2020年河南省许昌市中考数学一模试卷 (解析版)
河南省许昌市2019-2020学年中考数学一月模拟试卷含解析

河南省许昌市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6 2.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C . D .3.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x=的图象上.若点B 在反比例函数k y x=的图象上,则k 的值为( )A .2B .-2C .4D .-44.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( )A .0.69×10﹣6B .6.9×10﹣7C .69×10﹣8D .6.9×1075.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟6.对于不等式组1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤C .此不等式组有5个整数解D .此不等式组无解7.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =(k≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图所示的几何体的主视图是( )A .B .C .D .9.估算18的值是在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间10.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .5611.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位C ︒:﹣6,﹣1,x ,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( )A .方差是8B .极差是9C .众数是﹣1D .平均数是﹣112.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点D D .点B 和点C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分式方程213024x x x -=+-的解为x =__________. 14.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若CG GB 1k =,则AD AB = (用含k 的代数式表示).15.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为______dm .16.如图,已知在平行四边形ABCD 中,E 是边AB 的中点,F 在边AD 上,且AF :FD=2:1,如果AB →=a →,BC →=b →,那么EF →=_____.17.将抛物线y =2x 2平移,使顶点移动到点P (﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____. 18.分解因式x 2﹣x=_______________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
2020年河南省许昌市长葛市中考数学一模试题(解析版)

2020年河南省许昌市长葛市中考数学一模试卷一、选择题 1.12019-的相反数是( ) A. 12019 B. 12019- C. 2019 D. -2019【答案】A【解析】【分析】直接利用相反数的定义分析得出答案. 【详解】解:12019-的相反数是:12019. 故选A .【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.若反比例函数y=k x 的图象经过点(2,﹣1),则k 的值为( ) A. ﹣2B. 2C. ﹣12D. 12 【答案】A【解析】把点(2,-1)代入解析式得-1=2k , 解得k=-2.故选A .3.下列事件中,属于必然事件的是( )A. 2020年的元旦是晴天B. 太阳从东边升起C. 打开电视正在播放新闻联播D. 在一个没有红球的盒子里,摸到红球 【答案】B【解析】【分析】必然事件是一定发生的事件,根据定义判定即可.【详解】A. 2020年的元旦是晴天,是随机事件;B. 太阳从东边升起,一定会发生,是必然事件;C. 打开电视正在播放新闻联播,是随机事件;D. 在一个没有红球的盒子里,摸到红球,是不可能事件;故选B.【点睛】本题考查必然事件的概念,熟记一定发生的事件为必然事件是关键.4.对于反比例函数2y x=,下列说法中不正确的是( ) A. 点()2,1--在它的图象上B. 它的图象在第一、三象限C. y 随x 增大而减小D. 当0x <时,y 随x 的增大而减小【答案】C【解析】【分析】根据反比例函数的性质用排除法解答,当系数k >0时,函数图象在第一、三象限,当x >0或x <0时,y 随x 的增大而减小,由此进行判断.【详解】A 、把点(-2,-1)代入反比例函数y=2x 得-1=-1,本选项正确; B 、∵k=2>0,∴图象在第一、三象限,本选项正确;C 、∵k=2>0,∴图象在第一、三象限内y 随x 的增大而减小,本选项不正确;D 、当x <0时,y 随x 的增大而减小,本选项正确.故选C .【点睛】考查了反比例函数y=k x(k≠0)的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.5.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内O e 上的一点,若DAB 25∠=o ,则OCD ∠的度数是( )的A. 45oB. 60oC. 65oD. 70o【答案】D【解析】【分析】根据圆周角定理求出DOB ∠,根据互余求出∠COD 的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD ,25DAB o Q ∠=,250BOD DAB ∠∠∴==o ,905040COD ∠∴=-=o o o ,OC OD =Q ,()1180702OCD ODC COD ∠∠∠∴==-=o o . 故选D .【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键. 6.如图,已知△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AO :AD 的值为( )A. 2:3B. 2:5C. 4:9D. 4:13【答案】B【解析】分析】 由△ABC 经过位似变换得到△DEF ,点O 是位似中心,根据位似图形的性质得到AB :DO═2:3,进而得出答案. 【详解】∵△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49, ∴AC DF =23,AC ∥DF , ∴AO DO =AC DF =23, ∴AO AD =25. 故选B .【点睛】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.7.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论:①c <0;②2a+b =0;③a+b+c <0;④b 2﹣4ac <0,其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物【线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①如图所示,抛物线与y 轴交于负半轴,则c <0,故①正确;②如图所示,对称轴x =﹣2b a=1,则2a+b =0. 故②正确;③如图所示,当x =1时,y <0,即:a+b+c <0.故③正确;④如图所示,抛物线与x 轴有两个不同的交点,则b 2﹣4ac >0.故④错误.综上所述,正确的结论有3个.故选:C .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A. B.C. D.【答案】B【解析】【分析】利用△ABC 中,∠ACB =135°,AC =2,BC ,然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可对各选项进行判定即可.【详解】在△ABC 中,∠ACB =135°,AC =2,BC =,在A 、C 、D 选项中的三角形都没有135°,而在B 选项中,三角形的钝角为135°,它的两边分别为1,,所以B 选项中的三角形与△ABC 相似. 故选:B .【点睛】此题考查了相似三角形的判定.注意两组对应边的比相等且夹角对应相等的两个三角形相似.9. 如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A. 23π-B. 23πC. πD. π-【答案】B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG≌△DBH (ASA ), ∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π 故选B .10.在平面直角坐标系xOy 中,将一块含有45°角直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C ′的坐标为( )A. (32,0) B. (2,0) C. (52,0) D. (3,0)【答案】C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题11.在函数y=3x中,自变量x的取值范围是_____.【答案】x≥0且x≠3【解析】【分析】根据被开方数是非负数且分母不等于零,可得答案.【详解】由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3【点睛】本题考查了函数自变量取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.12.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_________个【答案】14【解析】【分析】先由频率估计出摸到黄球的概率,然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球概率为0.35设布袋中黄球的个数为x 个 由概率公式得0.3540x = 解得14x = 故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键. 13.如图,已知l 1∥l 2∥l 3,直线l 4、l 5被这组平行线所截,且直线l 4、l 5相交于点E ,已知AE =EF =1,FB =3,则AC BD =_____. 【答案】14【解析】【分析】由l 1∥l 2,根据根据平行线分线段成比例定理可得FG =AC ;由l 2∥l 3,根据根据平行线分线段成比例定理可得FG BD =EF EB =14. 【详解】∵l 1∥l 2,AE =EF =1, ∴AC FG =AE EF =1, ∴FG =AC ;∵l 2∥l 3, ∴FG BD =EF EB =14, ∴AC BD =FG BD =14, 故答案为14. 【点睛】本题考查了平行线分线段成比例定理,掌握平行于三角形的一边,并且和其他两边(或两边的延的长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例是解题的关键.14.如图等边三角形ABC 内接于O e ,若O e 的半径为1,则图中阴影部分的面积等于_________.【答案】3π 【解析】 【分析】如图(见解析),连接OC ,根据圆的内接三角形和等边三角形的性质可得,AOB ∆的面积等于AOC ∆的面积、以及AOC ∠的度数,从而可得阴影部分的面积等于钝角AOC ∠对应的扇形面积. 【详解】如图,连接OC由圆的内接三角形得,点O 为ABC ∆垂直平分线的交点又因ABC ∆是等边三角形,则其垂直平分线的交点与角平分线的交点重合1,302AB AC OAC OCA ACB ∴=∠=∠=∠=︒,且点O 到AB 和AC 的距离相等180120,AOB AOC AOC OAC OCA S S ∆∆∴∠=︒-∠-∠=︒=则212013603AOC S S ππ==⨯⨯=阴影扇形 故答案为:3π.【点睛】本题考查了圆的内接三角形的性质、等边三角形的性质、扇形面积公式,根据等边三角形的性质得出AOB ∆的面积等于AOC ∆的面积是解题关键. 15.如图,矩形ABCD 的顶点A ,C 在反比例函数(0,0)ky k x x=>>的图象上,若点A 的坐标为(3,4),2AB =,//AD x 轴,则点C 的坐标为__.【答案】(6,2). 【解析】 【分析】根据矩形的性质和A 点的坐标,即可得出C 的纵坐标为2,设(,2)C x ,根据反比例函数图象上点的坐标特征得出234k x ==⨯,解得6x =,从而得出C 的坐标为(6,2). 【详解】Q 点A 的坐标为(3,4),2AB =, (3,2)B ∴,Q 四边形ABCD 是矩形,//AD BC ∴,//AD x Q 轴, //BC x ∴轴,C ∴点的纵坐标为2,设(,2)C x ,Q 矩形ABCD 的顶点A ,C 在反比例函数(0,0)k y k x x=>>的图象上,234k x ∴==⨯,6x ∴=,(6,2)C ∴,故答案为(6,2).【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得C 的纵坐标为2是解题的关键.三、解答题16.计算:24111|2⎛⎫--- ⎪⎝⎭【答案】14【解析】 【分析】先计算有理数的乘方、绝对值运算、二次根式的化简,再计算实数的加减运算即可.【详解】原式11)14=--1114=--14=-. 【点睛】本题考查了有理数的乘方、绝对值运算、二次根式的化简、实数的加减运算,熟记各运算法则是解题关键.17.如图,已知点D 是ABC V 的边AC 上的一点,连接BD.ABD C ∠∠=,AB 6=,4AD =.()1求证:ABD V ∽ACB V ; ()2求线段CD 的长.【答案】(1)参见解析;(2)5. 【解析】 【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD 长. 【详解】(1)∵∠ABD =∠C ,∠A =∠A (公共角), ∴△ABD∽△ACB ;(2)由(1)知:△ABD∽△ACB , ∵相似三角形的对应线段成比例 ,∴AD AB =AB AC,即46=64cD +,解得:CD =5. 18.如图,反比例函数2m y x-=的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,y 随x 的增大而________,常数m 的取值范围是________;(2)若此反比例函数的图象经过点()2,3-,求m 的值. 【答案】(1)故答案为四;增大;2m <;(2)4m =-. 【解析】 【分析】(1)根据反比例函数的图象特点即可得; (2)将点()2,3-代入反比例函数的解析式即可得.【详解】(1)由反比例函数的图象特点得:图象的另一支在第四象限;在每个象限内,y 随x 的增大而增大 由反比例函数的性质可得:20m -<,解得2m < 故答案为:四;增大;2m <; (2)把()2,3-代入2m y x-=得到:232m -=-,则4m =- 故m 的值为4-.