里程表速比校核算法

里程表速比校核算法

里程表速比校核算法: Ig×1000

2πr×624

去余取整(尽量求小),一般末位为偶数

其中Ig表示后桥速比

r表示轮胎滚动半径

624表示里程表传动比

最小转弯直径计算:D min=2(L/sinθmax+α)

其中L表示轴距;θmax表示外轮最大转角;α表示车轮转臂

结构设计校核方法

【结构设计校核方法】 【校对原则】 ※ 能按建筑设计意图将结构骨架搭建起来 ※ 在搭建过程中注意不与建筑、设备发生冲突,做到不错不漏,不碰不缺 ※ 注意结构自身合理性,不合理的要与建筑协商解决 ※ 将设计意图表示完全,表达清楚 ※ 一套图的设计参数是否统一 【校对顺序】 图面――模板――配筋――说明,检查完一项打一个勾。 【图面校对】 ○是否有异常文字和标注(文字为?号,大小不统一,标注与实际长度不符或非整数); ○是否有多余文字、尺寸线和多余轴线; ○轴线、梁线等线型是否正确,线宽是否合适; ○文字是否被重叠,被覆盖; ○墙、柱、后浇带等是否有漏、多余填充或错误填充;不同类型是否用了相同的填充式样; ○出图比例是否异常,所注比例是否正确; ○图签中图名、图号、工程名称、出图时间是否正确。 ○文字表达是否通顺 【平面模板图校对】 ①轴线 ○轴号、尺寸是否有误、是否与建筑图对应 ○总尺寸是不是分尺寸之和 ○角度是否够精度,斜交轴网以长轴两端定位,避免以起点和角度定轴线 ○有没有未定位的轴线,有没有多余轴号 ○圆弧轴线有没有注明半径,圆心有没有定位 ②轮廓与标高 ○结构轮廓与建筑是否一致 ○结构平面各部分的标高是否标明,是否与建筑相应位置符合,注意建筑覆土范围、各层卫生间、室外露台,屋顶花园,台阶位置、电梯底坑、水池的吸水槽、公共厨房与肉菜市场等 需垫高的场所 ○结构变标高位置及反梁是否为实线,有没有实线与虚线相交的地方 ○天面、地下室平面是否为结构找坡,若建筑找坡是否考虑找坡荷载 ○与邻接区域的梁、板连接关系与分缝是否正确。 ○建筑、设备在板上开的洞有没有遗漏

③柱、墙位 ○下层墙柱有没有用虚粗线表示,是否画了不该升上的墙柱,是否画了梁上柱○墙柱是否与建筑一致,在位置和尺寸上是否有影响建筑使用 ○建筑、设备在混凝土墙上开的洞有没有漏 ○注意墙、柱顶标高是否满足建筑标高,是否满足梁板的搭接要求 ④梁 ○房屋周圈梁是否等高,注意其与建筑周圈墙的关系 ○逐条检查梁的定位、编号、尺寸和跨数以及梁顶标高与板面标高关系是否正确 ○梁高宽是否异常。如悬挑梁高小于跨度的1/6,一般梁高小于跨度的1/15,梁尺寸过大影 响建筑开门窗或楼梯间等。 ○有没有高梁搭在矮梁上 ○有没有梁位置不妥,如跨过厅房等。梁布置是否影响了建筑美观○梁平齐的优先顺序:厅、主房、客房、楼梯通道、厨厕、储物间等。 ⑤楼电梯 ○有没有注上编号 ○电梯底坑标高有无遗漏,机房部位是否封板,机房顶部是否加吊钩 ○楼梯柱是否已表示且定位 ○楼梯起步位置有没有表示 ⑥开洞与井沟 ○风井,水电井、烟道是否遗漏 ○洞的定位、大小与洞边加强处理(洞边长大于12倍板厚的需加梁) ○集水井、沟、天面排水沟是否遗漏,定位与大小是否与建筑一致 ⑦大样、构造柱 ○外飘窗台,女儿墙,立面要求的构造柱、墙,雨蓬等是否与主体结构有效连接(以主体结 构为支座)在平面上的投影是否正确。 ○其定位、尺寸是否完整 ○大样详图在平面上是否有表示,是否与编号对应,标高、定位轴线与平面是否对应 ⑧大样引出号 注意剖切方向和索引图号。索引位置是否正确。相应大样是否存在 ⑨后浇带 后浇带间距是否大于55米,是否定位,是否穿过框架梁等重要结构及受力较大部位。地下 室平面与侧墙后浇带定位是否一致 ⑩模板图说明 ○楼层基本标高是否明确,混凝土强度等级抗渗等级 ○特殊楼板厚有没有说明

