实验三 负反馈放大电路
负反馈放大电路实验报告

(4)提高要求
usf
Rif
Rof
9.46
526.5Ω
3.43kΩ
与仿真数据比较:
usf =
if =
10.2 − 9.46
× 100% = 7.25%
10.2
526.5 − 310.13
3.58 − 3.43
× 100% = 41.10% ; =
× 100% = 4.19%
× 100% = 39.86%
854.1
393.1
误差分析:闭环时的电压放大倍数的误差相对较小,而输入输出电阻则与仿真值误差较大,
这主要是由于电压幅值较小,导致在测量输入输出电阻(尤其是输出电阻)时,两次测量的
电压(对于输入电阻指串入输入回路电阻两端的电压;对于输出电阻指带负载和不带负载时
的输出电压)的幅值变化很小,导致读数时的误差对结果影响较大。
526.5
3.58
误差分析:提高要求中闭环放大倍数、输出电阻与仿真值误差比较小,而输入电阻一项的误
差较大,其可能原因一方面与上面分析输入电阻误差的原因一致,另外可能与示波器显示波
形相对不稳定导致读数偏差增大有关。
七、分析与总结
由以上数据对比和误差分析可知:
此次试验数据与仿真数据的误差整体较小。这一方面是由于调整了仿真时晶体管的β 值,
3.
6
图 3 电流并联负反馈放大电路
四、仿真数据
基本要求:(原电路)
(1) 静态工作点的调试第一级:I DQ=1.99mA,
UGDQ=-9V.
UGSQ=-2.38V,
第二级:I CQ=2.03mA,
UA= 2.43 V,
US= 4.81 V,
UCEQ=2.303V
负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路一、实验目的1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。
二、实验任务设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。
结型场效应管的型号是2N5486,晶体管的型号是9011。
三、实验内容1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。
(1)静态和动态参数要求1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ;2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120;3)闭环电压放大倍数为10so sf -≈=U U A u 。
(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。
图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。
图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。
图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。
3.3k Ω(3)实验方法与步骤 1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。
第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ< - 4V 。
记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。
报告3实验3负反馈放大电路

模电仿真实验报告机电工程学院 13物理学李晓翠 20130664126实验三负反馈放大电路一、实验目的1、熟悉Multisim软件的使用方法。
2、掌握负反馈放大电路对放大器性能的影响。
3、学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。
4、学习掌握Multisim交流分析5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1、.启动Multisim,并画出如下电路2、.调节信号发生器V2的大小,使输出端在开环情况下输出不失真。
6、.测试放大频率特性在菜单中选取:仿真→运行→分析→交流分析点击如图所示工具栏S1断开、S2断开S1断开、S2断开S1断开、S2闭合S1断开、S2闭合S1闭合、S2断开S1闭合、S2断开S1闭合、S2闭合S1闭合、S2闭合图中的箭头是可以移动的,左边框里的数据也随之改变,把开环时的图形和闭环时的图形记录,并L f ,H f 是幅频曲线图中最大值的0.707倍,如下图:(调整起始频率与终止频率,使minY=0.707maxY.。
上限与下限分别调试,以保证测得的数据准确。
)H f —L f 就是带宽实验四 差动放大电路 一、实验目的1、熟悉Multisim 软件的使用方法。
2、掌握差动放大电路对放大器性能的影响。
3、学习差动放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法。
4、学习掌握Multisim 交流分析5、学会开关元件的使用 二、虚拟实验仪器及器材 双踪示波器 信号发生器 交流毫伏表 数字万用表 三、实验内容与步骤相位相位如下所示,输入电路1.调节放大器零点把开关S1和S2闭合,S3打在左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment值),填表一:测量值S3在右端Q1 Q2 R7C B E C B E U12.0000 -1.17316 -1.8086 11.9880 -349.672 -443.749 -12.0000S3在左端12.0000 -5.59543 -6.3090 11.7856 -1.16633 -485.15981-6.309562.测量差模电压放大倍数如下图所示,更改电路。
负反馈放大电路实验报告