【点睛】本题考查了反比例函数的图象特点、反比例函数的性质,熟记函数的图象特点和性质是解题关键. 19.阅读以下材料:有这样一个问题:关于x 的一元二次方程ax 2+bx+c =0(a >0)有两个不相等的且非零的实数根.探究a ,b ,c 满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程: ①设一元二次方程ax 2+bx+c =0(a >0)对应的二次函数为y =ax 2+bx+c (a >0); ②借助二次函数图象,可以得到相应的一元二次中a ,b ,c 满足的条件,列表如下: 方程根的几何意义:(1)参考小明的做法,把上述表格补充完整;(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m 的取值范围.【答案】(1)补充表格见解析;(2)0<m<3【解析】【分析】(1)由二次函数与一元二次方程的关系以及二次函数与系数的关系容易得出答案;(2)分m>0,m<0两种情况,根据题意结合图象可得x=-1时y的取值范围,从而得出关于m的不等式组,解不等式组即可.【详解】(1)补全表格如下:(2)设一元二次方程mx2﹣(2m+3)x﹣4m=0对应的二次函数为:y=mx2﹣(2m+3)x﹣4m,∵一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,①当m>0时,x=﹣1时,y>0,即m+2m+3-4m>0解得:m<3,∴0<m<3.②当m<0时,x=﹣1时,y<0,即m+2m+3-4m<0解得:m>3(舍弃)∴m的取值范围是0<m<3.【点睛】本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系以及二次函数与系数的关系等知识;熟练掌握二次函数与一元二次方程的关系以及二次函数与系数的关系是解决问题的关键.20.如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC,(1)求证:BC 是⊙O 的切线; (2)若⊙O 的半径为2,BC AB =35,求CE 的长.【答案】(1)证明见详解;(2)5. 【解析】 【分析】(1)连接AE ,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC ,∠EAD=∠ACE ,求出∠BCE+∠ACE=90°,根据切线的判定推出即可. (2)根据AC=4,BC AB =35,求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE ,∠E=∠E 证△AEF ∽△CEA ,推出EC=2EA ,设EA=x ,EC=2x ,由勾股定理得出22416x x +=,求出即可.【详解】(1)答:BC 与⊙O 相切. 证明:连接AE , ∵AC 是⊙O 的直径 ∴∠E=90°,∴∠EAD+∠AFE=90°, ∵BF=BC ,∴∠BCE=∠BFC=∠AFE , ∵E 为弧AD 中点, ∴∠EAD=∠ACE ,∴∠BCE+∠ACE=∠EAD+∠AFE=90°, ∴AC ⊥BC , ∵AC 为直径, ∴BC 是⊙O 的切线.(2)解:∵⊙O 的半为2, ∴AC=4, ∵BC AB =35∴BC=3,AB=5, ∴BF=3,AF=5-3=2, ∵∠EAD=∠ACE ,∠E=∠E , ∴△AEF ∽△CEA , ∴2241EA AF EC AC === ∴EC=2EA ,设EA=x ,则有EC=2x , 由勾股定理得:22416x x +=,∴x =(负数舍去),即25CE x ==. 【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生的推理能力.21.有四张反面完全相同的纸牌,,,A B C D ,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是 .(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用,,,A B C D 表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.【答案】(1) 34;(2)见解析 【解析】 【分析】(1)直接根据概率公式计算即可.(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可. 【详解】解:(1)共有4张牌,正面是中心对称图形的情况有3种, 从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是34; 故答案为34; (2)游戏不公平,理由如下: 列表得:共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即()(),,A C C A∴P (两张牌面图形既是轴对称图形又是中心对称图形)2111262==≠, ∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.22.如下图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F .另一边交CB 的延长线于点G .(1)观察猜想:线段EF 与线段EG 的数量关系是 ;(2)探究证明:如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =、BC b =,求EFEG的值. 【答案】(1)EF EG =;(2)成立,证明过程见解析;(3)EF bEG a=. 【解析】 【分析】(1)利用三角形全等的判定定理与性质即可得;(2)如图(见解析),过点E 分别作,EH BC EI CD ⊥⊥,垂足分别为,H I ,证明方法与题(1)相同; (3)如图(见解析),过点E 分别作,EM BC EN CD ⊥⊥,垂足分别为,M N ,先同(2)求出FEN GEM ∠=∠,从而可证FEN GEM ∆~∆,由相似三角形的性质可得EF ENEG EM=,再根据平行线的性质和相似三角形的性质求出ENEM的值,即可得出答案.【详解】(1)EF EG =,理由如下:由直角三角板和正方形的性质得90ED EB D EBC BED GEF =⎧⎨∠=∠=∠=∠=︒⎩9090FED BEF GEB BEF D EBG ∠+∠=∠+∠=︒⎧∴⎨∠=∠=︒⎩FED GEB ∴∠=∠在FED ∆和GEB ∆中,90FED GEB ED EB D EBG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()FED GEB ASA ∴∆≅∆EF EG ∴=;(2)成立,证明如下:如图,过点E 分别作,EH BC EI CD ⊥⊥,垂足分别为,H I ,则四边形EHCI 是矩形90HEI ∴∠=︒90,90FEI HEF GEH HEF ∴∠+∠=︒∠+∠=︒FEI GEH ∴∠=∠由正方形对角线的性质得,AC 为BCD ∠的角平分线则EI EH =在FEI ∆和GEH ∆中,90FEI GEH EI EH FIE GHE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()FEI GEH ASA ∴∆≅∆EF EG ∴=;(3)如图,过点E 分别作,EM BC EN CD ⊥⊥,垂足分别为,M N同(2)可知,FEN GEM ∠=∠由长方形性质得:90,90,D ENC ABC EMC AD BC b ∠=∠=︒∠=∠=︒==//,//EN AD EM AB ∴,CEN CAD CEM CAB ∴∆~∆∆~∆,EN CE EM CE AD CA AB CA∴== EN EM AD AB ∴=,即EN AD b EM AB a== 在FEN ∆和GEM ∆中,90FEN GEM FNE GME ∠=∠⎧⎨∠=∠=︒⎩ FEN GEM ∴∆~∆EF EN b EG EM a∴==.【点睛】本题考查了正方形的性质、矩形的性质、三角形全等的判定定理与性质、相似三角形的判定定理与性质,较难的是题(3),通过作辅助线,构造两个相似三角形是解题关键.23.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H .(1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣3x +4;(2)PG =﹣m 2﹣3m ,(3)m =﹣2【解析】【分析】(1)将A (1,0),B (0,4)代入y =﹣x 2+bx +c ,运用待定系数法即可求出抛物线的解析式;(2)先求出抛物线与直线BC 的交点为(﹣2,4)(0,4),得出点P 在直线BC 上方时,m 的取值范围,再根据P (m ,﹣m 2﹣3m +4),G (m ,4),求出PG =﹣m 2﹣m ;(3)先求出直线BD 的解析式,进而求出H 的坐标,然后分两种情况BGP DEH V :V 和GPB DEH V :V 进行讨论即可.【详解】解:(1)∵点A 和点B 在抛物线上, 将A (1,0),B (0,4)代入y =﹣x 2+bx +c 得104b c c -++=⎧⎨=⎩ 解得34b c =-⎧⎨=⎩∴该抛物线的解析式为:y =﹣x 2﹣3x +4;(2)∵4=﹣m 2﹣3m +4,解得m =﹣3或0,∴抛物线与直线BC 的交点为(﹣3,4)(0,4),∴点P 在直线BC 上方时,m 的取值范围是:﹣3<m <0,∵E (m ,0),B (0,4),∵PE ⊥x 轴交抛物线于点P ,交BC 于点G ,∴P (m ,﹣m 2﹣3m +4),G (m ,4),∴PG =﹣m 2﹣3m +4﹣4=﹣m 2﹣3m ,(3)∵y =﹣x 2﹣3x +4;∴当y=0时,1x =或-4(4,0)D ∴-设直线BD 的解析式为y kx b =+将B,D 两点代入y kx b =+中,得440b k b =⎧⎨-+=⎩解得14k b =⎧⎨=⎩∴直线BD 的解析式为4y x =+(,4)H m m ∴+①若BGP DEH V :V ,那么BG GP DE EH= 即2344m m m m m ---=++ ∴m =﹣2或m =0∵﹣3<m <0故m =﹣2②若GPB DEH V :V ,那么BG GP HE DE= 即2344m m m m m ---=++ ∴m =﹣2或m =0∵﹣3<m <0故m =﹣2综上所述,m =﹣2【点睛】本题主要考查待定系数法求二次函数的解析式,二次函数与一次函数的综合,相似三角形的判定与性质,综合性较强,运用数形结合及分情况讨论是解题的关键.。
河南省许昌市长葛市2020年中考数学一模试卷(解析版)

2020年河南省许昌市长葛市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题中均有四个结论供选择,其中只有一个结论是正确的,请将你选择的结果涂在答题卡上对应位置)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.2.(3分)若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2B.2C.﹣D.3.(3分)下列事件中,属于必然事件的是()A.2020年的元旦是晴天B.太阳从东边升起C.打开电视正在播放新闻联播D.在一个没有红球的盒子里,摸到红球4.(3分)对于反比例函数,下列说法中不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y随x的增大而减小D.当x<0时,y随x的增大而减小5.(3分)如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D 为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD的度数是()A.45°B.60°C.65°D.70°6.(3分)如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF 面积的,则AO:AD的值为()A.2:3B.2:5C.4:9D.4:137.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①c<0;②2a+b =0;③a+b+c<0;④b2﹣4ac<0,其中正确的有()A.1个B.2个C.3个D.4个8.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.9.(3分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣10.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(每小题3分,共15分)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有个.13.(3分)如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=.14.(3分)如图等边三角形ABC内接于⊙O,若⊙O的半径为1,则图中阴影部分的面积等于.15.(3分)如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为.三、解答题(共8小题,75分,请将解答过程写在答题卡对应位置)16.(7分)计算:﹣14﹣|﹣1|﹣﹣(﹣)217.(8分)如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.(1)求证:△ABD∽△ACB;(2)求线段CD的长.18.(8分)如图,反比例函数y=的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第象限;在每个象限内,y随x的增大而,常数m 的取值范围是;(2)若此反比例函数的图象经过点(﹣2,3),求m的值.19.(10分)阅读下列材料:有这样一个问题:关于x的一元二次方程ax2+bx+c=0(a>0)有两个不相等的且非零的实数根.探究a,b,c满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程ax2+bx+c=0(a>0)对应的二次函数为y=ax2+bx+c(a>0);②借助二次函数图象,可以得到相应的一元二次中a,b,c满足的条件,列表如下:方程根的几何意义:请将(2)补充完整方程两根的情况对应的二次函数的大致图象a,b,c满足的条件方程有两个不相等的负实根方程有两个不相等的正实根(1)参考小明的做法,把上述表格补充完整;(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m的取值范围.20.(10分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧的中点,连接CE交AB于点F,且BF=BC.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos B=,求CE的长.21.(10分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22.(11分)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD 的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF与线段EG的数量关系是;(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.23.