第三章疲劳强度计算练习题

第三章机械零件的疲劳强度设计 一、选择题 3-1 45钢的持久疲劳极限σ-1=270MPa,,设疲劳曲线方程的幂指数m=9,应力循环基数N0=5×106次,当实际应力循环次数N=104次时,有限寿命疲劳极限为____________MPa。 (1)539 (2)135 (3)175 (4)417 3-2 有一根阶梯轴,用45钢制造,截面变化处过渡圆角的疲劳缺口系数Kσ=1.58,表面状态系数β=0.28,尺寸系数εσ=0.68,则其疲劳强度综合影响系数KσD=____________。 (1)0.35 (2)0.88 (3)1.14 (4)2.83 3-3 形状、尺寸、结构和工作条件相同的零件,采用下列不同材料制造:a)HT200;b)35钢;c)40CrNi钢。其中设计零件的疲劳缺口系数最大和最小的分别是____________。 (1)a)和b)(2)c)和a)(3)b)和c) (4)b)和a)(5)a)和c)(6)c)和b) 3-4 零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之____________。 (1)增高(2)不变(3)降低 3-5 零件的形状、尺寸、结果相同时,磨削加工的零件与精车加工相比,其疲劳强度____________。 (1)较高(2)较低(3)相同 3-6 零件表面经淬火、渗氮、喷丸、滚子碾压等处理后,其疲劳强度____________。 (1)增高(2)降低(3)不变(4)增高或降低视处理方法而定 3-7 影响零件疲劳强度的综合影响系数KσD或KτD与____________等因素有关。 (1)零件的应力集中、加工方法、过载 (2)零件的应力循环特性、应力集中、加载状态 (3)零件的表面状态、绝对尺寸、应力集中 (4)零件的材料、热处理方法、绝对尺寸。 3-8 已知设计零件的疲劳缺口系数Kσ=1.3、尺寸系数εσ=0.9、表面状态系数βσ=0.8。则疲劳强度综合影响系数KσD为____________。 (1)0.87 (2)0.68 (3)1.16 (4)1.8 3-9 已知零件的极限应力σr=200MPa,许用安全系数[S]=2,影响零件疲劳强度的系数为Kσ=1.2,εσ=0.83,βσ=0.90。则许用应力为[σr]___________MPa。 (1)160.6 (2)106.7 (3)62.25 (4)110.7 3-10 绘制设计零件的σm-σa极限应力简图时,所必须的已知数据是___________。 (1)σ-1,σ0,σs,Kσ(2)σ-1,σ0,σs, KσD (3)σ-1,σs, ψσ,Kσ(4)σ-1,σ0,ψσ, KσD 3-11 在图示设计零件的σm-σa极限应力简图中,如工作应力点M所在的ON线与横轴间夹角θ=45o,则该零件受的是___________。

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

视野校核报告要点

目录 1.概述 (1) 2.汽车驾驶员视野基本要求 (1) 3.XX车型驾驶员前方视野校核 (1) 3.1引用标准 (1) 3.2汽车前方视野技术要求 (2) 3.3XX车型视野校核状态的确定 (3) 3.4XX车型前方视野校核 (3) 3.5小结 (5) 4.XX车型驾驶员后视野校核 (6) 4.1引用标准 (6) 4.2汽车后视野技术要求 (6) 4.3XX车型后视野校核状态的确定 (8) 4.4XX车型后视野校核 (8) 4.5小结 (11) 5 总结 (11)

