初一级数学上册第一章人教版PPT课件
合集下载
人教版七年级数学上册《绝对值》PPT课件

人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
1.绝对值的定义:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值, 记作│a│.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
2.绝对值的意义: 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0. 即:①如果a>0,那么│a│=a; ②如果a=0,那么│a│=0;
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
例题解析
(2)∵
- 8 = 8 , -3 =3
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
合作探究
对于正数,0和负数这三类数,它们之间有什么大小关系?两个负 数之间如何比较大小?
(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
(2)你能将这七天中 每天的最低气温按从低到高 的顺序排列吗?
(3)数轴上的数的排列规律是什么?
人教版七年级数学上册《绝对值》PPT 课件
合作探究
(1)最低气温是-4,最高气温是9. (2)这七天中每天的最低气温按从低到高的顺序排列为: -4, -3, - 2, - 1,0,1 , 2. (3)数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序, 即左边的数小于右边的数.
人教版七年级数学上册第一章 有理数 PPT课件

负整数
正整数
1. 我们学过的数有:_______、_____、________、
零
正分数
负分数
______、__________.
2. 你能试着对上面举出的数进行分类吗?
素养目标
3. 知道有理数的两种分类方法.
2. 会判断一个数是整数还是分数,是正数还
是负数.
1. 了解有理数的定义.
探究新知
知识点 1
A. 0℃表示没有温度
B. 0表示什么也没有
C. 0是非正数
D. 0既可以看作是正数又可
以看作是负数
巩固练习
5.解释图中的正数和负数的含义。
10℃表示白天温度为零上10℃
-5℃表示晚上温度为零下5℃
它们以什么为基准?
0℃
巩固练习
6. 下面是某存折中记录的支出、存入信息,试着说说其
中“支出或存入”那一栏的数字表示什么含义.
正整数 和_______;
自然数
(4)非负整数包括________
又称为________;
0
整数 和_______;
(5)非负分数包括________
正分数
负分数
(6)非正分数包括________和_______.
整数
探究新知
素养考点 1
有理数分类的能力
例1 下列说法:
①0是整数;
1
2
② 3 是负分数;
0的意义及用正负数表示相对基准量
下图是吐鲁番盆地的示意图,你能用语言表述它与海平
面的高度关系吗?它的含义是什么?
记为+8844.43米
8844.43米
珠
穆
朗
玛
峰
新人教版七年级数学上册第1章有理数全章精品课件-1.ppt

活动五.知识梳理,课堂小结. 通过这节课的学习,谈谈你有哪些收获,指 导学生自己总结.
活动六.知识反馈,作业布置. 1.课本第24至26页第1,12,13题. 2.补充题: (1)若︱a︱=4 ︱b︱=5, 则︱a+b︱=( ) A.9 B.1 C.±9或±1 D.9 或1 (2)绝对值不大于5的所有整数的和为( ) (3)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为 负,某天自O地出发到收工时所走路线(单位:千米)为:+10、-3、 +4、+2、-8、+13、-2、+12、+8、+5 ①问收工时距O地多远? ②若每千米耗油0.2升,从O地出发到收工时共耗油多少升?
教学过程设计 活动一.创设情境,引入课题. 1.回顾用正负数表示数量的实际例子; 2.在足球比赛中,如果把进球数记为正数,失球数记为负数, 它们的和叫做净胜球数.若红队进4个球,失2个球,则红队 的净胜球数,可以怎样表示?蓝队的净胜球数呢? 如何进行类似的有理数的加法运算呢?这就是我们这节课 一起与大家探讨的问题.
活动三.知识应用,例题解析. 1.例1.计算: (1)(-3)+(-9); (2)(-5)+13; (3)0十(-7); (4)(-4.7)+3.9. 解题过程可由教师板书,让学生说出每一步运算所依据的法 则.要求学生比较,有理数的加法运算与小学时候学的加法有 什么异同?(如:有理数加法计算中要注意符号,和不一定大于 加数等等) 2.例2.足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜 红队,计算各队的净胜球数. 可让学生读数,理解题意,思考解决方案,然后由学生口述, 教师板书. 3.学生活动:请学生说一说在生活中用到有理数加法的例子.