(11分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH 相似?若存在,求出此时m的值;若不存在,请说明理由.2020年河南省许昌市长葛市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题中均有四个结论供选择,其中只有一个结论是正确的,请将你选择的结果涂在答题卡上对应位置)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:D.2.(3分)若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2B.2C.﹣D.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选:A.3.(3分)下列事件中,属于必然事件的是()A.2020年的元旦是晴天B.太阳从东边升起C.打开电视正在播放新闻联播D.在一个没有红球的盒子里,摸到红球【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【解答】解:A.2020年的元旦是晴天,属于随机事件,故本选项不合题意;B.太阳从东边升起,属于必然事件,故本选项符合题意;C.打开电视正在播放新闻联播,属于随机事件,故本选项不合题意;D.在一个没有红球的盒子里,摸到红球,属于不可能事件,故本选项不合题意;故选:B.4.(3分)对于反比例函数,下列说法中不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.y随x的增大而减小D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答,当系数k>0时,函数图象在第一、三象限,当x>0或x<0时,y随x的增大而减小,据此可以得到答案.【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,本选项正确;B、∵k=2>0,∴图象在第一、三象限,本选项正确;C、当x>0时,y随x的增大而减小,本选项不正确;D、当x<0时,y随x的增大而减小,本选项正确.故选:C.5.(3分)如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D 为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD的度数是()A.45°B.60°C.65°D.70°【分析】根据圆周角定理求出∠DOB,根据等腰三角形性质求出∠OCD=∠ODC,根据三角形内角和定理求出即可.【解答】解:连接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°﹣50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°﹣∠COD)=70°,故选:D.6.(3分)如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF 面积的,则AO:AD的值为()A.2:3B.2:5C.4:9D.4:13【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质得到AB:DO═2:3,进而得出答案.【解答】解:∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.7.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①c<0;②2a+b =0;③a+b+c<0;④b2﹣4ac<0,其中正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①如图所示,抛物线与y轴交于负半轴,则c<0,故①正确;②如图所示,对称轴x=﹣=1,则2a+b=0.故②正确;③如图所示,当x=1时,y<0,即:a+b+c<0.故③正确;④如图所示,抛物线与x轴有两个不同的交点,则b2﹣4ac>0.故④错误.综上所述,正确的结论有3个.故选:C.8.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】利用△ABC中,∠ACB=135°,AC=2,BC=,然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可对各选项进行判定即可.【解答】解:在△ABC中,∠ACB=135°,AC=2,BC=,在A、C、D选项中的三角形都没有135°,而在B选项中,三角形的钝角为135°,它的两边分别为1和,因为=,所以B选项中的三角形与△ABC相似.故选:B.9.(3分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.﹣B.﹣C.π﹣D.π﹣【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【解答】解:连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=﹣.故选:A.10.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.二、填空题(每小题3分,共15分)11.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.(3分)在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有14个.【分析】利用频率估计概率得到摸到黄球的概率为0.35,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.35,解得:x=14,即布袋中黄球可能有14个,故答案为:14.13.(3分)如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=.【分析】由l1∥l2,根据根据平行线分线段成比例定理可得FG=AC;由l2∥l3,根据根据平行线分线段成比例定理可得==.【解答】解:∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案为.14.(3分)如图等边三角形ABC内接于⊙O,若⊙O的半径为1,则图中阴影部分的面积等于.【分析】连接OC,如图,利用等边三角形的性质得∠AOC=120°,S△AOB=S△AOC,然后根据扇形的面积公式,利用图中阴影部分的面积=S扇形AOC进行计算.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC==.故答案为:.15.(3分)如图,矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,若点A的坐标为(3,4),AB=2,AD∥x轴,则点C的坐标为(6,2).【分析】根据矩形的性质和A点的坐标,即可得出C的纵坐标为2,设C(x,2),根据反比例函数图象上点的坐标特征得出k=2x=3×4,解得x=6,从而得出C的坐标为(6,2).【解答】解:∵点A的坐标为(3,4),AB=2,∴B(3,2),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为2,设C(x,2),∵矩形ABCD的顶点A,C在反比例函数y=(k>0,x>0)的图象上,∴k=2x=3×4,∴x=6,∴C(6,2),故答案为(6,2).三、解答题(共8小题,75分,请将解答过程写在答题卡对应位置)16.(7分)计算:﹣14﹣|﹣1|﹣﹣(﹣)2【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣14﹣|﹣1|﹣﹣(﹣)2=﹣1﹣+1﹣﹣=﹣﹣17.(8分)如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.(1)求证:△ABD∽△ACB;(2)求线段CD的长.【分析】(1)根据∠ABD=∠C,∠A=∠A,即可证得△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,根据相似三角形的性质得到=,代入数据即可得到结果.【解答】解:(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∴=,即=,∴CD=5.18.(8分)如图,反比例函数y=的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第四象限;在每个象限内,y随x的增大而增大,常数m 的取值范围是m<2;(2)若此反比例函数的图象经过点(﹣2,3),求m的值.【分析】(1)根据反比例函数的图象和性质,可以得出答案;(2)把点(﹣2,3)代入函数关系式,求出m的值即可.【解答】解:(1)根据反比例函数的对称性可知,一个分支再第二象限,则另一个分支在第四象限,根据反比例函数的图象和性质,可得,在第二、四象限的每个象限内,y随x的增大而增大;由m﹣2<0,得m<2,故答案为:四,增大,m<2;(2)把(﹣2,3)代入得到:m﹣2=xy=﹣2×3=﹣6,则m=﹣4.答:m的值为﹣4.19.(10分)阅读下列材料:有这样一个问题:关于x的一元二次方程ax2+bx+c=0(a>0)有两个不相等的且非零的实数根.探究a,b,c满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程ax2+bx+c=0(a>0)对应的二次函数为y=ax2+bx+c(a>0);②借助二次函数图象,可以得到相应的一元二次中a,b,c满足的条件,列表如下:方程根的几何意义:请将(2)补充完整方程两根的情况对应的二次函数的大致图象a,b,c满足的条件方程有两个不相等的负实根方程有一个负实根,一个正实根方程有两个不相等的正实根(1)参考小明的做法,把上述表格补充完整;(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m的取值范围.【分析】(1)由二次函数与一元二次方程的关系以及二次函数与系数的关系容易得出答案;(2)根据题意得出关于m的不等式组,解不等式组即可.【解答】解:(1)补全表格如下:方程两根的情况二次函数的大致图象得出的结论方程有一个负实根,一个正实根故答案为:方程有一个负实根,一个正实根,,;(2)解:设一元二次方程mx2﹣(2m+3)x﹣4m=0对应的二次函数为:y=mx2﹣(2m+3)x﹣4m,∵一元二次方程mx2+(2m﹣3)x﹣4=0有一个负实根,一个正实根,且负实根大于﹣1,①当m>0时,x=﹣1时,y>0,解得m<2,∴0<m<2.②当m<0时,x=﹣1时,y<0,解得m>2(舍弃)∴m的取值范围是0<m<2.20.(10分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧的中点,连接CE交AB于点F,且BF=BC.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos B=,求CE的长.【分析】(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.(2)根据AC=4,cos B==.求出BC=3,AB=5,BF=3,AF=2,根据∠EAD =∠ACE,∠E=∠E证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出x2+4x2=16,求出即可.【解答】(1)答:BC与⊙O相切.证明:连接AE,∵AC是⊙O的直径∴∠E=90°,∴∠EAD+∠AFE=90°,∵BF=BC,∴∠BCE=∠BFC,∵E为弧AD中点,∴∠EAD=∠ACE,∴∠BCE+∠ACE=90°,∴AC⊥BC,∵AC为直径,∴BC是⊙O的切线.(2)解:∵⊙O的半为2,∴AC=4,∵cos B==,∴BC=3,AB=5,∴BF=3,AF=5﹣3=2,∵∠EAD=∠ACE,∠E=∠E,∴△AEF∽△CEA,∴==,∴EC=2EA,设EA=x,EC=2x,由勾股定理得:x2+4x2=16,x=(负数舍去),即CE=.21.(10分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.【分析】(1)直接根据概率公式计算即可.(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:;(2)游戏不公平,理由如下:列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.22.(11分)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD 的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF与线段EG的数量关系是EF=EG;(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.【分析】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,利用ASA得到△FED≌△GEB,得出EF=EG;(2)过点E分别作BC、CD的垂线,垂足分别为H、P,然后利用ASA证明△FEI≌△GEH,根据全等三角形的性质证明结论;(3)过点E分别作BC、CD的垂线,得到EM∥AB,EN∥AD,证明△CEN∽△CAD,△CEM∽△CAB,得到=,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.【解答】解:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠GAF=∠BAD,∴∠GAF﹣∠BAF=∠BAD﹣∠BAF,即∠GAB=∠F AD,在△GAB和△F AD中,,∴△GAB≌△F AD(ASA),∴AG=AF,即EF=EG,故答案为:EF=EG;(2)成立,证明如下:如图2,过点E分别作BC、CD的垂线,垂足分别为H、I,则EH=EI,∠HEI=90°,∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,∴∠IEF=∠GEH,在△FEI和△GEH中,,∴△FEI≌△GEH(ASA),∴EF=EG;(3)如图,过点E分别作BC、CD的垂线,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD,∴△CEN∽△CAD,△CEM∽△CAB,∴,,∴,即,∵∠NEF+∠FEM=∠GEM+∠FEM=90°,∴∠GEM=∠FEN,又∠GME=∠FNE=90°,∴△GME∽△FNE,∴==.23.(11分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH 相似?若存在,求出此时m的值;若不存在,请说明理由.【分析】(1)将D(﹣4,0),B(0,4)代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)先求出抛物线与直线BC的交点为(﹣2,4)(0,4),得出点P在直线BC上方时,m的取值范围,再根据P(m,﹣m2﹣3m+4),G(m,4),求出PG=﹣m2﹣m;(3)先由DO∥BC,得到,表示出BG=GH=﹣m,HE=DE=4+m,从而判断出只有△PGB∽△DEH,得到比例式求解即可.【解答】解:(1)∵四边形OBCD是正方形,点B坐标为(0,4),∴D点的坐标是(﹣4,0),∵点B和点D在抛物线上∴,∴,∴该抛物线的解析式为:y=﹣x2﹣3x+4;(2)∵4=﹣m2﹣3m+4,解得m=﹣3或0,∴抛物线与直线BC的交点为(﹣3,4)(0,4),∴点P在直线BC上方时,m的取值范围是:﹣3<m<0,∵E(m,0),B(0,4),∵PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,﹣m2﹣3m+4),G(m,4),∴PG=﹣m2﹣3m+4﹣4=﹣m2﹣3m,(3)∵抛物线的解析式为:y=﹣x2﹣3x+4;设点P(m,﹣m2﹣3m+4),∴BG=m,DE=m+4,∵DO∥BC,∴,∵GH=4,∴BG=GH=﹣m,HE=DE=4+m,∵以P、B、G为顶点的三角形与△DEH相似且∠PGB=∠DEH=90°,∴△PGB∽△DEH,∴,∴GB=PG,∴﹣m=﹣m2﹣3m,∴m=﹣2或m=0(舍)即:m=﹣2。