1.概述 在汽车设计中,驾驶员视野直接影响汽车的使用和安全等,在进行布置设计时必须考虑视野是否符合法规要求,是否能够满足使用要求。 下面以相关标准和法规为基础,结合XX车型布置设计情况,对XX 车型驾驶员前、后视野分别进行校核。 2.汽车驾驶员视野基本要求 在车身布置图上,确定了代表驾驶员眼睛分布位置的眼椭圆后,即可作出驾驶员的实际视野范围,进行前视野、外后视野、内后视野的校核。 根据相关国家标准,对汽车驾驶员视野的基本要求如下: 2.1前视野规定了驾驶员前方180o范围内直接视野的校核。 2.2每根A柱双目障碍角不得超过6°。若两A柱相对汽车纵向铅垂面是 对称的,则右柱不需要再测量。 2.3汽车不得有两根以上A柱。 2.4对于总质量小于2000kg的M1和N1类汽车,驾驶员借助外后视镜 必须能同时在水平路面上看见一段位于驾驶员眼点后4m处的宽度至少为1m的视野区域和一段位于驾驶员眼点后20m处的宽度至少为4m 的视野区域,其右边与汽车纵向基准面平行且与汽车左边最外侧点相切,并从驾驶员的眼点后20m处延伸至地平线;对于乘客一侧外后视镜的视野,要求相同。 2.5内后视镜的视野规定了驾驶员借助内后视镜必须能在水平路上看见 一段宽度至少为20m的视野区域。 3.XX车型驾驶员前方视野校核 3.1引用标准

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

大件设备吊装方法和校核计算

大件设备吊装方法和校核计 内容摘要:在大型火电厂项目建设中,发电机定子、除氧器、高加、低加锅炉汽包等大件设备存在设备重、尺寸大、就位位置偏高等问题,其吊装作业是整个工 程的重点和难点,也是火电项目建设安全管理的主要控制点。本文以大土河 热电项目350MW机组的除氧器吊装为例,从吊装机械的选用,站车位置的确 定以及相关的受力计算等方面,详细介绍了设备的吊装过程 关键词:火电厂;大型设备;施工工艺;吊装校核 一、引言 晋能离石大土河2×35万千瓦低热值煤热电联产工程1#机在主厂房24米层BC列0轴~2轴之间安装一台东方锅炉厂生产的YC-1320无头式除氧器。该除氧器采用卧式双封头、一个进口喷头,设两个支座(一个固定支座和一个滚动支座),内部装设蒸汽导流管,并配备再循环管接管,给水出口等。本设备按机组滑压运行设计,亦可用于机组定压运行,具有结构合理、安全可靠、运行操作方便、性能稳定、传热效果好、除氧效率高等优点。 除氧器自重约51T,长度为,直径为φ米,额定出力为1320t/h,全容积为165m3,有效容积为120m3,设计温度为340℃,工作温度为℃/℃,设计压力为,工作压力。 设备到货前,主厂房土建施工已基本结束,吊车布置在主厂房固定端外,由于除氧器安装位置较高,吊装工作难度大,在进行吊装方案选择时,从安全可靠方面考虑,吊装机械选用QUY400型履带吊1台XGC130型履带吊1台。本文以此次吊装为例,介绍火电厂大件。 二、吊装准备 组织施工人员认真熟悉图纸资料,编制施工作业指导书。组织参与施工的有关人员认真学习施工技术、工艺、施工规范及安全防范措施并进行培训。施工前要作好安全技术交底,对将可能发生的技术、质量、安全等方面的问题进行预先分析,做出可靠的防范措施。带领所有参加施工的人员一起熟悉现场施工环境,对整个施工过程提前做统一布署。 吊装前确认好除氧器进入主厂房的方向,除氧器拖运采用坦克链,铺设两条U型槽钢将坦克链放置在内部,在布置托运滑道时,需考虑除氧器平台承载,滑道下层道木放置在除氧层平台承重梁位置。除氧器正式吊装前,两车抬吊设备离地100mm,两车

