动能级间的跃迁。

因此,当近红外光通过物质时,分子中的化学键和官能团会吸收特定波长的光,产生振动和转动跃迁,从而形成独特的光谱。

现代近红外光谱技术的理论基础主要包括量子力学、分子振动理论和光谱学原理。

量子力学为近红外光谱提供了分子内部电子状态和行为的基本描述,而分子振动理论则详细阐述了分子在不同能级间的跃迁过程。

光谱学原理则将这些理论应用于实际的光谱测量和分析中,通过测量物质对近红外光的吸收、反射或透射特性,来获取物质的结构和组成信息。

现代近红外光谱技术还涉及到光谱预处理、化学计量学方法以及光谱解析等多个方面。

光谱预处理包括平滑、去噪、归一化等步骤,旨在提高光谱的质量和稳定性。

化学计量学方法则通过多元统计分析、机器学习等手段,实现对光谱数据的深入挖掘和信息提取。

光谱解析则依赖于专业的光谱数据库和算法,对光谱进行定性和定量分析,从而确定物质中的成分和含量。

近红外光谱

近红外光谱

36
三、近红外光谱定量及定性分析

3.1近红外光谱的定量分析

3.2近红外光谱的定性分析
37
3.1近红外光谱的定量分析

近红外光谱的定量分析就利用化学分析 数据和近红外光谱数据建立模型,确定 模型参数,然后以这个模型去定量预测 某些信息(如浓度)的方法。
38
定量分析过程具体步骤如下:
1.选择足够多的且有代表性的样品组成校 正集; 2.通过现行标准方法测定校正模型样品 的组成或性质; 3.测定校正模型样品的近红外光谱;
24
1.3近红外光谱分析技术的特点


1)分析速度快,测量过程大多可在1min 内完成。因此在日常分析中,包括了样 品准备等工作时间,在5min以内即可得 到数据。近红外光谱分析技术的另一个 特点是通过样品的一张光谱,可以测得 各种性质或组成。 2)适用的样品范围广,通过相应的测样器 件可以直接测量液体、固体、半固体和 胶状体等不同物态的样品光谱。
近红外光谱记录的是分子中单个化学键 的基频振动的倍频和合频信息,它常常 受含氢基团X-H(X-C、N、O)的倍频 和合频的重叠主导,所以在近红外光谱 范围内,测量的主要是含氢基团X-H振动 的倍频和合频吸收。
9

不同基团(如甲基、亚甲基、苯环等)或 同一基团在不同化学环境中的近红外吸 收波长与强度都有明显差别,NIR 光谱 具有丰富的结构和组成信息,非常适合 用于碳氢有机物质的组成与性质测量。 但在NIR区域,吸收强度弱,灵敏度相对 较低,吸收带较宽且重叠严重。因此, 依靠传统的建立工作曲线方法进行定量 分析是十分困难的,化学计量学的发展 为这一问题的解决奠定了数学基础。
17

虽然建立模型所使用的样本数目很有限, 但通过化学计量学处理得到的模型应具有 较强的普适性。对于建立模型所使用的校 正方法,视样品光谱与待分析的性质关系 不同而异,常用的有多元线性回归、主成 分回归、偏最小二乘法、人工神经网络和 拓扑方法等

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展近红外光谱技术是一种快速、高效、无损的分析技术,广泛应用于化学、食品、药物等领域。

尤其是随着科学技术的发展,现代近红外光谱技术在样品制备、光谱采集、数据处理等方面都有了显著的提升,极大地扩展了近红外光谱技术的应用范围。

近红外光谱是指介于可见光和中红外光之间的电磁波,波长范围为700-2500nm。

现代近红外光谱技术利用近红外光子的能量和量子力学中的跃迁原理,通过对样品进行照射,使样品中的分子吸收近红外光子的能量后从基态跃迁到激发态,再返回基态时发出特征光谱。