河南省许昌市2020年中考数学一模试卷(II)卷

河南省许昌市2020年中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2019七上·昌平期中) ﹣0.5的倒数是()A . ﹣2B . 0.5C . 2D . ﹣0.52. (2分) (2019九下·江苏月考) 下列运算正确的是()A . (-2x2)3=-6x6B . (y+x)(-y+x)=y2-x2C . 4x+2y=6xyD . x4÷x2=x23. (2分)下列说法中,正确的是()。
A . 在成中心对称的图形中,连结对称点的线段不一定都经过对称中心B . 在成中心对称的图形中,连结对称点的线段都被对称中心平分C . 若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D . 以上说法都正确4. (2分) (2017九上·兰山期末) 已知反比例函数的图象经过点P(a,﹣a),则这个函数的图象位于()A . 第一、三象限B . 第二、三象限C . 第二、四象限D . 第三、四象限5. (2分) (2017九上·沂源期末) 从3,﹣1,,1,﹣3这5个数中,随机抽取一个数记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣ =﹣1有整数解,那么这5个数中所有满足条件的a的值之积是()A .B . ﹣2C . ﹣3D . ﹣6. (2分)(2018·潍坊) 如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为 ,下面图象中能表示与之间的函数关系的是()A .B .C .D .7. (2分)如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为()A .B .C .D .8. (2分)直角三角形两直角边和为7,面积为6,则斜边长为()A .B .C .D .9. (2分)已知梯形ABCD的四个顶点的坐标分別为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为()A . -B . -C . -D . -二、填空题 (共10题;共10分)10. (1分)(2018·建邺模拟) 辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是________.11. (1分) (2017八下·简阳期中) 已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).12. (1分)(2017·遵义) 计算: =________.13. (1分)(2016·南平模拟) 分解因式:3a2﹣6a+3=________.14. (1分) (2016九上·仙游期末) 如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B 为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.15. (1分)(2012·锦州) 如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于E、F两点,则线段EF的长是________cm.16. (1分) (2018九上·宝应月考) 抛物线的顶点坐标是________.17. (1分) (2016八下·青海期末) 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.18. (1分)(2018·黄石) 在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为________19. (1分) (2019八上·瑞安期中) 如图,分别以Rt△ABC为边长向外作等边三角形,若AC=2,∠ACB=90°,∠ABC=30°,则三个等边三角形的面积之和是________.三、解答题 (共7题;共71分)20. (5分)(2016·湘西) 计算:(﹣3)0﹣2sin30°﹣.21. (10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C (﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).22. (7分)(2017·玄武模拟) 某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了________万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为________°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.23. (15分) (2017八下·乌海期末) 如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s) ;(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.24. (10分)(2017·邵阳) 某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.25. (9分)(2017·启东模拟) 在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.(1)当⊙O的半径为2时,①点M(,0)________⊙O的“完美点”,点N(0,1)________⊙O的“完美点”,点T(﹣,﹣)________⊙O的“完美点”(填“是”或者“不是”);②若⊙O的“完美点”P在直线y= x上,求PO的长及点P的坐标;________(2)⊙C的圆心在直线y= x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.26. (15分)(2017·娄底模拟) 如图1(注:与图2完全相同),二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共10题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共71分)20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
河南省许昌市魏都区2020年中考数学一模试题(一,含解析)

河南省许昌市魏都区2019年中考数学一模试题•选择题(共10小题,满分30分,每小题3 分)若2是一元二次方程 x 2+mx- 4m= 0的一个根,则另一个根是( 2. 3. 4. A.— 4B. 4C.— 6D. 6F 列图形中,是中心对称图形的是(△ ABC 中,/代/ B 都是锐角,且 sin A = A. B. C. D. 直角三角形 钝角三角形 锐角三角形锐角三角形或钝角三角形如图,在△ ABC 中,点 D E 分别在边 AB AC 上,连接 CD BE 交于点 O 且DE/ BC OD= 1, OCA. B)=3, AD= 2,贝U AB 的长为( )C. 8D. 9OD AC,若/ CAO 70°,则/ BOD 勺度数为(D. 150°由图象可知,满足不等式ax 2+bx +c > 0的x 的取值范围是(A. 4 B 6 y = ax 2+bx +c 的部分图象, 如图是二次函数 6. C.7.在联欢会上,有 A 、B C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置 是在△ AB3( )C. 三条角平分线的交点&若抛物线y = x 2— 3x +c 与y 轴的交点为(0, 2),则下列说法正确的是( )A. 抛物线开口向下B. 抛物线与x 轴的交点为(-1, 0),( 3, 0)C. 当x = 1时,y 有最大值为0D. 抛物线的对称轴是直线 x =^2 910.如图,在△ ABC 中,/ A = 36° , AC= AB= 2,将厶ABC 绕点B 逆时针方向旋转得到△ DBE 使点E 在边AC 上, DE 交AB 于点尸,则厶AFE-与^ DBF 勺面积之比等于(9 .如图,在平面直角坐标系中,菱形 ABC 啲顶点A B 在反比例函数 y =± (k > 0, x > 0)的图象C. x v — 1 且 x > 5D. x v — 1 或 x > 5A. 三边中垂线的交点B. 三边中线的交点 对角线BD/ x 轴.若菱形 ABC 啲面积为.,则 k 的值为(15TC. 4D. 5D.三边上高的交点x > 5•填空题(共5小题,满分15分,每小题3 分)11.方程 X 2+3X +1= 0 的解是:X i= _______ , X 2= _______14. 小强很喜欢操作探究问题,他把一条边长为 8cm的线B.D.3卫~T12•如图,过原点的直线I 与反比例函数y—的图象交于 MN 两点,若5,则ON=•根13. 如图,在5 X 5的正方形网格中,每个小正方形的边长均为 1,点A B 、C 都在格点上,则 cos/ BAC 勺值为 ______段AB放在直角坐标系中,使点A在y轴的正半轴上,点B在X轴的正半轴上,点P为线段AB的中点.在平面直角坐标系中进行操作探究:当点B从点0出发沿X轴正方向移动,同时顶点A随之从y正半轴上一点移动到点0为止.小强发现了两个正确的结论:(1) _________________________________________________ 点P到原点的距离始终是一个常数,则这个常数是_______________________________________________ cm(2) _____________________________________________________________ 在B点移动的过程中,点P也随之移动,则点P移动的总路径长为 ________________________________ cmE点重合,折痕MN交AD于M点,则线段AM的长是16•在等腰三角形厶ABC中,三边分别为a、b、c,其中a=4,若b、c是关于x的方程x2- x+4 ( k- ..)= 0的两个实数根,求△ ABC的周长.17. 2018年6月,宁波全面推进生活垃圾分类工作,如图是某小区放置的垃圾桶,从左到右依次是红色:有害垃圾;蓝色:可回收垃圾;绿色:厨余垃圾;黑色:其他垃圾.(1)居民A将一袋厨余垃圾随手放入一个垃圾桶,问他能正确投放垃圾的概率是_____(2)居民B手拎两袋垃圾,一袋是可回收垃圾,另一袋是有害垃圾,她先将可回收垃圾随手放入一个垃圾桶,然后把另一袋垃圾又随手放入其他垃圾桶.问:两袋垃圾都投放错误的概率?请画出树状图或列表说明理由.18.如图,C是O O上一点,点P在直径AB的延长线上,O 0的半径为3, PB= 2, PC= 4.(1)求证:PC是O 0的切线.(2)求tan / CAB的值.BC边上有一点E, BE= 4,将纸片折叠,使A点与(2k+1)19•如图,在平面直角坐标系xOy中,A (0, 3), B (1, 0),连接BA将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y= = *〉i:的图象G经过点C.x(1)请直接写出点C的坐标及k的值;(2)若点P在图象G上,且/ POB=Z BAO求点P的坐标;(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M与直线OP交于点N,若点M在点N 左侧,结合图象,直接写出m的取值范围.20.如图,海中有一小岛A,它周围8海里内有暗礁,渔船由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.(1)求/ BAD勺度数;(2)如果渔船不改变航线继续向东航行,有没有触礁的危险?21.图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?22.感知:如图①,在四边形ABCD中,AB// CD, / B= 90°,点P在BC边上,当/ APD= 90°时, 可知△ ABP^A PCD (不要求证明)探究:如图②,在四边形ABCDL 点P在BC边上,当/ B=Z C-Z APD寸,求证:△ ABP^A PCD拓展:如图③,在△ ABC中,点P是边BC的中点,点D E分别在边AB AC上.若Z B=Z C-ZDPE= 45°, BC- 6 】,CE= 4,贝U DE的长为图③23.如图,在平面直角坐标系中,二次函数y - ax2+bx-3交x轴于点A (- 3, 0)、B( 1, 0),在y轴上有一点E (0, 1),连接AE(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ ADE面积的最大值;(3)抛物线对称轴上是否存在点巳使厶AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.2019年河南省许昌市魏都区中考数学一模试卷参考答案与试题解析一•选择题(共10小题,满分30分,每小题3分)1.【分析】将x = 2代入方程求出m的值,得到关于x的方程后解之可得.【解答】解:将x= 2代入方程,得:4+2m- 4m= 0,解得:m= 2,则方程为x2+2x- 8 = 0,•••( x - 2)( x+4)= 0,解得:x = 2或x =- 4,故选:A.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2.【分析】根据旋转180。
河南省许昌市2020届九年级中招第一次模拟考试数学试题

2.新冠肺炎疫情期间,粮食安全问题受到许多国家的重视据新华社报道,我国粮食总产量
连续 5 年稳定在 6500 亿公斤以上,粮食储备充足,口粮绝对安全,将数据“6500 亿”
用科学记数法表示为
A. 65 1011
B. 6.51011
C. 65 1012
D. 6.51012
3.如图,将一块三角尺的直角顶点放在直尺的一边上,当 1= 35 时,∠2 的度数为
A. 9 3
B.12
C. 9 3 2
D.6
10.如图,在正方形 ABCD 中,顶点 A(−1, 0) ,C(1, 2) ,点 F 是 BC 的中点,CD 与 y 轴交于
点 E , AF 与 BE 交于点 G .将正方形 ABCD 绕点 O 顺时针旋转,每次旋转 90 ,则第 99 次旋转结束时,点 G 的坐标为
A.