疲劳强度的计算

摘要:零件的疲劳强度是一个值得深刻探讨的问题,在众多领域有着至关重要 的地位,零件的疲劳强度决定了其疲劳寿命,也就决定了对零件的选择和对这个器件的设计。本论文在参考多方资料,以及在平日学习中积累总结的经验之后,对零件疲劳强度的计算有了一些结论,得出影响导致零件疲劳的原因有破坏应力与循环次数之间量的变化影响,静应力的影响,应力集中的影响,零件绝对尺寸的影响,表面状态与强化的影响等方面。在分析零件疲劳产生原因之后,得出许多关系变化图与计算方法。运用这些计算方法,对零件疲劳极限进行了计算上的确定。并总结出疲劳强度在一些条件下的相关计算方法,如在简单应力状态,复杂应力状态下的不同。对疲劳强度安全系数的确定也进行了一系列分析,最后,尝试建立了疲劳强度的统计模型。 Abstract:The fatigue strength of parts is a worthy of deep discussion, have a vital role in many fields, the fatigue strength of parts determines its fatigue life, also decided on the part of the selection and the device design.This paper in reference to various data, and after the usual study accumulation experience, calculation of the fatigue strength of parts have some conclusion, that caused damage should change between force and the number of cycles of the causes of fatigue parts, the influence of static stress, effect of stress concentration, affects the absolute size, surface state and strengthening effect etc.. After the analysis of fatigue causes, draw many relationship graph and calculation method. Using the calculation method of fatigue limit, determined the calculation. And summarizes the related calculation under some conditions the method of fatigue strength, as in the simple stress state, the complex stress state under the different. Determination of the fatigue strength safety factor is also carried out a series of analysis, finally, try to establish a statistical model of fatigue strength. 关键词:零件疲劳寿命疲劳强度 Key word:Spare parts Fatigue life Fatigue strength

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

高强度螺栓疲劳校核

16、轮盘连接高强度螺栓疲劳强度校核 说明: 轮盘在设备的设计使用寿命期限内,始终处于受压状态,其三根弦杆承受压力作用,轮盘的整体弯矩由内、外弦杆的压力调幅来平衡,弦杆法兰连接的高强度螺栓承受的、由单独弦杆的弯矩引起的交变力很小。 由于法兰结合面的载荷全部为压力载荷,故螺栓的工作应力都小于其预紧力,故螺栓的拉力载荷总在预紧力一下某一范围波动。对螺栓而言,保证法兰结合面不松开,其压力载荷越大,螺栓残余预紧力就越小,螺栓的拉力就越小。本文的计算模型转变为较小圆角过度的阶梯轴拉伸(如图一),校核过渡截面的疲劳应力。 观览车的运行速度很慢,每周循环的时间为20分钟,考虑50年的使用寿命期,每年300天,每天工作8小时,共运行300000次循环,选小于结构钢S-N曲线的转折点的循环次数,且本文的计算载荷为正常满载+15m/s风载的载荷情况,故计算结果有一定的保守性。 疲劳设计方法是一门以试验为基础的设计方法,本计算选取的疲劳性能数据选自国内公开的《机械设计手册》数据。 图一:计算模型

附:螺栓无限寿命校核说明书 一、螺栓参数和预紧力: 螺栓直径:M30x160 性能等级:10.9级 过渡圆角:r=0.5mm 螺栓材料的破断强度:1000MPa 螺栓副连接的相对刚度:m b b C C C +=0.25 选用的单个螺栓预紧力矩:Nm T 1600= 则预紧力:kN N d T Q p 2671067.2030 .02.016002.05=?=?== 二、螺栓组载荷: 主管法兰圆周应力分布及载荷谱: 530*30螺栓组主管件轴力, 六点方位N=-4729kN ,七点半N=-4487kN ,九点N=-3785kN ,十点半N=-3181kN ,十一点N=-2961kN ,十二点N=-2300kN ,一点N=-2960kN ,一点半N=-3253kN ,三点N=-3891kN ,四点半N=-4552kN 。 最大压力:kN F a 4729-= 换算到单个螺栓的最大压力载荷:kN F F a 39412/472912/-=-== 螺栓最小拉力:kN F F C C C Q Q m b b p 1680.25267min =+=++ = 最小压力:kN F a 2300-=

