数字图像处理实验 图像生成及取反 图像亮(灰)度变换
数字图像处理 实验 灰度变换

XXXXXXX
实验名称图像灰度变换
实验时间年月日
专业姓名学号
预习操作座位号
教师签名总评
一、实验目的:
1.深入理解图像灰度变换的基本原理。
2.学习编程实现图像灰度变换,并分析各种算法的效果。
二、实验原理:
现行拉伸:
void CHangView::OnXxls()
{
// TODO: Add your command handler code here
long w,h;
unsigned char *lpsrc;
lpsrc=m_Image;
w=m_DibHead->biWidth;
h=m_DibHead->biHeight;
对数变换:对数变换的一般表达式为:s = c log(1 + r),其中C是一个常数。低灰度区扩展,高灰度区压缩。图像加亮、减暗。非线性拉伸不是对图像的整个灰度范围进行扩展,而是有选择地对某一灰度值范围进行扩展,其他范围的灰度值则有可能被压缩。
三、实验内容:
与实验二建立菜单方式相同。
建立相应的类向导使之建立函数(步骤与实验二相同),函数代码如下:
}
分段变换:
void CHangView::OnFenduan()
{
// TODO: Add your command handler code here
long w,h;
unsigned char *lpsrc;
lpsrc=m_Image;
w=m_DibHead->biWidth;
h=m_DibHead->biHeight;
数字图像处理实验二图像灰度变换

实验二图像灰度变换实验一、实验目的熟悉亮度变换函数的使用熟悉灰度图像的直方图的表示;掌握图像增强的基本方法:灰度变换、直方图均衡;二、实验内容灰度线性变换、灰度直方图、直方图均衡处理;灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。
灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。
三、实验原理1.函数imad just函数imad just是对灰度图像进行亮度变换的基本命令,语法为:g = imadju st(f, [low_in high_in], [low_ou t high_out], gamma)将图像f中的亮度值(灰度值)映射到新图像g中,即将low_in至hi gh_in 之间的值映射到low_out至high_out之间的值。
low_in以下的灰度值映射为l ow_o u t,high_in以上的灰度值映射为h igh_out,函数imad just的矩阵[ ]内参数均指定在0和1之间,[low_in high_i n]和[low_ou t high_ou t]使用空矩阵[ ]会得到默认值[0 1]。
若high_out小于l ow_ou t,则输出图像会反转。
参数gamm a指定了曲线(变换函数)的形状,若gamma小于1,则映射被加权至更高(更亮)的输出值;若gamma大于1,则映射被加权至更低(更暗)的输出值。
若省略了函数的参量gamma,则gamma默认为1——即线性映射。
>>f = imread(‘filename’)>>imshow(f)>>g1 = imadju st(f, [0 1], [1 0]); %图像反转>>figure, imshow(g1) %figure命令表示同时显示多个窗口>>g2 = imadju st(f, [0.5 0.75], [0 1]);%将0.5至0.75之间的灰度级扩展到范围0和1之间>>figure, imshow(g2)>>g3 = imadju st(f, [ ], [ ], 2) %使用gamm a值>>figure, imshow(g3)2.直方图处理与函数绘图图像的直方图定义为离散函数:h(r k) = n k绘制图像的直方图,函数imhi st,语法为:h = imhist(f, b)f为输入图像,h为直方图h(r k),b是用于形成直方图的灰度级个数,若b省略,则默认值为256。
数字图像处理实验 图像生成及取反 图像亮(灰)度变换