3 5
,
4 5
B.
−
4 5
,
3 5
二、填空题(每小题 3 分,共 15 分)
C.
−
3 5
,
4 5
D.
4 5
,
−
3 5
11.计算: ( + 1)0 +
3
−
2
−
1 2
ห้องสมุดไป่ตู้
−2
=
________.
12 方程 (x + 2)(x − 3) = x + 2 的解是________.
13.在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任 选两名参加机器人大赛恰好选中甲、乙两位同学的概率为________.
A.0, −4
B.0, −3
精品解析:2020年河南省许昌市中考数学一模试题(解析版)

2020年中考数学一模试卷一、选择题(共10小题) 1. 16的相反数是 ( ) A. 6B. -6C. 16D. 16- 【答案】D【解析】【分析】 根据相反数的定义解答即可. 【详解】根据相反数的定义有:16的相反数是16-. 故选D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2. 新冠肺炎疫情期间,粮食安全问题受到许多国家的重视.据新华社报道,我国粮食总产量连续5年稳定在6500亿公斤以上,粮食储备充足,口粮绝对安全.将数据“6500亿”用科学记数法表示为( )A. 65×1011 B. 6.5×1011 C. 65×1012 D. 6.5×1012 【答案】B【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 6.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
本题小数点往左移动到4的后面,所以11.n =【详解】解:6500亿=6500×108=6.5×1011.故选:B .【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.3. 如图,将一块三角尺直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A. 35°B. 45°C. 55°D. 65°【答案】C【解析】【分析】 先根据平行线的性质得出3135∠=∠=︒,再根据2390∠+∠=︒即可求解. 【详解】//DE FG ,3135∴∠=∠=︒ .90ACB ∠=︒ ,2318090ACB ∴∠+∠=︒-∠=︒ ,290355∴∠=︒-∠=︒ .故选:C .【点睛】本题主要考查平行线的性质和平角的定义,掌握平行线的性质是解题的关键.4. 下面计算正确的是( )A. 3a ﹣2a =1B. 2a 2+4a 2=6a 4C. (x 3)2=x 5D. x 8÷x 2=x 6【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选D.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.5. 桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A. B.C. D.【答案】D【解析】【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.6. 不等式组322113x xxx<+⎧⎪+⎨-≤⎪⎩的解集在数轴上表示正确的是()A. B.C. D.【答案】A【解析】【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解不等式3x <2x +2,得:x <2, 解不等式113x x -≤﹣,得:x ≥﹣1, 则不等式组的解集为﹣1≤x <2,故选A .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.7. 九年级一班同学根据兴趣分成 A 、B 、C 、D 、E 五个小组,把各小组 人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是( )A. 10 人B. l1 人C. 12 人D. 15 人【答案】C【解析】【分析】 从条形统计图可看出 A 的具体人数,从扇形图找到所占的百分比,可求出总人数,然后结合 D 所占的百分比求得 D 小组的人数.【详解】总人数=510%=50(人), D 小组的人数=50×86.4360=12(人)), 故选C .【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中找到必要的信息进行解题是关键.8. 在二次函数y =x 2-2x -3中,当03x ≤≤时,y 的最大值和最小值分别是( )A. 0,-4B. 0,-3C. -3,-4D. 0,0 【答案】A【解析】【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】解:∵()222314y x x x =--=--,∴抛物线的对称轴是1x =,则当1x =时,1234y =--=-,是最小值;当3x =时,9630y =--=是最大值.故选:A .【点睛】本题考查二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.9. 如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 的长为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .若四边形ABEF 的周长为12,∠C =60°,则四边形ABEF 的面积是( )A. 3B. 12 93 D. 6【答案】C【解析】【分析】根据题意可知AE 是∠BAF 的角平分线,根据平分线性质和AF=AB ,可证明四边形ABEF 是菱形,菱形的对角线相互垂直平分,再由∠C=60︒,可得△ABF 为正三角形,再由30︒所对直角边是斜边一半,可以算出AG 的长,四边形ABEF 面积即可算出.【详解】由作法得AE 平分∠BAD ,AB =AF ,则∠1=∠2,∵四边形ABCD 为平行四边形,∴BE ∥AF ,∠BAF =∠C =60°,∴∠2=∠BEA ,∴∠1=∠BEA =30°,∴BA =BE ,∴AF =BE ,∴四边形AFEB 为平行四边形,△ABF 是等边三角形,而AB =AF ,∴四边形ABEF 是菱形;∴BF ⊥AE ,AG =EG ,∵四边形ABEF 的周长为12,∴AF =BF =AB =3,在Rt △ABG 中,∠1=30°,∴BG =12AB =1.5,AG BG ,∴AE =2AG =∴菱形ABEF 的面积=12BF ×AE =12×3×; 故选:C .【点睛】本题考查了角平分线、平行线、平行四边形、菱形、等边三角形等的判定和性质,熟练掌握相关知识点是解题关键.10. 如图,在正方形ABCD 中,顶点A (﹣1,0),C (1,2),点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G .将正方形ABCD 绕点O 顺时针旋转,每次旋转90°,则第99次旋转结束时,点G 的坐标为( )A. (35,45) B. (﹣45,35) C. (﹣35,45) D. (45,﹣35)【答案】B【解析】【分析】根据正方形的性质得到AB=BC=CD=2,∠C=∠ABF=90°,根据全等三角形的性质得到∠BAF=∠CBE,根据余角的性质得到∠BGF=90°,过G作GH⊥AB于H,根据相似三角形的性质得到BH=452=25,求得OH=35,根据勾股定理得到HG22OG OH-45,求得G(35,45),找出规律即可得到结论.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BF A=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF22AB BF+2221+5∴BG=AB BFAF⋅25,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴BG BH AB BG=,∴BG2=BH•AB,∴BH=452=25,∴OH=35,∵OG=12AB=1,∴HG=22OG OH-=45,∴G(35,45),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(45,﹣35),第二次旋转90°后对应的G点的坐标为(﹣35,﹣45),第三次旋转90°后对应的G点的坐标为(﹣45,35),第四次旋转90°后对应的G点的坐标为(35,45),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣45,35).故选:B.【点睛】本题考查了正方形的性质,坐标与图形变换−旋转,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.二、填空题(每小题3分,共15分)11.计算:201(1)|2|2π-⎛⎫++-= ⎪⎝⎭_____.【答案】1--【解析】【分析】先计算0次幂,绝对值和负指数幂,再算加减.【详解】201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-故答案为1--【点睛】考核知识点:实数的混合运算.理解0次幂,绝对值和负指数幂的意义是关键.12. 方程(2)(3)2x x x +-=+的解是___________________. 【答案】12x =-, 24x =【解析】【分析】 利用因式分解法解一元二次方程即可得.【详解】原式可化为(2)(3)(2)0x x x +--+=,提取公因式得(2)(4)0x x +-=,解得12x =-,24x =,故答案为:12x =-,24x =.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.13. 在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为_____. 【答案】16. 【解析】 【分析】根据题意绘制树状图,根据树状图可得出结果.【详解】画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P (选中甲、乙)=212=16. 故答案为:16. 【点睛】本题考查求解概率,初中阶段,求解概率常用的方法有:树状图法、列表法和穷举法三种.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB 的中点,连接CD 、CB .若OA =2,则阴影部分的面积为_____.(结果保留π)【答案】2 +22﹣1. 【解析】【分析】阴影部分面积=扇形DOB 的面积+△CDO 的面积-△BCO 的面积可得.【详解】连接OD ,过D 作DH ⊥OA 于H ,∵∠AOB =90°,D 是AB 的中点, ∴∠AOD =∠BOD =45°, ∵OD =OA =2, ∴DH =22OC =2, ∵C 是OA 的中点, ∴OC =1,∴阴影部分的面积=S 扇形DOB +S △CDO ﹣S △BCO =2452360+122⨯×11122-⨯⨯=2π+22﹣1, 故答案为:2π+22﹣1. 【点睛】本题考查求解不规则图形的面积,解题关键是通过转化或者割补,转化为规则图形进行求解. 15. 如图,在△ABC 中,AB =AC =3,∠B =30°,D 是BC 上一点,连接AD ,把△ABD 沿直线AD 折叠,点B 落在B ′处,连接B 'C ,若△AB 'C 是直角三角形,则BD 的长为_____.【答案】3233-【解析】 【分析】存在2种情况,一种是点B ′在直线BC 的下方∠CAB ′=90°,另一种是点B ′在直线BC 的上方∠CAB ′=90°,分别作垂线构造直角三角形,可求得.【详解】如图1中,当点B ′在直线BC 的下方∠CAB ′=90°时,作AF ⊥BC 于F .∵AB=AC3∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=32,BF3=32,∴BD=BF﹣DF 33 -.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF 3,BD=BF+FD=33 +,综上所述,满足条件的BD 33± 3+333-【点睛】本题考查折叠问题,注意题干未能唯一确定图形形状,故存在多解的情况.三、解答题(本大题8个小题,共75分)16. 先化简,再求值:22222212x y x xy x xy y x y xy -⋅÷-+-,其中x 、y 满足yx=2. 【答案】1+yx,3. 【解析】 【分析】先将分式进行适当的因式分解,化简变形为字母仅含有yx的形式,然后代值计算可得. 【详解】22222212x y xxy x xy y x y xy -⋅÷-+- =2()()(1())x y x y x y xy x y xy x---⋅⋅+=+x y x =1+y x当yx=2时,原式=1+2=3.【点睛】本题考查分式的化简与求值,注意题干告知的不是x、y的值,而是yx的值,故我们应将分式化简为字母仅含有yx的式子的形式.17. 为普及防治新型冠状病毒感染的科学知识和有效方法,不断增强同学们的自我保护意识,学校举办了新型冠状病毒疫情防控网络知识竞答活动,试卷题目共10题,每题10分.现分别从七年级的三个班中各随机取10名同学的成绩(单位:分),收集数据如表:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让同学们重视疫情防控知识的学习,学校将给竞答成绩满分的同学颁发奖状,该校七年级新生共600人,试估计需要准备多少张奖状?【答案】(1)a=4,b=83,c=85,d=90;(2)2班成绩比较好;理由见解析;(3)估计需要准备80张奖状.【解析】【分析】(1)用2班参加比赛的人数-得分不为90的人数,得到a的值;分别求出3班平均数、2班中位数和2班众数,得到b、c、d的值;(2)从平均数、中位数和众数三个方面综合评判;(3)用总人数×抽样满分的比例求得.【详解】(1)a=10-1-1-3-1=4,b=6070804902100210++⨯+⨯+⨯=83,2班抽样人数为10人,最中间2个数据为第5和第6人的成绩,分别为:80、90∴c=80902+=85,2班考90分的人数为4人,人数最多∴d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)600×430=80(张),答:估计需要准备80张奖状.【点睛】本题考查调查与统计,注意在第(1)问中求解中位数时,因为是偶数组数据,故中位数应为最中间2组数据的平均数.18. 如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D是AC的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.(1)求证:∠FCD=∠ADE;(2)填空:①当∠FCD的度数为时,四边形OADC是菱形;②若AB=22,当CF∥AB时,DF的长为.【答案】(1)见解析;(2)①30°;②2﹣1.