负反馈放大电路实验报告3)闭环电压放大倍数为10so sf-≈=U U Au 。
(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。
图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。
图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。
图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。
3.3k Ω(3)实验方法与步骤1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。
第一级电路:调整电阻参数, 4.2sR k≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。
记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。
实验中,静态工作点调整,实际4sR k=Ω第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。
记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。
实验中,静态工作点调整,实际241b R k =Ωc. 动态参数的调试输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数so11U U A u =、so U U Au=、输入电阻R i 和输出电阻R o 。
电压放大倍数:(直接用示波器测量输入输出电压幅值)o1UsUoU1u A输入电阻: 测试电路:¸开关闭合、打开,分别测输出电压1oV和2oV,代入表达式:2112oio oVR RV V=-输出电阻:测试电路:¸记录此时的输出:0.79V olV=1.57(1)=32.960.79o o L o V R R k V '=-⨯Ω=Ω(-1)k2)两级放大电路闭环测试在上述两级放大电路中,引入电压并联负反馈。
负反馈放大电路实验总结

负反馈放大电路实验总结
在本次实验中,我们研究了负反馈放大电路的原理和性能。
负反馈放大电路是一种常见的电路拓扑结构,可用于增强放大器的线性度、稳定性和频率响应。
我们配置了一个基本的负反馈放大电路,包括一个放大器和一个反馈网络。
实验中使用了运放作为放大器,并选择合适的电阻和电容构成反馈网络。
通过调整反馈电路中的元件值,我们能够调节放大器的增益和频率响应。
我们测量了该负反馈放大电路的增益特性。
通过输入不同幅值和频率的信号,并测量输出信号的幅度,我们可得到放大器的频率响应曲线。
实验结果显示:负反馈放大电路可以改善放大器的频率响应,使其在更广泛的频率范围内保持较为稳定的增益。
我们还研究了负反馈对放大器的失真和稳定性的影响。
实验中使用了不同的反馈方式,如电压串联反馈和电流并联反馈,并对比其对放大器性能的影响。
实验结果表明,负反馈可以有效地减小放大器的非线性失真,提高整体的线性度和稳定性。
本次实验通过搭建负反馈放大电路,并对其性能进行测量和分析,探讨了负反馈对放大器性能的影响。
我们深入了解了负反馈放大电路的工作原理和应用场景,以及如何通过调整反馈网络来改善放大器的性能。
这为我们进一步研究和设计放大器电路提供了基础和启示。
实验3-负反馈对放大电路的影响

实验三负反馈对放大电路的影响
一、实验目的
1、加深对负反馈对放大器性能的理解。
2、学习电压串联负反馈放大器的对放大电路性能的影响。
二、实验内容
1、电压串联负反馈对放大倍数的影响
数据表如下:(信号源选择10mv/1kHz)
数据分析:
电压负反馈的特点是稳定输出电压,当输入信号大小一定时,由于负载减小或其他因素导致输出电压下降;引入串联负反馈使净输入电压减下。
有反馈时比无反馈是电压放大倍数减小。
2、 电压串联负反馈对放大倍数稳定性的影响
数据表如下:
数据分析:
dA f A f
=
11+AF
·
dA A
由上述数据可知,电压负反馈当输入信号大小一定时,由于负载的减小导致输出电压下降,该电路进行自动调节:R L ↓→u o ↓→u f ↓→u id ↑→u o ↑
反馈的结果牵制了输出电压的下降,从而使输出电压基本稳定。
3、 电压串联负反馈对输入电阻的影响
数据表如下:R I =U I U S −U I
R S
数据分析:
由以上数据可看出,当输出电阻一定时,引入电压串联负反馈。
使净输入电压u id减小,因而输入电流也减小,故引入电压串联负反馈会增大输入电阻。
4、电压串联负反馈对输出电阻的影响
−1)R L
数据表如下:R O=(U OO
U O
数据分析:
引入电压串联负反馈会减小输出电阻。
实验三 负反馈放大电路的测试