数字图像处理实验报告实验一图像处理入门实验:图像生成及取反1、【实验目的】了解matlab有关图像的基本操作,如图像的读写,显示等。
熟悉调试环境。
2、【实验步骤】(1)Matlab workspace中生成一幅大小为512×512像素的8位灰度图, 背景为黑色,中心有一个宽40像素高20像素的白色矩形。
(2)将这幅图像保存为文件test.bmp。
•从文件test.bmp中读出图像到变量I。
•在Matlab图形界面中显示变量I所代表的图像。
•将获得的图像的格式分别转换为“*.tif”、“*.jpg”的格式保存,检查图像文件数据量的大小。
•将图片保存或拷贝到MATLAB程序组根目录的“work”文件夹中,以便后面的实验利用。
•将test.bmp 编程取反,观察效果。
3、【实验源码】(1)图像生成B=zeros(512,512)(2) 在图像中生成宽40像素高20像素的白色矩形for i=246:266for j=246:266B(i,j)=1;endend(3)图像保存imwrite(B,'test.bmp')(4)读出图像到变量I并另存为“*.tif”、“*.jpg”的格式e=imread('test.bmp')imshow(e)imwrite(e,'test.tif')imwrite(e,'test.jpg')(5)将test.bmp 编程取反for j=1:512for k=1:512if(i(j,k)==255)i(j,k)=0;elsei(j,k)=255;end;endend4、【实验截图】查看文件大小将test.bmp 编程取反5、【实验小结】(1)通过本次实验,对Matlab软件处理图像的相关功能有了初步了解。
(2)在灰度图像的取反操作中,可以使用双重循环,对每一行每一列的象素值进行更改操作。
实验二图像亮(灰)度变换1、【实验目的】灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。
实验一Matlab图像处理基础及图像灰度变换 - 中南大学信.

实验一Matlab图像处理基础及图像灰度变换一、实验目的了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。
掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。
二、实验内容1.从硬盘中读取一幅灰度图像;2.显示图像信息,查看图像格式、大小、位深等内容;3.用灰度面积法编写求图像方图的Matlab程序,并画图;4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。
5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。
三、知识要点1.Matlab6.5支持的图像图形格式TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。
2.与图像处理相关的最基本函数读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo;3.Matlab6.5支持的数据类double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical.4.Matlab6.5支持的图像类型Intensity images, binary images, indexed images, RGB image5.数据类及图像类型间的基本转换函数数据类转换:B = data_class_name(A);四、参考程序和参考结果1.求灰度直方图===================================================================== % Experiment 1: calculate the histogram of gray-scale through gray-scale area% functionf=imread('J:\ebook and code_ex\image processing\digital image process2_Woods\DIP usingMatlab\image database\dipum_images_ch02\dipum_images_ch02\Fig0206(a)(rose-original).tif');[m,n]=size(f);gray_area=zeros(1,256);% compute the area under certain gray levelfor k=0:255ind = find(f == k);gray_area(k+1) = length(ind);end% compute the histogram by performing the difference for gray_areahist=zeros(1,256);for k=0:254hist(k+1)=gray_area(k+2)-gray_area(k+1);end% normalizationhist=hist/numel(f);subplot(121); imshow(f);subplot(122);stem([1:1:256],hist,'.');axis([1 256 0 max(hist)]);===============================================================================f = imread('Fig0308(a)(pollen).tif'); subplot(221); imshow(f); title('the orignal image'); subplot(222); imhist(f); ylim('auto');g = histeq(f, 256);subplot(223); imshow(g);title('image after equalization'); subplot(224); imhist(g);ylim('auto');the orignal image5010015020025004image after equalization5010015020025004。
图像处理实验图像的灰度化处理及亮度的调整