【解析】【分析】(1)如下图,先推导出∠OAD=∠OCD,然后再利用CF⊥OC和DE⊥AB进行角度转化,推导出∠FCD =∠ADE;(2)①当∠FCD=30°时,可得到△OAD是等边三角形,然后再推导出△COD也是等边三角形,从而证菱形;②如下图,先证△ADE≌△DCF,得出AE=DF,DE=CF,推导出△ODE是等腰直角三角形,从而求出DF的长.【详解】(1)证明:连接OC、AC.如图1所示:∵D是AC的中点,∴DA=DC,∴DA=DC,∴∠DAC=∠DCA.∵OA=OC,∴∠OAC=∠OCA.∴∠DAC+∠OAC=∠DCA+∠OCA,即∠OAD=∠OCD.∵CF是半圆O的切线,∴CF⊥OC,∴∠FCD+∠OCD=90°,∵DE⊥AB,∴∠ADE+∠OAD=90°,∴∠FCD=∠ADE.(2)解:①当∠FCD的度数为30°时,四边形OADC是菱形;理由如下:连接OD,如图2所示:∵∠FCD=30°,∴∠ADE=30°,∵DE⊥AB,∴∠OAD=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OA,∠AOD=60°,∵D是AC的中点,∴DA=DC,∴∠AOD=∠COD=60°,∵OC=OD,∴△COD等边三角形,∴CD=OD=OC,∴OA=AD=CD=OC,∴四边形OADC是菱形;故答案为:30°;②连接OD,如图3所示:∵AB=2∴OA=OD2,∵CF∥AB,DE⊥AB,∴CF⊥EF,∴∠CFD=90°=∠DEA,在△ADE和△DCF中,ADE FCDDEA CFDDA CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△DCF(AAS),∴AE=DF,DE=CF,∵CF半圆O的切线,∴CF⊥OC,∴四边形OCFE是矩形,∴CF=OE,∴DE=OE,∴△ODE是等腰直角三角形,∴OE=22OD=1,∴DF=AE=OA﹣OE2﹣1;21.【点睛】本题考查利用圆的性质进行推导求解,解题关键是通过D是AC的中点,推导出∠AOD=∠COD.19. 数学兴趣小组想测量河对岸两颗大树C、D之间的距离.如图所示,在河岸A点测得大树C位于正北方向上,大树D位于北偏东42°方向上.再沿河岸向东前进100米到达B处,测得大树D位于北偏东31°方向上.求两颗大树C、D之间的距离.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,coo42°≈0.74,tan42°≈0.90).【答案】两颗大树C、D之间的距离约为300米.【解析】【分析】如下图,过点D作DE⊥AB,垂足为点E,设CD=x米,在Rt△ACD中,可求得DE的长,然后在Rt△BED 中,求得BE的长,从而得出x的值.【详解】如图,过点D作DE⊥AB,垂足为点E,由题意知,∠ACD=∠CAE=∠AED=90°,∴四边形ACDE是矩形,∴AC=ED,CD=AE.设CD=x米,则BE=(x﹣100)米,在Rt△ACD中,tan∠ADE=AE DE,∴DE=AEtan ADE≈109x,在Rt△BED中,tan∠BDE=BE DE,则BE≈109x×35=23x,由题意得,x﹣23x=100,解得,x=300,答:两颗大树C、D之间的距离约为300米.【点睛】本题考查三角函数的运用,解题关键是构造出直角三角形,利用三角函数进行边的转化和求值. 20. 某商场销售A 、B 两种型号的电风扇,进价及售价如表:(1)该商场4月份用21000元购进A 、B 两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A 、B 两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A 、B 两种型号电风扇共300台,且B 种型号的电风扇不少于50台;销售时准备A 种型号的电风扇价格不变,B 种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?【答案】(1)商场4月份购进A 种型号的电风扇100台,B 种型号的电风扇50台;(2)A 种型号的电风扇购进200台,B 种型号的电风扇购进100台时,利润最大. 【解析】 【分析】(1)设4月份购进A 种型号的电风扇x 台,B 种型号的电风扇y 台,根据购买费用和获利分别可列写一个关于x 、y 的方程,求解可得;(2)设5月份购进A 种型号的电风扇m 台,利润为w 元,根据题意得出w 关于m 的一次函数,然后再根据m 的取值范围确定最大值情况.【详解】(1)设4月份购进A 种型号的电风扇x 台,B 种型号的电风扇y 台,依题意得:()()120180210001501202401806000x y x y +=⎧⎨-+-=⎩,解得:10050x y =⎧⎨=⎩.答:商场4月份购进A 种型号的电风扇100台,B 种型号的电风扇50台.(2)设5月份购进A 种型号的电风扇m 台,则购进B 种型号的电风扇(300﹣m)台,利润为w 元. 由题意得,120m +180(300﹣m)≤42000, 解不等式得:m ≥200, 又∵300﹣m ≥50,即m ≤250, ∴200≤m ≤250,w =(150﹣120)m +(0.9×240﹣180)(300﹣m)=﹣6m +10800, ∵﹣6<0,w 随m 的增大而减小,∴当m=200时,w有最大值,此时,300﹣m=100.答:A种型号的电风扇购进200台,B种型号的电风扇购进100台时,利润最大.【点睛】本题考查二元一次方程的运用和利用一次函数求解最值问题,解题关键是抽象出题干中的等量关系式.21. 若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=1(1) 2(1)x xxx⎧+≤⎪⎨>⎪⎩的图象与性质,探究过程如下,请补充完整.(1)列表:x …-4 -3 -2 -1 0 1 2 3 4 …y … 3 m 1 0 1 2 1 n12…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(72,y1),B(5,y2),C(x1,52),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=﹣x+b与函数图象有且只有一个交点,请直接写出b的取值范围.【答案】(1)2,23;(2)如图所示,见解析;(3)①>,>;②x=0或x=﹣2或x=2;(4)﹣1<b<2或b>3.【解析】【分析】(1)将x=﹣3代入y=|x+1|得m的值;将x=3代入y=2x中得n的值;(2)用平滑的曲线连接坐标系中描的点可得;(3)A与B在y=2x上,C与D在y=|x﹣1|上,分别根据函数增减性判断;(4)如下图,求解出直线y=﹣x+b与函数图象有一个交点的临界点,从而得出b的取值范围.【详解】(1)x=﹣3代入y=|x+1|得,y=2,∴m=2,把x=3代入y=2x中得,y=23,∴n=23,故答案为2,23;(2)如图所示:(3)由图象可知A与B在y=2x上,y随x的增大而减小,所以y1>y2;C与D在y=|x﹣1|上,所以x1>x2;故答案>,>;②当y=1时,x≤1时,有1=|x+1|,∴x=0或x=﹣2,当y=1时,x>1时,有1=2x,∴x=2,故x=0或x=﹣2或x=2;(4)∵函数解析式为:y=1(1)2(1)x xxx⎧+≤⎪⎨>⎪⎩,图像如下当直线y =﹣x +b 在向右平移的过程中,如下图,与函数的交点个数是在变化的:由图形可知,当直线向右平移过程中,直线与函数交点个数为:①0个,②然后变为1个,③然后变为2个,④然后又变为1个我们分别求出①②、②③、③④之间的临界点即可有图形可知,①②之间的临界点为:x=-1我们求出直线与函数有2个交点的情况: 联立解析式2y x b y x =-+⎧⎪⎨=⎪⎩得: 220x bx -+-=当△>0时,即直线与函数有两个个交点△>2420b -=解得b >2或b <-2故而﹣1<b <2时,直线与含有有且仅有一个交点还存在一种情况:如下图由上面分析可知当b>22时,直线是与函数有2个交点的但是反比例函数的取值范围为x>1的部分∴如上图,反比例函数是点A(1,2)右侧的部分∴当直线y=-x+b从A点继续向右平移时,直线与反比例函数仅有一个交点将点A代入直线得:2=-1+b,解得:b=3∴当b>3时,直线与函数也仅有一个交点综上得,﹣1<b<22或b>3.【点睛】本题考查分段函数,解题关键是依据分段函数划分的范围,选取合适的函数进行分析求解.22. (1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点D 在BC 边上,连接CE .请判断∠DCE 的度数及线段CA 、CE 、CD 之间的数量关系,并说明理由.(3)应用如图3,在Rt △ABC 中,∠A =90°,AC =4,AB =6.若点D 满足DB =DC ,且∠BDC =90°,请直接写出DA 的长.【答案】(1)①120°,②CA =CE +CD ;(2)∠DCE =90=CD +CE .理由见解析;(3)DA =【解析】【分析】(1)①证△BAD ≌△CAE ,从而得出∠ACE =∠B =60°,进而得出∠DCE 的大小;②根据△BAD ≌△CAE 可知BD =CE ,从而得出CA =CE +CD ;(2)先证△BAD ≌△CAE ,得出BD =CE ,然后在等腰直角三角形ABC 中,得出CBCA ,从而得出CA 、CE 、CD 之间的数量关系;(3)如下图,先证点B ,C ,A ,D 四点共圆,得出△ADE 是等腰直角三角形,最后在Rt △BED 中,利用勾股定理可求得.【详解】(1)发现解:①∵在△ABC 中,AB =AC ,∠BAC =60°,∴∠BAC =∠DAE =60°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACE +∠ACB =60°+60°=120°;故答案为:120°,②∵△BAD ≌△CAE ,∴BD =CE ,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;2CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CA E(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=2CA,∵CB=CD+DB=CD+CE,∴2CA=CD+CE.(3)应用DA=52或2.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC2264+=13+22AB AC∵∠BDC=90°,DB=DC,∴DB=DC26,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE 是等腰直角三角形,∴AE =DE ,∴BE =6﹣DE ,∵BE 2+DE 2=BD 2,∴DE 2+(6﹣DE)2=26,∴DE =1,DE =5,∴AD =2或AD =52.【点睛】本题考查三角形全等的证明与性质,勾股定理的运用,解题关键是找出全等三角形,利用对应边相等的关系进行边长转换,得出线段之间的关系.23. 如图,直线y =﹣2x +c 交x 轴于点A (3,0),交y 轴于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)点M (m ,0)是线段OA 上一动点(点M 不与点O ,A 重合),过点M 作y 轴的平行线,交直线AB 于点P ,交抛物线于点N ,若NP 5AP ,求m 的值; (3)若抛物线上存在点Q ,使∠QBA =45°,请直接写出相应的点Q 的坐标.【答案】(1)y =﹣x 2+x +6;(2)m =52;(3)点Q 的坐标为(43,509)或(﹣2,0). 【解析】【分析】(1)将点A 、B 代入函数解析式,可求得b 、c 的值;(2)利用△APM ∽△ABO ,可取得AP 的值,然后再根据NP 5,可求出m 的值; (3)存在2种情况,一种是点Q 在AB 的上方,另一种是点Q 在AB 的下方,分别利用几何性质计算可求得.【详解】(1)∵y =﹣2x +c 与x 轴交于点A (3,0),与y 轴交于点B ,∴﹣2×3+c =0,解得c =6,∴B (0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴9306b cc-++=⎧⎨=⎩,解得16bc=⎧⎨=⎩,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB=2236+=35,∵MP∥y轴,∴△APM∽△ABO,∴AP AMAB AO=,即3335m-=,∴AP=5(3﹣m),∵NP=5 AP,∴﹣m2+3m=5×5(3﹣m),解得:m=52或3(舍去3),∴m=52.(3)点Q的坐标为(43,50)9或(﹣2,0).①当点Q在AB上方时,设点Q的横坐标为n,如图,分别作QC⊥AB,QD⊥x轴,交AB于点E.则点E(n,﹣2n+6),点Q(n,﹣n2+n+6),则QE=﹣n2+n+6﹣(﹣2n+6)=﹣n2+3n,∵∠CQE=90°﹣∠QEC=90°﹣∠AED=∠EAD,∴Rt△QEC∽Rt△ABO,QE CE QC AB OB AO==, 则QC2CE22n 3n -+, ∵∠QBA =45°, ∴BC=QC 2 ∵ED ∥OB ,∴AB AO EBOD =3n=,解得:BE , 而BE =BC +CE ,22,解得n =43, ∴点Q 的坐标为(43,509); ②当点Q 在AB 下方时,同理可求,另一点Q 的坐标为(﹣2,0), 故点Q 的坐标为(43,509)或(﹣2,0). 【点睛】本题考查二次函数的综合,用到了三角形的相似和勾股股定理,建议在解决二次函数综合题时,先根据几何图形特点进行分析,得出一些比较好计算的几何关系后,在代值进行计算求解,这样计算量相对会小一些.。
【附5套中考模拟试卷】河南省许昌市2019-2020学年中考数学一模试卷含解析

