2017小升初数学牛吃草问题解题思路和技巧_知识点总结

合集下载

牛吃草问题含例题答案讲解

牛吃草问题含例题答案讲解

小学数学牛吃草问题知识点总结: 牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

奥数牛吃草知识点总结

奥数牛吃草知识点总结

奥数牛吃草知识点总结一、牛吃草问题的基本概念。

1. 定义。

- 牛吃草问题又称为消长问题或牛顿问题。

它描述的是在一片草地上,牛不断吃草,草又不断生长(或者草不断枯萎,是类似的情况但生长率为负)的动态过程,要根据给定的牛的数量、吃草天数等条件求出草地原有的草量、草的生长速度或者可供一定数量的牛吃的天数等问题。

2. 核心要素。

- 原有草量:草地一开始所拥有的草的总量。

- 草的生长速度:单位时间内草生长(或枯萎)的量。

- 牛的吃草速度:每头牛单位时间内吃草的量(通常假设每头牛每天吃草量为1份,方便计算)。

二、基本公式。

1. 草生长时的公式。

- 设原有草量为y,草的生长速度为x,牛的头数为n,吃的天数为t。

- 则y=(n - x)t。

这里n - x表示实际上每天净消耗原有草量的速度,因为牛在吃草的同时草也在生长,n头牛每天吃草n份,草每天生长x份,所以净消耗原有草量的速度就是n - x份/天。

2. 草枯萎时的公式。

- 如果草是不断枯萎的,设草的枯萎速度为x(此时x为正数,表示草量减少的速度)。

- 则y=(n + x)t。

这里n+x表示每天消耗原有草量的速度,因为牛吃草和草枯萎都在减少草量,n头牛每天吃草n份,草每天枯萎x份,所以总共消耗原有草量的速度就是n + x份/天。

三、解题步骤。

1. 求草的生长速度(或枯萎速度)和原有草量。

- 一般给出两种不同牛的数量和它们吃草的天数的情况。

- 例如:有一片草地,可供10头牛吃20天,可供15头牛吃10天。

设每头牛每天吃草量为1份。

- 根据公式y=(n - x)t列出方程组:- 对于10头牛吃20天的情况,y=(10 - x)×20。

- 对于15头牛吃10天的情况,y=(15 - x)×10。

- 然后将两个方程联立求解:- 由(10 - x)×20=(15 - x)×10,展开得到200 - 20x = 150 - 10x。

- 移项可得-20x+10x = 150 - 200,即-10x=-50,解得x = 5份/天。

小学数学-牛吃草问题

小学数学-牛吃草问题

牛吃草问题(课时1)牛吃草问题是小学奥数竞赛和小升初考试中经常考查的内容,常会大题的形式出现,分值从4-6分值不等。

解答牛吃草问题的应用题,常常会和实际生活问题相结合,难度虽然不大,但变形较多,考查形式多样化,但是都可以转化为牛吃草的问题来解决!其实解决牛吃草问题也不难,主要掌握以下几个问题和思路1、知道什么题算牛吃草问题?牛吃草问题,主要是草会变,或三增加,或减少。

(如果草不发生变化,就可能会变为归一问题,盈亏问题等。

)所以牛吃草有两大题型,一个长草,一个减草。

2、牛吃草问题的一个假设我们常常假设单位牛头数在单位时间内吃的草为1份,这个容易被忽视,这个也很重要,首先它是用来计算两个草量,其实,它为后面的问题简化作铺垫。

3、牛吃草问题的两个关键量生长量和原有草量。

生长量容易做,因为随着天数的增加,草量会发生变化,根据差量法即可得到。

而原有草量是要注意长草还是减草的。

4、牛吃草问题的技巧牛吃草问题的最大技巧就是把原有草量和生长量分开考虑。

当原有草量吃完后,再把生长量考虑进去即可。

而生长量需要几头牛,正是利用了“假设”得到的。

5、牛吃草问题的变形其中一个变形就是上面例题,草地的大小不同。

常用的基本公式:Ⅰ、草每天均匀增长,则原有草量+草每天的生长量*天数=牛每天吃的量*头数*天数;Ⅱ、草每天均匀下降,则原有草量-草每天的生长量*天数=牛每天吃的量*头数*天数;或者原有草量(总体草量)=草每天的生长量*天数+牛每天吃的量*头数*天数。