全站仪的校核方法

全站仪的校核方法 高速公路测量恢复定线 随着设计单位对高速公路设计控制点的日益规范化、标准化,如何进行施工前的中线放样和水准测量,本文仅作简单介绍。 1中线放样 1.1中线放样的过程 1.1.1导线点坐标复测 检测合格的全站仪或光电测距仪配经纬仪,对导线点进行复核联测。测量过程严格按照Ⅰ级导线点测量方法进行。测量前可以根据设计单位所给坐标先计算好转折角和边长,与实测结果相比较,当误差较大时应查明原因,是导线点挪动或仪器故障。当该段导线点观测角和相邻导线点边长都已实测完毕,导线点复测的外业工作即宣告结束。接下来进行导线点坐标复测计算。一般来说,以前两个导线点和最后两个导线点为已知边进行方位角闭合计算,以监理要求的允许闭合理出导线点成果表(计算示例见表1)。 1.1.2主要中桩放样 主要中桩指直圆、缓圆、曲中、圆缓、缓直、直圆、圆直、交点等,且位置较好能够相互通视的点,不能通视的点放出之后也没有多大用处。 中桩放样是以某相距最近的导线点为测站,后视相邻导线点,拨角测距放出该中桩点,观测角和距离是以这三点的坐标计算得出的,在放样中桩时应注意两项: (1)放完一个中桩点后,必须进行仪器归零校核,归零误差应在限差之内,否则所放点位应重新放样; (2)测站导线点到所放中桩点距离小于到后视导线点距离。第一条是测量放样的常识,而第二条则是根据导线放样中桩总结出来的经验,可以减少误差的一种办法。放样中桩的数量以能达到相邻两中桩能够通视为下限,并写出中桩放样的详细记录。 1.1.3中桩穿线   根据导线点放出的中桩是否满足路线走向的各种技术参数呢?从理论上讲应该是的。但经过几条高速路的总结,不符合的情况还是存在,中桩穿线必不可少。 中桩穿线的过程与导线点复核测量方法相同,而衡量其是否合格则是路线的各种技术参数,即直线点是否在一条直线上,曲线点是否在一条曲线上。中桩穿线如有不符合的情况,应以该直线或曲线相距最远点调整中间点,线型结点应先定曲线后定直线。而事实上误差仍然难免,应详细记录穿线过程的各种数据,进行认真分析,查找原因,根据全线测量结果进行计算,寻找如何调整中桩位置,使线型能够达到最小误差的最佳方案。 导线点放样的中桩如未调整,其中桩放样记录也是栓桩的一种办法。如调整了,应在导线点二次实测进行记录栓桩。其它骑马桩、三角网等也可进行栓桩。但无论哪种办法,都应考虑施工由于高填或深挖以后是否还能由其恢复中桩。 1.2中线放样的几个问题 (1)导线点丢失后,是恢复其原来点还是重新布设?恢复其原来点十分困难,测量精度和重新布设的结果是一样的。一般来说,按照相邻点通视的要求重新布设速度快,提前选点布设完毕随导线点测量一次完成。

曲柄轴的强度设计、疲劳强度校核及刚度计算

材料力学课程设计 班级: 作者: 题目:曲柄轴的强度设计、疲劳强度校核及刚度计算 指导老师 2015.6.6

一、课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。三、设计题目 某柴油机曲轴材料为球墨铸铁(QT400-10),[σ]=120MPa,曲柄臂抽象为矩形(如图),h=1.2D,b/h=2/3(左、右臂尺寸相同),l=1.5e,l4=0.5l,已知数据如下表: F/kN W/kN l1/mm l2/mm l3/mm e/mm α(?) 20 5.4 380 230 120 120 12 1. 画出曲轴的内力图。 2. 按照强度条件设计主轴颈D和曲轴颈的直径d。 3. 校核曲柄臂的强度。

轴强度校核例题与方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较

敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤

汽车前方视野校核指南

整车技术部设计指南 138 第 17 章前方视野校核 17.1 概论 17.1.1 指南的主要目的 主要有两个方面: 1)掌握前方视野法规校核技术要求; 2)掌握前方视野法规校核的主要步骤和方法。 17.1.2 指南的校核内容 1)校核玻璃透明区是否满足要求; 2)驾驶员180°视野是否满足法规要求。 17.2 前方视野校核 17.2.1 前方视野校核引用的法规标准和要求 1)相关标准 a)GB/T11559-1989汽车室内尺寸测量用三维H点装置 b)GB/11562-94 汽车驾驶员前方视野要求和测量方法 c)GB/T11563-1995汽车H点确定程序 d)GB/11556-94 汽车风窗玻璃除霜系统性能要求及试验方法 2)点的定义 a)V点:表征驾驶员眼睛位置的点,它与纵向铅锤平面R点及设计座椅靠背角有关。 通常用V1和V2两点表示V点的不同位置。 b)风挡玻璃基准点:从V点向前的射线与风挡玻璃外表面的交点。 c)P点:驾驶员眼睛高度上的头部中心点。通常用P1和P2两点表示驾驶员水平观 察物体时P点的不同位置。 d)Pm点:纵向铅锤平面与P1和P2连线的交点。 e)E点:驾驶员眼睛的中心(简称眼点)。E1,E2(E3,E4)分别为头部中心点P在P1(P2) 位置时的左右两只眼点,它们用于评价A柱视野障碍。 3) 技术要求(欧洲和美国法规要求相同) a)风挡玻璃透明区至少应包括风挡玻璃基准点连线所包围的面积。这些基准点是: A.V1点水平向前偏左17?的基准点a; B.V1点向前沿铅垂平面向上7?的基准点b;