河南省许昌市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .122.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .53.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A .10B .11C .12D .13 4.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣15.已知5a b =r r ,下列说法中,不正确的是( ) A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r6.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .107.如图,直线a ∥b ,∠ABC 的顶点B 在直线a 上,两边分别交b 于A ,C 两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )A .30°B .40°C .50°D .60°8.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A .8B .9C .10D .119.已知抛物线y=ax 2﹣(2a+1)x+a ﹣1与x 轴交于A (x 1,0),B (x 2,0)两点,若x 1<1,x 2>2,则a 的取值范围是( )A .a <3B .0<a <3C .a >﹣3D .﹣3<a <010.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .11.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( )A .3k =B .3k <-C .3k >D .33k -<<12.方程x 2+2x ﹣3=0的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=﹣3C .x 1=﹣1,x 2=3D .x 1=﹣1,x 2=﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.15.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.16.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =_____.17.如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、y 轴上,∠APO =30°.先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到线段PC ,连接BC .若点A 的坐标为(﹣1,0),则线段BC 的长为_____.18.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.20.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.21.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?22.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)23.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.24.(10分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.25.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.26.(12分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)27.(12分)解不等式组:1(1)1213xx⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.2.D【解析】【分析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:13(-2+1)=1-5a3-,∴1=1-5a3-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.3.B【解析】【分析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.4.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.5.A【解析】【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r ,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.6.C【解析】∵∠ACB=90°,D 为AB 的中点,AB=6, ∴CD=12AB=1. 又CE=13CD , ∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .7.C【解析】【分析】依据平行线的性质,可得∠BAC 的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a ∥b ,∴∠1=∠BAC =40°,又∵∠ABC =90°,∴∠2=90°−40°=50°,故选C .【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.9.B【解析】由已知抛物线2(21)1y ax a x a =-++-求出对称轴212a x a+=+, 解:抛物线:2(21)1y ax a x a =-++-,对称轴212a x a +=+,由判别式得出a 的取值范围. 11<x ,22x >, ∴21122a a+<<, ①2(21)4(1)0a a a ∆=+-->,18a ≥-.②由①②得0<<3a .故选B .10.D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.11.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当3k=时,两条直线无交点;当3k>时,两条直线的交点在第一象限.故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.12.B【解析】【分析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x 1=1,x 2=﹣3故选:B .【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.n 1+n +1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(0,2)-【解析】【分析】求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标.【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y轴的交点坐标为(0,2)-,故答案为(0,2)-.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.16.4【解析】【分析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S△DCO=14S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=12×DO×PF+12×OC×PE∴20=5PF+5PE∴PE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.17.2【解析】【分析】只要证明△PBC是等腰直角三角形即可解决问题.【详解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=PC=2,故答案为2.【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC 是等腰直角三角形.18.1【解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=42242⨯++=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1p p aa-=(0a p ≠,为正整数)”是正确解答本题的关键. 20.(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个, A 品牌所占的圆心角:4002400×360°=60°; 故答案为2400,60;(2)B 品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 22.路灯的高CD 的长约为6.1 m.【解析】 设路灯的高CD 为xm ,∵CD ⊥EC ,BN ⊥EC ,∴CD ∥BN ,∴△ABN ∽△ACD ,∴BN AB CD AC=, 同理,△EAM ∽△ECD ,又∵EA =MA ,∵EC =DC =xm ,∴1.75 1.251.75x x =-,解得x =6.125≈6.1. ∴路灯的高CD 约为6.1m .23.还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.24.(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解析】【分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN . (2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC =,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,=∴.【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.25.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.26.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.27.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学一模试卷一、选择题(共10小题)1.﹣的相反数是()A.6B.﹣6C.D.﹣2.据新华社报道,我国粮食总产量连续5年稳定在6500亿公斤以上,粮食储备充足,口粮绝对安全.将数据“6500亿”用科学记数法表示为()A.65×1011B.6.5×1011C.65×1012D.6.5×10123.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°4.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人8.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,09.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.610.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD 与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)二、填空题(每小题3分,共15分)11.计算:(π+1)0+|﹣2|﹣()﹣2=.12.方程(x+2)(x﹣3)=x+2的解是.13.在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为.14.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D是的中点,连接CD、CB.若OA=2,则阴影部分的面积为.(结果保留π)15.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD 沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为.三、解答题(本大题8个小题,共75分)16.先化简,再求值:•÷,其中x、y满足=2.17.为普及防治疫情科学知识和方法,不断增强同学们的自我保护意识,学校举办了疫情防控网络知识竞答活动,试卷题目共10题,每题10分.现分别从七年级的三个班中各随机取10名同学的成绩(单位:分),收集数据如表:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让同学们重视疫情防控知识的学习,学校将给竞答成绩满分的同学颁发奖状,该校七年级新生共600人,试估计需要准备多少张奖状?18.如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D 是的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.(1)求证:∠FCD=∠ADE;(2)填空:①当∠FCD的度数为时,四边形OADC是菱形;②若AB=2,当CF∥AB时,DF的长为.19.数学兴趣小组想测量河对岸两颗大树C、D之间的距离.如图所示,在河岸A点测得大树C位于正北方向上,大树D位于北偏东42°方向上.再沿河岸向东前进100米到达B处,测得大树D位于北偏东31°方向上.求两颗大树C、D之间的距离.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,coo42°≈0.74,tan42°≈0.90).20.某商场销售A、B两种型号的电风扇,进价及售价如表:品牌A B进价(元/台)120180售价(元/台)150240(1)该商场4月份用21000元购进A、B两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A、B两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A、B两种型号电风扇共300台,且B种型号的电风扇不少于50台;销售时准备A种型号的电风扇价格不变,B种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?21.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣4﹣3﹣2﹣101234…y…3m10121n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=﹣x+b与函数图象有且只有一个交点,请直接写出b的取值范围.22.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC =90°,请直接写出DA的长.23.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.﹣的相反数是()A.6B.﹣6C.D.﹣【分析】根据相反数的定义即可得到结论.解:﹣的相反数是,故选:C.2.据新华社报道,我国粮食总产量连续5年稳定在6500亿公斤以上,粮食储备充足,口粮绝对安全.将数据“6500亿”用科学记数法表示为()A.65×1011B.6.5×1011C.65×1012D.6.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:6500亿=6500×108=6.5×1011.故选:B.3.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.4.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x6【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.解:∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.5.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.7.