通过对特征光谱进行定性和定量分析,可以获取样品的组成、结构和性质等信息。

化学分析:现代近红外光谱技术在化学分析领域的应用主要体现在有机物和无机物的定性和定量分析上。

例如,利用近红外光谱技术对石油样品进行定性和定量分析,可以有效地识别石油中的不同组分,同时也可以对石油中的含硫量、含氮量等进行快速准确的测定。

食品质量检测:在食品质量检测方面,现代近红外光谱技术可以用于食品成分分析、食品质量评估和食品掺假检测等。

例如,利用近红外光谱技术对奶粉进行检测,可以快速准确地检测出奶粉中的蛋白质、脂肪、糖等主要成分的含量。

药物研究:现代近红外光谱技术在药物研究方面的应用主要体现在药物成分分析、药物代谢研究和药物疗效评估等方面。

例如,利用近红外光谱技术对中药材进行检测,可以快速准确地测定中药材中的有效成分含量,为中药材的质量控制提供了一种有效的手段。

近年来,现代近红外光谱技术在国内外都取得了显著的研究进展。

在国内,中国科学院上海药物研究所利用近红外光谱技术对中药材进行有效成分的快速检测,取得了重要的成果。

国内的一些高校和研究机构也在近红外光谱技术的研究和应用方面开展了大量的工作,推动了近红外光谱技术的发展。

在国外,近红外光谱技术已经成为药物研发和食品质量检测的重要手段。

例如,荷兰的菲利普公司成功开发出了一款基于近红外光谱技术的药物代谢研究仪器,可以为新药的开发和疗效评估提供快速准确的数据支持。

近红外光谱rpd-概述说明以及解释

近红外光谱rpd-概述说明以及解释

近红外光谱rpd-概述说明以及解释1.引言1.1 概述概述随着科学技术的不断进步和人类对事物认识的不断深化,近红外光谱技术作为一种非破坏性、无接触、快速、准确、可重复性好的分析检测方法,在农业领域得到了广泛应用。

近红外光谱技术以其独特的物理特性和高度灵敏的分析能力,为农业种植、育种、病虫害检测、食品质量检测等方面提供了有力的支持。

近红外光谱技术基于物质与电磁波的相互作用原理,通过测量物质在近红外波段的吸收、反射和散射特性,获取物质的光谱信息。

通过对物质光谱进行分析和处理,可以推断出物质的组分、结构和性质等关键信息。

这使得近红外光谱技术在农业领域的应用变得无比重要和有益。

在农业生产领域,近红外光谱技术已经广泛用于对农作物品质、营养成分、水分含量、疾病害虫的快速检测和分析。

通过非破坏性的近红外光谱分析手段,可以准确、快速地对作物的成熟度、病虫害情况等进行检测评估,为农业生产提供科学依据和决策支持。

此外,近红外光谱技术在农业领域的应用还包括农产品质量检测、土壤养分分析、农药残留检测等方面。

通过测量近红外光谱与农产品的相互作用,可以检测和评估农产品的质量指标,如含水量、营养成分、残留农药等。

这为农产品的质量控制和食品安全提供了可靠手段。

尽管近红外光谱技术在农业领域的应用已取得了显著的成果,但也面临着一些挑战和困难。

比如,如何优化光谱数据处理算法,提高分析的准确性和稳定性;如何降低设备成本,提高仪器的可靠性和使用便捷性;如何加强标准化管理和监测体系建设,确保检测结果的可靠性和可比性等。

对于这些挑战,我们需要进一步研究和探索,以不断完善和拓展近红外光谱技术在农业领域的应用。

综上所述,近红外光谱技术在农业领域具有巨大的应用潜力和发展前景。

通过充分发挥近红外光谱技术的优势,我们可以更好地满足农业生产和食品安全领域的需求,提高农业生产效率和质量,推动农业可持续发展。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构:本文主要由引言、正文和结论三个部分组成。

近红外光谱成像技术在医学中的应用

近红外光谱成像技术在医学中的应用

近红外光谱成像技术在医学中的应用近红外光谱成像技术(Near-infrared Spectroscopy Imaging,NIRSI)在医学中的应用越来越广泛,它具有无创、无辐射、高灵敏度、高分辨率等优点,在临床生物医学研究、疾病诊断、治疗和监测等方面都有着广泛的应用前景和重要的意义。

本文将阐述NIRSI的原理与应用,在医学领域中的研究现状和前景。

原理NIRSI是一种成像技术,基于近红外(NIR)光在组织中的散射和吸收特性,通过测量组织表面NIR光在不同波长下的吸收、散射和反射光谱,进而对组织的成分、生理功能和病理状态进行研究和分析。

NIR谱图可以获得有效的生物分子组成信息,如氧合血红蛋白、脱氧血红蛋白、水等指标,以及钙离子、荧光染料、药物等的分布情况,为生物医学研究提供了定量信息和高灵敏度的表征手段。