典型例题例一、有一片青草地,每天都匀速地长出青草,这片青草可供27头牛吃6周或供23头牛吃9周,那么这片草地可供21头牛吃几周?点拨:假设每头牛每周吃青草1份,青草的生长速度:(23×9-27×6)÷(9-6)=15(份);草地原有的草的份数27×6-15×6=72(份);再让21头牛中的15头吃生长的草,剩下的6头牛吃草地原有的72份草,可吃:72÷6=12(周).拓展一:一块牧场的草够12头牛吃12星期,或15头牛吃8个星期,如果在全部时间内青草能均匀的生长,那么,这块牧地6个星期能养活多少头牛?点拨:设1头牛1星期的吃草量为1。

牛吃草的问题解法

牛吃草的问题解法

牛吃草的问题解法
“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。

“牛吃草”问题是小学应用题中的难点.
解“牛吃草”问题的主要依据:
①草的每天生长量不变;
②每头牛每天的食草量不变;
③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值
④新生的草量=每天生长量×天数
同一片牧场中的“牛吃草”问题,一般的解法可总结为:
⑴设定1头牛1天吃草量为“1”;
⑵草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数);
⑶原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数;
⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);
⑸牛的头数=原来的草量÷吃的天数+草的生长速度.
“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.。

小升初数学专项题-第三十八讲 牛吃草问题通用版

小升初数学专项题-第三十八讲  牛吃草问题通用版

第三十八讲牛吃草问题【知识梳理】基本公式(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度【典例精讲1】有一牧场,已知养牛54头,6天把草吃尽;养牛46头,9天把草吃尽.如果养牛42头,那么几天能把牧场上的草吃尽呢?思路分析:把一头牛一天所吃的牧草看作1,那么就有:牧场原有的草和6天新长的草,即54头牛6天所吃的牧草:54×6=324,再求出牧场原有的草和9天新长的草,即46头牛9天所吃的牧草:46×9=414;1天新长的草为:(414-324)÷(9-6)=30;牧场上原有的草为:54×6-30×6=144;每天新长的草足够30头牛吃,42头牛减去30头,剩下12头吃原牧场的草,即为所求.解答:(1)54头牛6天所吃的牧草为:54×6=324(2)46头牛9天所吃的牧草为:46×9=414(3)1天新长的草为:(414-324)÷(9-6)=30(4)牧场上原有的草为:54×6-30×6=144(5)每天新长的草足够30头牛吃,42头牛减去30头,剩下12头吃原牧场的草:144÷(42-30)=12(天)答:养42头牛,12天才能把牧场上的草吃尽。

小结:解决此类问题的重点是要想办法从变化中找到不变量,牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

【举一反三】1. 牧场上有一片匀速生产的草地,可供27头牛吃6周,或者供23头牛吃9周,如果把草场的面积扩大到原的3倍,那么它可以供54头牛吃几周?2. “希望”牧场上有一片草地,每天牧草都在匀速生长,这片牧草可供8头牛吃8周,或者9头牛吃6周,现在有17头牛,可以供这些牛吃几周?【典例精讲2】李洋家有一牧场,草每天的生长速度相同.若14头牛15天可将草吃完,70只羊8天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么17头牛和20只羊多少天可将草吃完?思路分析:本题先把羊的只数转化为牛的只数,“若14头牛15天可将草吃完,70只羊(17.5头牛)8天也可将草吃完”求出草每天的生长份数和原有的草的份数;就能够进一步求出17头牛和20只羊(5头牛)多少天可将草吃完?解答:设一头牛一天的吃草量为1份,那么70只羊,20只羊转化成牛的头数是:70÷4=17.5(头),20÷4=5(头);草每天的生长速度是:(14×15-17.5×8)÷(15-8)=10(份),原有的草是:14×15-15×10=60(份),那么17头牛和20只羊也就相当于牛的头数是:17+5=22(头);那么每天生长的10份的草就够22头牛中的10头牛吃的,剩下的牛去吃60份需要的天数是:60÷(22-10),=5(天),答:17头牛和20只羊5天可将草吃完.小结:解决此类问题重点是要把羊的只数转化成牛的只数再解决。