九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人【分析】从条形统计图可看出A的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D所占的百分比求得D小组的人数.解:总人数==50(人)D小组的人数=50×=12(人).故选:C.8.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.9.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.6【分析】由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.解:由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为12,∴AF=BF=AB=3,在Rt△ABG中,∠1=30°,∴BG=AB=1.5,AG=BG=,∴AE=2AG=3,∴菱形ABEF的面积=BF×AE=×3×3=;故选:C.10.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD 与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)【分析】根据正方形的性质得到AB=BC=CD=2,∠C=∠ABF=90°,根据全等三角形的性质得到∠BAF=∠CBE,根据余角的性质得到∠BGF=90°,过G作GH⊥AB 于H,根据相似三角形的性质得到BH==,求得OH=,根据勾股定理得到HG ==,求得G(,),找出规律即可得到结论.解:∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BFA=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF===,∴BG==,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴,∴BG2=BH•AB,∴BH==,∴OH=,∵OG=AB=1,∴HG==,∴G(,),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(,﹣),第二次旋转90°后对应的G点的坐标为(﹣,﹣),第三次旋转90°后对应的G点的坐标为(﹣,),第四次旋转90°后对应的G点的坐标为(,),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣,).故选:B.二、填空题(每小题3分,共15分)11.计算:(π+1)0+|﹣2|﹣()﹣2=﹣1﹣.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.解:(π+1)0+|﹣2|﹣()﹣2=1+2﹣﹣4=﹣1﹣故答案为:﹣1﹣.12.方程(x+2)(x﹣3)=x+2的解是x1=﹣2,x2=4.【分析】先移项,再提取公因式,求出x的值即可.解:原式可化为(x+2)(x﹣3)﹣(x+2)=0,提取公因式得,(x+2)(x﹣4)=0,故x+2=0或x﹣4=0,解得x1=﹣2,x2=4.故答案为:x1=﹣2,x2=4.13.在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.故答案为:.14.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D是的中点,连接CD、CB.若OA=2,则阴影部分的面积为+﹣1.(结果保留π)【分析】连接OD,过D作DH⊥OA于H,求得DH=OC=,根据扇形和三角形的面积公式即可得到结论.解:连接OD,过D作DH⊥OA于H,∵∠AOB=90°,D是的中点,∴∠AOD=∠BOD=45°,∵OD=OA=2,∴DH=OC=,∵C是OA的中点,∴OC=1,∴阴影部分的面积=S扇形DOB+S△CDO﹣S△BCO=+×1﹣=+﹣1,故答案为:+﹣1.15.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD 沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为或.【分析】分两种情形:如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF ⊥BC于F.证明∠ADF=45°,求出DF,BF即可解决问题.如图2中,当点B′在直线BC的上方∠CAB′=90°时,同法可得∠ADB=45°,求出DF即可.解:如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF⊥BC于F.∵AB=AC=,∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=,BF=AF=,∴BD=BF﹣DF=.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF =,BD=BF+FD=,综上所述,满足条件的BD的值时.故答案为或.三、解答题(本大题8个小题,共75分)16.先化简,再求值:•÷,其中x、y满足=2.【分析】根据分式的乘除法可以化简题目中的式子,然后将=2代入化简后的式子即可解答本题.解:•÷==,=1+,当=2时,原式=1+2=3.17.为普及防治疫情的科学知识和有效方法,不断增强同学们的自我保护意识,学校举办了疫情防控网络知识竞答活动,试卷题目共10题,每题10分.现分别从七年级的三个班中各随机取10名同学的成绩(单位:分),收集数据如表:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让同学们重视疫情防控知识的学习,学校将给竞答成绩满分的同学颁发奖状,该校七年级新生共600人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.解:(1)a=4,b=83,c=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)600×=80(张),答:估计需要准备80张奖状.18.如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D是的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.(1)求证:∠FCD=∠ADE;(2)填空:①当∠FCD的度数为30°时,四边形OADC是菱形;②若AB=2,当CF∥AB时,DF的长为﹣1.【分析】(1)连接OC、AC.由题意得出=,得出DA=DC,由等腰三角形的性质得出∠DAC=∠DCA.∠OAC=∠OCA.证出∠OAD=∠OCD.由切线的性质得出CF⊥OC,由直角三角形的性质即可得出结论;(2)①连接OD,证△OAD是等边三角形,△COD是等边三角形,得出OA=AD=CD =OC,即可得出结论;②连接OD,证△ADE≌△DCF(AAS),得出AE=DF,DE=CF,证明△ODE是等腰直角三角形,得出OE=OD=1,进而得出答案.【解答】(1)证明:连接OC、AC.如图1所示:∵D是的中点,∴=,∴DA=DC,∴∠DAC=∠DCA.∵OA=OC,∴∠OAC=∠OCA.∴∠DAC+∠OAC=∠DCA+∠OCA,即∠OAD=∠OCD.∵CF是半圆O的切线,∴CF⊥OC,∴∠FCD+∠OCD=90°,∵DE⊥AB,∴∠ADE+∠OAD=90°,∴∠FCD=∠ADE.(2)解:①当∠FCD的度数为30°时,四边形OADC是菱形;理由如下:连接OD,如图2所示:∵∠FCD=30°,∴∠ADE=30°,∵DE⊥AB,∴∠OAD=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OA,∠AOD=60°,∵D是的中点,∴=,∴∠AOD=∠COD=60°,∵OC=OD,∴△COD是等边三角形,∴CD=OD=OC,∴OA=AD=CD=OC,∴四边形OADC是菱形;故答案为:30°;②连接OD,如图3所示:∵AB=2,∴OA=OD=,∵CF∥AB,DE⊥AB,∴CF⊥EF,∴∠CFD=90°=∠DEA,在△ADE和△DCF中,,∴△ADE≌△DCF(AAS),∴AE=DF,DE=CF,∵CF半圆O的切线,∴CF⊥OC,∴四边形OCFE是矩形,∴CF=OE,∴DE=OE,∴△ODE是等腰直角三角形,∴OE=OD=1,∴DF=AE=OA﹣OE=﹣1;故答案为:﹣1.19.数学兴趣小组想测量河对岸两颗大树C、D之间的距离.如图所示,在河岸A点测得大树C位于正北方向上,大树D位于北偏东42°方向上.再沿河岸向东前进100米到达B处,测得大树D位于北偏东31°方向上.求两颗大树C、D之间的距离.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,coo42°≈0.74,tan42°≈0.90).【分析】过点D作DE⊥AB,设CD=x米,利用正切的定义用x表示出BE,根据题意列出方程,解方程得到答案.解:如图,过点D作DE⊥AB,垂足为点E,由题意知,∠ACD=∠CAE=∠AED=90°,∴四边形ACDE是矩形,∴AC=ED,CD=AE.设CD=x米,则BE=(x﹣100)米,在Rt△ACD中,tan∠ADE=,∴DE=≈x,在Rt△BED中,tan∠BDE=,则BE≈x×=x,由题意得,x﹣x=100,解得,x=300,答:两颗大树C、D之间的距离约为300米.20.某商场销售A、B两种型号的电风扇,进价及售价如表:品牌A B进价(元/台)120180售价(元/台)150240(1)该商场4月份用21000元购进A、B两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A、B两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A、B两种型号电风扇共300台,且B种型号的电风扇不少于50台;销售时准备A种型号的电风扇价格不变,B种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?【分析】(1)设A品牌的洗衣机购进x台,B品牌的洗衣机购进y台,根据购进两种洗衣机的总价及销售完后的利润,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单台利润×销售数量(购进数量),列出函数关系式即可求解.解:(1)设4月份购进A种型号的电风扇x台,B种型号的电风扇y台,依题意得:,解得:.答:商场4月份购进A种型号的电风扇100台,B种型号的电风扇50台.(2)设5月份购进A种型号的电风扇m台,则购进B种型号的电风扇(300﹣m)台,利润为w元.由题意得,120m+180(300﹣m)≤42000,解不等式得:m≥200,又∵300﹣m≥50,即m≤250,∴200≤m≤250,w=(150﹣120)m+(0.9×240﹣180)(300﹣m)=﹣6m+10800,∵﹣6<0,w随m的增大而减小,∴当m=200时,w有最大值,此时,300﹣m=100.答:A种型号的电风扇购进200台,B种型号的电风扇购进100台时,利润最大.21.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣4﹣3﹣2﹣101234…y…3m10121n…其中,m=2,n=3.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1>y2,x1>x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=﹣x+b与函数图象有且只有一个交点,请直接写出b的取值范围.【分析】(1)把x=﹣3代入y=|x+1|中即可求得m的值;把x=3代入y=中,即可求得n的值;(2)描点连线即可;(2)①A与B在y=上,y随x的增大而减小,所以y1>y2;C与D在y=|x﹣1|上,观察图象可得x1>x2;②当y=1时,1=|x+1|,则有x=0或x=﹣2;1=,则有x=2;(4)由图象可知,﹣1<b<2或b>3.解:(1)x=﹣3代入y=|x+1|得,y=2,∴m=2,把x=3代入y=中得,y=,∴n=,故答案为2,;(2)如图所示:(3)由图象可知A与B在y=上,y随x的增大而减小,所以y1>y2;C与D在y=|x﹣1|上,所以x1>x2;故答案为>,>;②当y=1时,x≤1时,有1=|x+1|,∴x=0或x=﹣2,当y=1时,x>1时,有1=,∴x=2,故x=0或x=﹣2或x=2;(4)由图象可知,﹣1<b<2或b>3.22.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是120°;②线段CA、CE、CD之间的数量关系是CA=CE+CD.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC =90°,请直接写出DA的长.【分析】(1)①由△BAD≌△CAE以及等边三角形的性质,得出∠ACE=∠B=60°,则∠DCE=∠ACE+∠ACB=120°;②由△BAD≌△CAE,得出BD=CE,则得出CA=CE+CD;(2)证明△BAD≌△CAE(SAS).可得出BD=CE,∠B=∠ACE=45°.则结论得出;(3)作DE⊥AB于E,连接AD,根据勾股定理得到BC=2,推出点B,C,A,D 四点共圆,根据圆周角定理得到∠DAE=45°,求得△ADE是等腰直角三角形,得到AE=DE,根据勾股定理即可得到结论.【解答】(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.23.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.【分析】(1)求出点B的坐标,将点A、B的坐标代入抛物线表达式即可求解;(2)利用△APM∽△ABO,求出AP=(3﹣m),利用NP=AP列出等式进而求解;(3)分点Q在AB上方、点Q在AB下方两种情况,利用三角形相似求解.解:(1)∵y=﹣2x+c与x轴交于点A(3,0),与y轴交于点B,∴﹣2×3+c=0,解得c=6,∴B(0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB==3,∵MP∥y轴,∴△APM∽△ABO,∴,即,∴AP=(3﹣m),∵NP=AP,∴﹣m2+3m=×(3﹣m),解得:m=或3(舍去3),∴m=.(3)点Q的坐标为(,)或(﹣2,0).①当点Q在AB上方时,设点Q的横坐标为n,如图,分别作QC⊥AB,QD⊥x轴,交AB于点E.则点E(n,﹣2n+6),点Q(n,﹣n2+n+6),则QE=﹣n2+n+6﹣(﹣2n+6)=﹣n2+3n,∵∠CQE=90°﹣∠QEC=90°﹣∠AED=∠EAD,∴Rt△QEC∽Rt△ABO,,则QC=,CE=,∵∠QBA=45°,∴BC=QC=,∵ED∥OB,∴,即,解得:BE=n,而BE=BC+CE,∴+=n,解得n=,∴点Q的坐标为(,);②当点Q在AB下方时,同理可求,另一点Q的坐标为(﹣2,0),故点Q的坐标为(,)或(﹣2,0).。