重庆交通大学数字图像处理与通信课程实验报告班级:实验项目名称:图像的灰度化处理及亮度的调整实验项目性质:设计性实验实验所属课程:数字图像处理与图像通信实验室(中心):网络实验中心指导教师:实验完成时间:2012年10月16日教师评阅意见:签名:年月日实验成绩:一、实验目的:1、熟悉matlab或者C#的编程环境,完成在相关环境下图像的读入、显示、保存等操作;2、完成图像的灰度化处理;3、完成图像的亮度调整的模块编写;4、完成图像的平移操作(选做)。
二、实验主要内容及要求:1、熟悉matlab软件的工作窗口及命令;2、通过matlab软件,对一幅图像进行读入,显示,保存,并对其做灰度化处理;3、对图像进行亮度调整以及图像的平移。
三、实验设备及软件:PC机一台,MATBLAB软件。
四、设计方案:通过对图像灰度化处理的算法,将图像的像素值进行线性变换,以及将三维彩色图像转变为二维图像,即实现了将图像灰度化处理。
以及增加(降低)像素的值,可以对图像进行亮度的增(减)。
对图像进行平移时,可以利用一个生成的零矩阵,将需要平移的图像的像素值按其列或按其行进行递增赋值与零矩阵,即实现了对图像向左右或者向上下的平移。
五、主要代码及必要说明:1、对图像灰度化f=imread('Winter.jpg');figure(1);imshow(f);for x=1:600for y=1:800g(x,y)=0.3*f(x,y,1)+0.59*f(x,y,2)+0.11*f(x,y,3);end;end;figure(2);imshow(g);2、对图像进行平移clc;clear;a=imread('house.jpg');b=im2double(a);si=size(b);m=si(1);n=si(2);figure,imshow(b);g1=zeros(m,n);for x=m:-1:51for y=n:-1:51g1(x-50,y-50)=b(x,y);endendfigure,imshow(g1);六、测试结果及说明:通过利用以上代码,对图像进行了灰度化处理,平移处理,其实验结果如下所示:此图为原图像,图像为彩色图像,通过以上处理,将其变为灰色图像,如下所示:灰度化处理后的图像平移后的图像七、心得体会:实验结束时,对于本次实验的内容,总算有了初步的理解和掌握,尽管只是第一次对图像做简单的处理,但是,我从中还是学到了很多东西,而且感觉到学有所用以及这门课程的高深莫测。
数字图像处理实验报告-线性灰度变换-图像几何变换-频域图像增强技术-图像分割

线性灰度变换一、实验目的1结合实例学习如何在视频显示程序中增加图像处理算法;2理解和掌握图像的线性变换和直方图均衡化的原理和应用;3了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4 了解噪声模型及对图像添加噪声的基本方法。
二、实验原理1 灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。
)],([),(y x f T y x g =⎪⎩⎪⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 ),(),(y x f b g b y x f b y x f a g a y x f a y x f y x f y x g b a γβαn y m x ,2,1 ,,,2,1==2 直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。
按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k nn r p k k r 通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j k j j j r k k3 均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。
将模板中的全体像素的均值(中值)来代替原来像素值的方法。
4 拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111 拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。
三、实验步骤1 启动MATLAB 程序,对图像文件分别进行灰度线性变换(参考教材57页,例4.1)、直方图均衡化(参考教材64页,例4.6)、均值滤波(参考教材69页,例4.9)、中值滤波(参考教材73页,例4.11)和梯度锐化操作(参考教材76页,例4.12)。
添加噪声,重复上述过程观察处理结果。
数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波一种成熟的医学技术被用于检测电子显微镜生成的某类图像。
为简化检测任务,技术决定采用数字图像处理技术。
发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2的范围,因此,技术人员想保留I1-I2区间范围的图像,将其余灰度值显示为黑色。
(5)将处理后的I1-I2范围内的图像,线性扩展到0-255灰度,以适应于液晶显示器的显示。
请结合本章的数字图像处理处理,帮助技术人员解决这些问题。
1.1问题分析及多种方法提出(1)明亮且孤立的点是不够感兴趣的点对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。
均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
优点:速度快,实现简单;缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
其公式如下:使用矩阵表示该滤波器则为:中值滤波:滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。
其过程为:a 、存储像素1,像素2.....像素9的值;b 、对像素值进行排序操作;c 、像素5的值即为数组排序后的中值。
优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。
缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。
数字图像灰度变换技术总结