活动四.知识巩固,课堂练习. 1.课本第18页小练习. 2. 补充题 (1)下列说法正确的是( ) A.两数之和必大于任何一个加数 B.同号两数相加和为正 C.两个负数相加和一定为负 D.两个有理数相加,等于它们的绝对值相加 (2)如果两个有理数之和为负,则( ) A.这两个加数都是负数 B.两个加数一正一负 C.两个加数中一个为负数,另一个为0 D.以上都有可能 (3)下列说法错误的是( ) A.两个数的和是0,则这两个数都是0 B.一个数与这个数相反数的和一定是等于0 C.0加上任何数还等于这个数 D.一个数加上它的绝对值等于0,则这个数是非正数
人教版七年级数学上册教学课件-1.1 正数和负数 优质课件PPT

(2)六个国家这一年商品进出口总额的增长 率是:
美国 -6.4%, 德国1.35% 法国 -2.4%, 英国-3.5% 意大利 0.2%, 中国7.5%
课堂小结
1、正数和负数是如何定义的? 2、引入正负数后,怎样理解数0? 3、怎样用正负数表示具有相反意义的量?
布置作业
必做题:课、6题
下的执著,而这执著是很多人并不具备的……而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要
己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目
现出一条波浪线,有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整
•
我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。
中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都
激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励
3、如果水位升高3m时水位变化记作+3m,那 么水位下降3m时水位变化记作__-3___m,水位 不升不降时水位变化记作__0___m 。 4、月球表面的白天平均温度零上126℃,记 作_+_1_2_6_℃,夜间平均温度零下150℃,记作 __-1_5_0_℃__。
典例分析
例(1)一个月内,小明体重增加2kg,小华体
美国 -6.4%, 德国1.35% 法国 -2.4%, 英国-3.5% 意大利 0.2%, 中国7.5%
课堂小结
1、正数和负数是如何定义的? 2、引入正负数后,怎样理解数0? 3、怎样用正负数表示具有相反意义的量?
布置作业
必做题:课、6题
下的执著,而这执著是很多人并不具备的……而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要
己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目
现出一条波浪线,有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整
•
我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。
中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都
激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励
3、如果水位升高3m时水位变化记作+3m,那 么水位下降3m时水位变化记作__-3___m,水位 不升不降时水位变化记作__0___m 。 4、月球表面的白天平均温度零上126℃,记 作_+_1_2_6_℃,夜间平均温度零下150℃,记作 __-1_5_0_℃__。
典例分析
例(1)一个月内,小明体重增加2kg,小华体
人教版初中数学七年级上册第一章有理数ppt课件

乘 方
求n个相同因数的积 的运算,叫做乘方, 乘方的结果叫做幂。 在an中,a叫做底数, n叫做指数,当an看 作a的n次方的结果时, 也可读作“a的n次 幂”。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
理
对值相加;符号相反的两 个数相加,结果的符号与
数
绝对值较大的加数的符号
的
相有理数加法中可以使用
法
加法交换律、结合律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有理数的乘法
负数乘负数,积为正数,乘积的 绝对值等于各乘数绝对值的积。
有理数乘法法则: 两数相乘,同号得正,异号得负,
并把绝对值相乘。 任何数与0相乘,都得0.
注意:有理数的乘法可以使用: 乘法交换律、结合律、分配律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有 理 数 知 识 结 构 图
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正 数 和 负 数
正数:大于0的数叫做正数
负数:小于0的数叫做负数
数0既不是正数,也不是 负数,它是正、负数的届限, 表示“基准”的数,零不是 表示“没有”,它表示一个 实际存在的数量。正数负数 的“+”“-”的符号是表示 性质相反的量,符号写在数 字前面,这种符号叫做性质 符号。
秋人教版七年级数学上册课件:第一章 近似数(共16张PPT)

13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/192021/9/192021/9/192021/9/199/19/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月19日星期日2021/9/192021/9/192021/9/19 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/192021/9/192021/9/199/19/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/192021/9/19September 19, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/192021/9/192021/9/192021/9/19
略.