应用1. 脑功能成像NIRSI可以通过监测耳和额叶区域的组织NIR信号,实现对脑功能活动和缺血缺氧状态的观察和诊断。

在脑卒中、脑外伤等神经系统疾病治疗过程中,NIRSI可以帮助临床医生实时监控患者的脑部灌注、代谢情况,及时发现并处理潜在风险。

研究还表明,NIRSI能准确识别脑死亡患者,具有广泛的临床价值。

2. 心血管疾病诊断心血管疾病是全球范围内死亡率最高的疾病,NIRSI在心血管疾病的早期诊断和治疗中发挥着重要作用。

NIRSI可以实现对心脏及周围血管的血流、血氧饱和度、组织代谢等指标的测量与评估,同时也可以监测治疗的效果。

NIRSI技术支持的成像软件还可以通过对差异信号灰度值和高斯模型拟合来检测血管内皮功能异常,为心血管科医生提供了有力的辅助手段。

3. 肿瘤诊断NIRSI技术在肿瘤诊断和治疗中有着极大的潜力。

肿瘤组织与正常组织在信号反射、传输和吸收方面有较大的差异,这可以被NIRSI较为准确地测量和分析出来。

NIRSI成像技术可以通过测量组织氧合血红蛋白和脱氧血红蛋白的变化,来评估肿瘤组织的血供情况和代谢状态;同时,NIRSI技术也可以利用组织对荧光染料的吸收和散射特性,实现肿瘤的早期检测和定位。

功能性近红外光谱技术在神经疾病中的应用

功能性近红外光谱技术在神经疾病中的应用

功能性近红外光谱技术在神经疾病中的应用崔威,李春光,徐嘉诚,何刘进,孙立宁苏州大学江苏省机器人技术与系统重点实验室,江苏苏州市215000通讯作者:李春光,E-mail:********************.cn基金项目:1.国家自然科学基金面上项目(No.61673286);2.国家自然科学基金重点项目(No.U1713218);3.博士后基金特别资助项目(No.2017T100397)摘要功能性近红外光谱技术(fNIRS)是一种非侵入式脑功能成像技术。

在脑卒中患者中,fNIRS可用于观察康复训练后患侧脑区激活情况和健侧代偿作用,还可用于对神经系统疾病的辅助诊断。

关键词功能性近红外光谱;脑卒中;神经疾病;运动功能;评定;诊断;综述Advance in Functional Near-infrared Spectroscopy for Some Neurological Diseases(review)CUI Wei,LI Chun-guang,XU Jia-cheng,HE Liu-jin,SUN Li-ningKey Laboratory of Robotics and System of Jiangsu,School of Mechanical and Electric Engineering,Soochow Universi‐ty,Suzhou,Jiangsu215000,ChinaCorrespondence to LI Chun-guang,E-mail:********************.cnSupported by National Natural Science Foundation of China(General)(No.61673286),National Natural Science Foundation of China(Key)(No.U1713218)and Postdoctoral Science Foundation(No.2017T100397)AbstractFunctional near-infrared spectroscopy(fNIRS)is a non-invasive functional brain imaging technology,which has been used in observing activation of affected brain area and compensation of unaffected side for stroke patients,as well as the assistance of diagnosis for some other neurological diseases.Key words:functional near-infrared spectroscopy;stroke;neurological diseases;motor function;evaluation;diagnosis;review[中图分类号]R741[文献标识码]A[文章编号]1006⁃9771(2020)07-0771-04[本文著录格式]崔威,李春光,徐嘉诚,等.功能性近红外光谱技术在神经疾病中的应用[J].中国康复理论与实践, 2020,26(7):771-774.CITED AS:CUI Wei,LI Chun-guang,XU Jia-cheng,et al.Advance in Functional Near-infrared Spectroscopy for Some Neurological Diseases(review)[J].Chin J Rehabil Theory Pract,2020,26(7):771-774.我国脑卒中发病率、致死率、致残率以及复发率高,患者年轻化趋势明显[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能近红外光谱技术
近红外光谱技术是一种非侵入性分析技术,可以用于定量和定性分析,可以应用于食品、药品、化学品、环境等领域。

其原理是利用近红外光谱仪测量样品吸收、反射或透射的近红外光谱,通过对光谱进行分析和处理,可以得到样品的化学成分、含量、结构等信息。

该技术具有以下优点:
1. 非侵入性:不需要分离、处理样品,不破坏样品结构,不产生任何污染。

2. 高效性:一次性多组分分析,同时分析不同特性之间的关系。

3. 灵敏度高:可检测低至ppm水平的化合物,能够检测多种
化合物。

4. 可重复性好:采用计算机控制和自动采集技术,结果稳定可靠。

5. 应用范围广:可应用于质量控制、新药研发、环境检测和食品安全等领域。

近红外光谱技术的应用研究领域包括食品、化学、制药、医疗设备、生物技术、农业、环境等领域。

它被广泛应用于食品质量检测、品种鉴定、成分分析、过程控制和药品研发等方面,带来了重要的经济、研究和科技价值。

近红外光谱技术的发展随着计算机、光学和光电子技术的不断发展而日益完善,这种技术在分析领域中的应用也将越来越广泛。

相关文档
最新文档