整车技术部设计指南139 C.V2点向前沿铅垂平面向下5?的基准点c; D.在汽车纵向对称平面的另一侧,应增加三个辅助基准点a?,b?,c?,它们与三个 基准点a,b,c相对称。 b)驾驶员前方视野180°范围内,在通过V1的水平面下方和通过V2的三个平面(三个平面都和水平面向下成4°夹角,其中一个平面垂直于Y轴基准平面,另两个平面垂 直于X基准平面)上方的范围内,除了A柱、三角窗分割条、车外无线电天线、后视镜 和风窗玻璃刮水器等造成的障碍外,不得有其它障碍,但一下情况除外: 1.直径小于0.5mm的嵌入式天线,或小于1.0mm的印刷天线,不认为是视野障碍; 2.无线电天线的导线一般不得进入A区(GB11556中5.1的规定),但是导线直径小 于0.5mm时,可允许三根导线进入,此种情况不认为是视野障碍; 3.最发直径为0.03mm,导线是竖直的,最下间距1.25mm,或导线是水平的,最小间 距 2.0mm的除霜及除雾导线,不认为是视野障碍。 c)通过V2垂直于Y基准平面且与转向盘上边缘相切的平面,如该平面相对水平面 至少后下倾斜1°时,则转向盘上边缘以下的仪表板所构成的障碍是允许的。 17.2.2 前方视野校核解析 校核步骤如下: 首先确定V1,V2点坐标,V点相对于R点坐标的X,Y,Z坐标确定,如表1所示 表1 表1给出的是设计靠背角25°时的基本坐标,若设计座椅靠背角度不是25°时,则 按表2对X,Z坐标进行修正。

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract:In stress fatigue strength theory, bolt, design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid, fasten bolt connection as the object of research, this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes, cylinder diameters between = = 400mm, bolting materials D2 for ms5.6 35 steel, bolt number for 14, in F "= 1.5 F below 15 ℃, the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw, nut, cylinder under cover, cover model. Starts with theoretical knowledge calculate,analysis, and then during analysis, ANSYS finite element analysis software by this paper analyzes forces bolt connection, to verify the rationality of the design of and reliability. After nearly decades of development, the theory of finite element method is more perfect, more extensive application, has become an indispensable design, analysis the emollient tool. Then in its analysis and calculation for bolt connection, based on the type of connection to the fatigue strength design of the general formula classification, further on top of this summary. Keywords: bolt fatigue strength, calculation and analysis, strength theory,ANSYS finite elements analysis.

轴的强度校核方法汇总.

中国石油大学(北京)现代远程教育 毕业设计(论文) 轴的强度校核方法 姓名: 学号: 性别: 专业:批次:电子邮箱:联系方式:学习中心:指导教师: 2XXX年X月X日 轴的强度校核方法 摘要

轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。最后确定轴的设计能否达到使用要求,对轴的设计十分重要。 本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。 关键词:轴;强度;弯矩;扭矩;

目录 第一章引言 (5) 1.1轴类零件的特点 (5) 1.2轴类零件的分类 (6) 1.3轴类零件的设计要求 (6) 1.3.1、轴的设计概要 (6) 132、轴的材料 (6) 1.3.3、轴的结构设计 (7) 1.4课题研究意义 (9) 第二章轴的强度校核方法 (11) 2.1强度校核的定义 (11) 2.2常用的轴的强度校核计算方法 (11) 2.2.1按扭转强度条件计算: (11) 2.2.2按弯曲强度条件计算: (13) 2.2.3按弯扭合成强度条件计算 (13) 2.2.4精确计算(安全系数校核计算) (20) 第三章提高轴的疲劳强度和刚度的措施 (25) 3.1合理的选择轴的材料 (25) 3.2合理安排轴的结构和工艺 (25) 3.3国内外同行业新材料、新技术的应用现状 (26) 总结 (31) 参考文献 (32)

相关文档
最新文档