启后
任务三:学习教材第44~45页,完成题目 1. 在任务二的第2小题中,第___(__1_)__(__2_)___题中的 数字是准确的,第_(__3_)__(__4_)__题中的数字是与实际 接近的,这种只是接近实际数字,但与实际数字还有 差别的数被称为___近__似__数____.
2. 按四舍五入对圆周率π取近似数时,有:π≈3 (精确到个位), π≈3.1(精确到0.1,或叫精确到十分位), π≈3.14(精确到__0_._0_1_,或叫精确到___百__分__位), π≈3.142(精确到___0_._0_0_1___,或叫精确到__千__分_ 位), π≈3.141 6(精确到___0_._0_0_0__1___,或叫精确到 __万__分___位), ……
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 6:31:27 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021
略.
启后
任务三:学习教材第44~45页,完成题目 1. 在任务二的第2小题中,第___(__1_)__(__2_)___题中的 数字是准确的,第_(__3_)__(__4_)__题中的数字是与实际 接近的,这种只是接近实际数字,但与实际数字还有 差别的数被称为___近__似__数____.
2. 按四舍五入对圆周率π取近似数时,有:π≈3 (精确到个位), π≈3.1(精确到0.1,或叫精确到十分位), π≈3.14(精确到__0_._0_1_,或叫精确到___百__分__位), π≈3.142(精确到___0_._0_0_1___,或叫精确到__千__分_ 位), π≈3.141 6(精确到___0_._0_0_0__1___,或叫精确到 __万__分___位), ……
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 6:31:27 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021
人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)

2017 √
√
√
4
3
√√
√
-4.9
√
√
√
0
√
-12 √
√
√
√
探究新知
知识点 2 有理数的分类 你能根据有理数的定义对有理数分类吗?
探究新知
有理数
整数 分数
正整数 零 负整数 正分数
负分数
探究新知
质疑探索 学了有理数的分类后,有没有一些数不是有理数呢? 探究总结
有限小数和无限循环小数都是分数,所以也是有理数. 无限不循环小数(如π)不是分数,就不是有理数.
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
第一章 有理数
1.2 有理数及其大小比较 1.2.1 有理数的概念
学习目标
1. 了解有理数的定义. 2. 会判断一个数是整数还是分数,是正数还是负数. 3. 知道有理数的两种分类方法.
探究新知
知识点 1 有理数的概念 某天毛毛看报纸,见到下面一段内容:冬季的一天,某地 的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而 同一天北京的气温为-3℃~7℃. 问题1:这里面出现的数是什么数? 6,7是正数; -10,-3是负数; 0既不是正数也不是负数.
人教版七年级数学上册第1章第1节正数和负数课件(共41张PPT)

娃哈哈饮料公司生产的一促瓶装饮料外包装上印有 “600±30(ml)”字样,请问±30(ml)是什么含义 ?质检局对该产品抽查5瓶,容量分别是603ml、611ml 、589m、l573ml、627ml,问抽查产品的容量是否合格 ?抽查的5瓶饮料均在600-30(ml)与600+ 30(ml)之间,
在同一个问题中,分别用正数与负数表示的量 具有_相__反__ 的意义.
练习 拓展
1990~1995年下列国家年平均森林面积(单位:千米2) 的变化情况是:中国减少866,印度增长72,韩国减少 130,新西兰增长434,泰国减少3294,孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年年平均森林 面积增长量;
课堂练习
1.(1)如果零上5 ℃记作+5 ℃,那么零下3 ℃记作什么? (2)东、西为两个相反方向,如果- 4米表示一个物体向西运
动4米,那么+2米表示什么?物体原地不动记为什么? (3)某仓库运进面粉7.5吨记作+7.5吨, 那么运出3.8吨应记
作什么?