(4)按表2.3.1中的测试结果,求出Auf、Rif、Rof,与理论值进行比较,总结出电压串 联负反馈放大电路的性能特点。
图 2.3.1 电压串联负反馈放大电路
《模拟电子技术》实验项目
表2.3.1 电压串联负反馈特性
内容
Ui/V UP/V Uf/V Uo/V Uot/V
Auf
Rif/Ω Rof/Ω
测量值
理论值
《模拟电子技术》实验项目
2.电流串联负反馈放大电路特性研究
(1)按图2.3.2接线,检查接线无误后,接通正、负电源电压±10V。
(2)接入输入端接入频率为1KHz、有效值为0.2V的正弦信号,用示波器观察输入电
压及输出电压应为同频率的正弦波。
u u u u (3)用交流毫伏表分别测出、
明了什么问题? 表2.3.2 电流串联负反馈特性
内容
Ui/V
UP/V
Uf/V
UO′/V
UO/V (=UO′-Uf)
10KΩ
RL 5.1KΩ 2KΩ
《模拟电子技术》实验项目
3.分析多级负反馈放大电路 (1)由CF747双运放构成的两级负反馈放大电路如图2.3.3所示,要求进行以下分析:
①判别各级运放各构成什么类型的交流负反馈,并指出反馈元件,求出各级电压增 益的大小; ②判别级间构成什么类型的交流负反馈?并指出反馈元件,根据电路元件参数估算 闭环增益。 (2)按图2.3.3接线,检查接线无误后,接通正、负电源电压±10V.。
《模拟电子技术》实验项目
2、负反馈放大电路有四种基本类型:电压串联负反馈、电流串联负反馈、电压并
联负反馈和电流并联负反馈。反馈信号取样于输出电压的,称电压反馈,取样于电流
负反馈放大电路实验报告

负反馈放大电路实验报告负反馈放大电路实验报告引言:负反馈放大电路是电子工程中常见的一种电路结构,通过引入负反馈,可以改善放大电路的性能,提高稳定性和线性度。
本实验旨在通过搭建负反馈放大电路并进行实际测量,验证其性能改善效果。
一、实验装置与原理本实验采用了基本的共射放大电路作为负反馈放大电路的实验对象。
该电路由三极管、电阻、电容等元件组成,其原理是通过负反馈将放大电路的输出信号与输入信号进行比较,并通过调节反馈电路的增益来实现性能的改善。
二、实验步骤1. 搭建电路:根据实验指导书上的电路图,依次连接三极管、电阻和电容等元件,确保电路连接正确无误。
2. 调整电路参数:通过调节电阻的值,使得电路的工作点达到最佳状态,以确保三极管能够正常工作。
3. 连接信号源:将信号源与输入端相连,确保输入信号正常输入。
4. 连接示波器:将示波器与输出端相连,以便观察输出信号的波形和幅度。
5. 测量输出信号:通过示波器观察输出信号的波形和幅度,并记录下相应的数值。
三、实验结果与分析在实验中,我们通过调节电阻的值,使得电路的工作点达到最佳状态。
在这个状态下,我们观察到输出信号的波形明显改善,失真减小,幅度更加稳定。
这说明负反馈放大电路能够有效地改善放大电路的性能。
此外,我们还通过改变输入信号的频率,观察输出信号的变化。
实验结果显示,随着频率的增加,输出信号的幅度有所下降,但波形仍然保持较好的线性度。
这说明负反馈放大电路对于不同频率的信号都能够进行有效放大,并保持较好的线性度。
四、实验总结通过本次实验,我们成功搭建了负反馈放大电路,并通过实际测量验证了其性能改善效果。
负反馈放大电路能够有效地改善放大电路的线性度和稳定性,使得输出信号更加稳定、准确。
在实际应用中,负反馈放大电路被广泛应用于音频放大器、功放等电子设备中,以提高音质和信号质量。
然而,负反馈放大电路也存在一些限制,如增加了电路的复杂性、引入了噪声等。
因此,在实际设计中需要综合考虑各种因素,选择合适的负反馈放大电路结构以及合适的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三负反馈放大电路
一.实验名称
负反馈放大电路
二.实验目的
1.研究负反馈对放大器放大倍数的影响
2.进一步掌握多级放大电路静态工作点的调试方法
三.实验仪器
1.双踪示波器
2.信号发生器
3.万用表
四.实验内容
1.连接实验线路
如图3-1所示,将线连好。
另将放大电路输入端接Rp4、1c6(后面称RF)两端,构成负反馈电路。
2.调整静态工作点
方法如同实验二。
将实验数据填入表中。
表数据记录表5
3.负反馈放大器开环和闭环放大倍数的测试
(1)开环电路
a.按图接线,RF先不接入。
b.输入端接入Ui=1 mV f=1 KHZ的正弦波(注意输入1mV
信号采用输入端衰减见实验二)。
调整接线和参数是输出端不失真且无震荡(参考实验二方法)。
c.按表要求进行测量并填表。
d.根据实测值计算开环电路放大倍数和输出电阻r0。
(2)闭环电路
A.接通RF,按(1)要求调整电路。
B.按表要求测量并填表,计算Auf。
RL(KO) Ui(mV) Uo(mV)Auf(Auf) 闭环1k5。