数字图像灰度变换技术总结篇一:图像的灰度变换昆明理工大学(数字图像处理)实验报告实验名称:图像的灰度变换专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解并掌握灰度变换的基本原理和方法。
2、编程实现图像灰度变换。
3、分析不同的灰度变换方法对最终图像效果的影响。
[实验内容]1、灰度的线性变换;2、灰度的非线性变换;3、图像的二值化;4、图像的反色处理;[实验原理]图像的灰度变换(grayscaletransformation,GST)处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分。
灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。
目的是为了改善画质,使图像的显示效果更加清晰。
灰度变换有时又被称为图像的对比度增强或对比度拉伸。
从图像输入装置得到的图像数据,以浓淡表示,(:数字图像灰度变换技术总结)各个像素与某一灰度值相对应。
设原图像像素的灰度值d=f(x,y),处理后图像像素的灰度值d′=g(x,y),则灰度增强可表示为:g(x,y)=T[f(x,y)]或d′=T(d)要求d和d′都在图像的灰度范围之内。
函数T(d)称为灰度变换函数,它描述了输入灰度值和输出灰度值之间的转换关系。
灰度变换主要针对独立的像素点进行处理,通过改变原始图像数据所占据的灰度范围而使图像在视觉上得到良好的改观,没有利用像素点之间的相互空间关系。
因此,灰度变换处理方法也叫做点运算法。
点运算可以按照预定的方式改变一幅图像的灰度直方图。
除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点运算可以看做是“从像素到像素”的复制操作。
根据g(x,y)=T[f(x,y)],可以将灰度变换分为线性变换和非线性变换。
1、灰度的线性变换若g(x,y)=T[f(x,y)]是一个线性或分段线性的单值函数,例如g(x,y)=T[f(x,y)]=af(x,y)+b则由它确定的灰度变换称为灰度线性变换,简称线性变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验报告
实验一图像处理入门实验:图像生成及取反
1、【实验目的】
了解matlab有关图像的基本操作,如图像的读写,显示等。
熟悉调试环境。
2、【实验步骤】
(1)Matlab workspace中生成一幅大小为512×512像素的8位灰度图, 背景为黑色,中心有一个宽40像素高20像素的白色矩形。
(2)将这幅图像保存为文件test.bmp。
•从文件test.bmp中读出图像到变量I。
•在Matlab图形界面中显示变量I所代表的图像。
•将获得的图像的格式分别转换为“*.tif”、“*.jpg”的格式保存,检查图像文件数据量的大小。
•将图片保存或拷贝到MATLAB程序组根目录的“work”文件夹中,以便后面的实验利用。
•将test.bmp 编程取反,观察效果。
3、【实验源码】
(1)图像生成
B=zeros(512,512)
(2) 在图像中生成宽40像素高20像素的白色矩形
for i=246:266
for j=246:266
B(i,j)=1;
end
end
(3)图像保存
imwrite(B,'test.bmp')
(4)读出图像到变量I并另存为“*.tif”、“*.jpg”的格式
e=imread('test.bmp')
imshow(e)
imwrite(e,'test.tif')
imwrite(e,'test.jpg')
(5)将test.bmp 编程取反
for j=1:512
for k=1:512
if(i(j,k)==255)
i(j,k)=0;
else
i(j,k)=255;
end;
end
end
4、【实验截图】
查看文件大小
将test.bmp 编程取反
5、【实验小结】
(1)通过本次实验,对Matlab软件处理图像的相关功能有了初步了解。
(2)在灰度图像的取反操作中,可以使用双重循环,对每一行每一列的象素值进行更改操作。
实验二图像亮(灰)度变换
1、【实验目的】
灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。
灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。
2、【实验步骤】
(1).编程实现一幅灰度图像的直方图,并用图像处理工具箱中的直方图
函数处理的结果进行比较。
(2).实现直方图均衡化的处理结果。
(3).用2种方法对灰度图像实现对比度增强。
比较其优劣。
(4).对一幅真彩色图像,求出其R,G,B分量的直方图。
3、【实验源码】
(1)编程实现一幅灰度图像的直方图
B=imread('2-1.jpg')
imshow(B)
W=rgb2gray(B)
imshow(W)
imhist(W)
(2).实现直方图均衡化
f=imread('2-1.jpg')
imhist(f)
f=rgb2gray(f)
imhist(f)
g=histeq(f,256)
figure,imshow(g)
figure,imhist(g)
(3)对灰度图像实现对比度增强
e=imadjust(W,[0.5,0.75],[0,1])
imshow(e)
(4) 对一幅真彩色图像,求出其R,G,B分量的直方图B=imread('2-2.jpg’)
B1=B(:,:,1)
B2=B(:,:,2)
B3=B(:,:,3)
imhist(B1)
imhist(B2)
imhist(B3)
4、【实验截图】
实现直方图均衡化
对灰度图像实现对比度增强
真彩色图像
R通道
G 通道
B 通道
5、【实验小结】
直方图能够直观体现灰度图象灰度值的总体分布情况,幅值越高,像素值位于这个范围的则越多。
通过对直方图的均衡化操作,可以使图像的对比度减弱,从而实现想要的结果。