2. 在横线上填写适当的词,使前后具有相反意义的量.
概念引入
我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。 如+0.5、+3、 +1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加 上负号“-”的数叫做负数。如-3、-0.5、
-2/3……
一个数前面的“+”、“-”号叫做它的符号。 “-”号读 着“负”,如:“-5”读着“负5”;“+”号读着“正”, 如:“+3”读着“正3”。“+”号可以省略。
小结
这节课我们学习了哪些知识?你能说一说吗?
在同一个问题中,分别用正数与负数表示的量 具有_相__反__ 的意义.
练习 拓展
1990~1995年下列国家年平均森林面积(单位:千米2) 的变化情况是:中国减少866,印度增长72,韩国减少 130,新西兰增长434,泰国减少3294,孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年年平均森林 面积增长量;
课堂练习
1.(1)如果零上5 ℃记作+5 ℃,那么零下3 ℃记作什么? (2)东、西为两个相反方向,如果- 4米表示一个物体向西运
动4米,那么+2米表示什么?物体原地不动记为什么? (3)某仓库运进面粉7.5吨记作+7.5吨, 那么运出3.8吨应记
作什么?
2. 在横线上填写适当的词,使前后具有相反意义的量.
概念引入
我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。 如+0.5、+3、 +1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加 上负号“-”的数叫做负数。如-3、-0.5、
-2/3……
一个数前面的“+”、“-”号叫做它的符号。 “-”号读 着“负”,如:“-5”读着“负5”;“+”号读着“正”, 如:“+3”读着“正3”。“+”号可以省略。
小结
这节课我们学习了哪些知识?你能说一说吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、乘方: 求几个相同因数的积的运算,叫做乘方。 乘方运算可以化为乘法运算进行:
即: an aaa
n
a是底数, n是指数, a n 是幂。
正数的任何次幂都是正数。 负数的奇数次幂是负数,偶数次幂是正数。 0的任何次幂都是0。
.
运算律:
1、加法交换律: abba
2、加法结合律: a (b c) (a b ) c
D点表示_0_:
E点表示_1_.5。
.
相反数:
只有符号不同的两个数互为相反数。 0的相反数是0。 例如:2和-2 互为相反数的两个数相加得0。 例如:5+(-5)=0
一个数 a相反数是 a。例如 3的相反数是-3-4的相反数是-(-4)=4
倒数:
乘积是1的两个数互为倒数。 0没有倒数。
1
a 的倒数是 。
3、1 91
9
的相反数的倒数是_10 ____。
4(、1)2002(22) __4___。
5、如a果2 16 ,那么a__4___。
6若 、a3,b5,则ab_8_或_2 ______
7(、 1计)1算:(21)23732 2 3 48 3
1 24
(2)0.25 (2)(13)0.6 1
35
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
第一单元复习
.
有理数的两种分类:
整数
{ 有理数
{ { 分数
正整数
0 负整数 正分数
负分数
{ {{ 有理数
正有理数 0 负有理数
正整数 正分数 负整数 负分数
.
数轴:
规定了原点、正方向、单位长度的直线叫做数轴。 任何一个有理数都可以用数轴上的一个点来表示。
如上图:
A点表示__2;
B点表示_2_; C点表示__3;
a
.
绝对值:
从数轴上看,一个数的绝对值就是表示这个数的点离
开原点的距离。数 a的绝对值记为 a 。 正数的绝对值是它本身; 0的绝对值是0; 负数的绝对值是它的相反数。 即:
a a(a 0)
a a(a 0)
例如: 3 3
5 5
.
有理数的大小比较:
正数都大于0,负数都小于0。即负数<0<正数。 数轴上两个点表示的数,右边的总比左边的大。 两个负数,绝对值大的反而小。
例:
比较大小 : 2 __ 0 . 6 3
解:
因为 : 2 2 , 0 . 6 0 . 6 33
2 0 .6 3 所以 : 2 0 . 6
3
.