牛吃草的解题思路

牛吃草的解题思路

牛吃草的解题思路一、牛吃草问题基础概念与公式。

1. 概念。

- 牛吃草问题又称为消长问题或牛顿问题,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

2. 基本公式。

- 设每头牛每天的吃草量为1份。

- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、牛吃草问题例题与解析。

1. 有一片牧场,草每天都在匀速生长。

如果放养24头牛,那么6天就可以把草吃完;如果放养21头牛,那么8天可以把草吃完。

- 要使得草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 首先求草的生长速度,设每头牛每天吃草量为1份。

- 草的生长速度=(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。

要使草永远吃不完,那么牛每天的吃草量最多等于草的生长速度,所以最多放养12头牛。

- 先求原有草量,原有草量 = 24×6 - 12×6 = 72(份)。

- 当放养36头牛时,吃的天数 = 72÷(36 - 12)=72÷24 = 3(天)。

2. 一片草地,可供5头牛吃30天,也可供4头牛吃40天。

如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?- 解析:- 设每头牛每天吃草量为1份。

- 草的生长速度=(4×40 - 5×30)÷(40 - 30)=(160 - 150)÷10 = 1(份/天)。

小升初奥数解题方法:牛吃草问题

小升初奥数解题方法:牛吃草问题

小升初奥数解题方法:牛吃草问题
小升初奥数解题方法:牛吃草问题
牛吃草问题有两种常用的方法:
1、四步法
解决牛吃草问题常用到四个基本公式,分别是︰
(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片草,这块地既有原有的'草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:
(1)(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

(2)牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

2、二元一次方程法
设草的生长速度为,原有草量为,根据题意列二元一次方程,并解方程!。

牛吃草问题的解题口诀及详细解题思路

牛吃草问题的解题口诀及详细解题思路

牛吃草问题的解题口诀及详细解题思路【口诀】:每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;用一些草除以剩余的牛的数量,得出所需的天数。

牛吃草问题的例题解析整个牧场上的草长得又密又快。

27头牛6天可以吃草;23头牛可以在9天内吃掉这些草。

问21多少天才能把草吃完。

每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。

所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)随着天气越来越冷,牧场上的草每天都在以固定的速度减少。

经过计算,牧场上的草可以喂20头牛5天,或者喂16头牛6天。

那么,11头牛能吃多少天呢?解答:设一头牛一天吃的草量为一份。

牧场每天减少的草量:(20×5-16×6)÷(6-5)=4份,原来的草量:(20+4)×5=120份,可供11头牛吃120÷(11+4)=8天。

总结:试着从变化中找出不变的量。

牧场上原来的草是不变的,新长出的草是变化的,但是因为它是匀速生长的,所以每天新长出的草量也是不变的。

正确计算草原上的原草和每天生长的新草,就能解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017小升初数学牛吃草问题解题思路和技巧_知识点总结
牛吃草问题是小学五年级的内容,学过的同学都知道这是一类比较复杂的应用题,下面为大家分享小升初数学牛吃草问题解题思路和技巧,供大家参考!
一、解决此类问题,孩子必须弄个清楚几个不变量:
1、草的增长速度不变
2、草场原有草的量不变。

草的总量由两部分组成,分别为:牧场原有草和新长出来的草。

新长出来草的数量随着天数在变而变。

因此孩子要弄清楚三个量的关系:
第一:草的均匀变化速度(是均匀生长还是均匀减少)
第二:求出原有草量
第三:题意让我们求什么(时间、牛头数)。

注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机
二、解题基本思路
1、先求出草的均匀变化速度,再求原有草量。

2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数
三、解题基本公式
解决牛吃草问题常用到的四个基本公式分别为:
1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)
2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数
3、吃的天数=原有草量÷(牛头数-草的生长速度)
4、牛头数=原有草量÷吃的天数+草的生长速度
四、下面举个例子
例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

一般方法:先假设1头牛1天所吃的牧草为1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

)
(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。

)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽
公式解法:
(1)草的生长速度=(207-162)÷(9-6)=15
(2)牧场上原有草=(27-15)×6=72
再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15
份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。

方程解答:
设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有
27×6-6x =23×9-9x
解出x=15份
再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:
27×6-6×15 =23×9-9×15=(21-15)x
解出x=12(天)
所以养21头牛。

12天可以吃完所有的草。

以上就是我们为大家分享的小升初数学牛吃草问题解题思路和技巧,希望同学们一定要每天坚持练习数学题。

相关文档
最新文档