有理数的运算方法:
1、加法: 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,取绝对值大的数的符号,并用较大的
绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。
2、减法: 减去一个数,等于加上这个数的相反数。
3、乘法: 两数相乘,同号得正,异号得负,绝对值相乘。 任何数与0相乘,积仍为0。 几个不为0的数相乘,当负因数有奇数个时,积为负;当负
因数有偶数个时,积为正。
.
4、除法: 除以一个数等于乘以这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不为0的数,都得0。
3、乘法交换律: abba 4、乘法结合律: (a)bca(b)c
5、分配律: a(bc)ab ac
有理数混和运算的运算顺序: 先算乘方,再算乘除,最后算加减。如果有括号就先
算括号里面的。
注意:同级运算要由左到右进行。
.
测试:
1、一个数的绝对值是6.5,这个数是_6.5___。
2、绝对值小于3的非负整数是_0_,1,_2 ____。
即: an aaa
n
a是底数, n是指数, a n 是幂。
正数的任何次幂都是正数。 负数的奇数次幂是负数,偶数次幂是正数。 0的任何次幂都是0。
.
运算律:
1、加法交换律: abba
2、加法结合律: a (b c) (a b ) c
D点表示_0_:
E点表示_1_.5。
.
相反数:
只有符号不同的两个数互为相反数。 0的相反数是0。 例如:2和-2 互为相反数的两个数相加得0。 例如:5+(-5)=0
一个数 a相反数是 a。例如 3的相反数是-3-4的相反数是-(-4)=4
倒数:
乘积是1的两个数互为倒数。 0没有倒数。
1
a 的倒数是 。
3、1 91
9
的相反数的倒数是_10 ____。
4(、1)2002(22) __4___。
5、如a果2 16 ,那么a__4___。
6若 、a3,b5,则ab_8_或_2 ______
7(、 1计)1算:(21)23732 2 3 48 3
1 24
(2)0.25 (2)(13)0.6 1
35
.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
第一单元复习
.
有理数的两种分类:
整数
{ 有理数
{ { 分数
正整数
0 负整数 正分数
负分数
{ {{ 有理数
正有理数 0 负有理数
正整数 正分数 负整数 负分数
.
数轴:
规定了原点、正方向、单位长度的直线叫做数轴。 任何一个有理数都可以用数轴上的一个点来表示。
如上图:
A点表示__2;
B点表示_2_; C点表示__3;
a
.
绝对值:
从数轴上看,一个数的绝对值就是表示这个数的点离
开原点的距离。数 a的绝对值记为 a 。 正数的绝对值是它本身; 0的绝对值是0; 负数的绝对值是它的相反数。 即:
a a(a 0)
a a(a 0)
例如: 3 3
5 5
.
有理数的大小比较:
正数都大于0,负数都小于0。即负数<0<正数。 数轴上两个点表示的数,右边的总比左边的大。 两个负数,绝对值大的反而小。
例:
比较大小 : 2 __ 0 . 6 3
解:
因为 : 2 2 , 0 . 6 0 . 6 33
2 0 .6 3 所以 : 2 0 . 6
3
.
有理数的运算方法:
1、加法: 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,取绝对值大的数的符号,并用较大的
绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。
2、减法: 减去一个数,等于加上这个数的相反数。
3、乘法: 两数相乘,同号得正,异号得负,绝对值相乘。 任何数与0相乘,积仍为0。 几个不为0的数相乘,当负因数有奇数个时,积为负;当负
因数有偶数个时,积为正。
.
4、除法: 除以一个数等于乘以这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不为0的数,都得0。
3、乘法交换律: abba 4、乘法结合律: (a)bca(b)c
5、分配律: a(bc)ab ac
有理数混和运算的运算顺序: 先算乘方,再算乘除,最后算加减。如果有括号就先
算括号里面的。
注意:同级运算要由左到右进行。
.
测试:
1、一个数的绝对值是6.5,这个数是_6.5___。
2、绝对值小于3的非负整数是_0_,1,_2 ____。