西安中学高三数学期中试卷
2021-2022学年西安中学高三上学期期中数学复习卷(文科)(含解析)

2021-2022学年西安中学高三上学期期中数学复习卷(文科)一、单选题(本大题共12小题,共60.0分) 1.已知全集U ={0,1,2,3,4},设集合A ={0,1,2},B ={1,2,3},则A ∩∁U B =( )A. {3}B. ⌀C. {1,2}D. {0}2.2−i 1+2i=( )A. 1B. −1C. iD. −i3.下列命题中是假命题的是( )A. 若a ⃗ ⋅b ⃗ =0(a ⃗ ≠0⃗ ,b ⃗ ≠0⃗ ),则a ⃗ ⊥b ⃗B. 若|a ⃗ |=|b ⃗ |,则a ⃗ =b ⃗C. 若ac 2>bc 2,则a >bD. 5>34.若f (x )= x 2−2 x −4ln x ,则f ′(x )>0的解集为…( )A. (0,+∞)B. (−1,0)∪(2,+∞)C. (2,+∞)D. (−1,0)5.数列{a n }满足a 1=1,且2a n−1−2a n =a n a n−1(n ≥2),则a n =( )A. 2n+1B. 2n+2C. (23)nD. (23)n−16.函数f(x)=3x −的零点存在区间为( )A. (−2,−1)B. (−1,0)C. (0,1)D. (1,2)7.函数的最小正周期是( )A.B. C.D.8.在Rt △ABC 中,AB ⊥AC ,AB =1,AC =2,点P 为△ABC 内(包含边界)的点,且满足AP ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ (其中x ,y 为正实数),则当xy 最大时,yx的值是( ) A. 12 B. 1C. 2D. 与∠A 的大小有关9.如图,在正方体ABCD −A 1B 1C 1D 1中,M ,N ,P 分别是B 1B ,B 1C 1,CD 的中点,则MN 与D 1P 所成角的余弦值为( )A. −√105B. √105C. √55D. 2√5510. 下列函数中,在区间(0,+∞)上为增函数的是( )A. y =√xB. y =(x −1)2C. y =(12)xD. y =log 0.5x11. 函数f(x)={e cosπx ,x ≤1ln(x −1x),x >1的图象大致是( ) A.B.C.D.12. 设定义在(1,e )上函数若曲线上存在点(x 0,y 0)使得f(f(y 0))=y 0,则实数a 的取值范围是( )A.B.C. [−1,e 2−e +1)D. (0,e 2−e +1)二、单空题(本大题共4小题,共20.0分)13. 曲线f(x)=x 2的一条切线与直线y =2x −3平行,则该切线的方程为______. 14. 已知向量a ⃗ =(1,2),b ⃗ =(−3,m),若b ⃗ =λa ⃗ ,λ∈R ,则m =______. 15. 下面有四个命题:①函数的最小正周期是; ②函数的最大值是;③把函数的图象向右平移得的图象;④函数在上是减函数.其中真命题的序号是 .16. 图中的三个直角三角形是一个体积为20cm 3的几何体的三视图,则ℎ= ______ cm ,该几何体的外接球半径为______ cm .三、解答题(本大题共7小题,共82.0分)17. 在数列{a n }中,a 1=1,a n =2a n−1+n+2n(n+1)(n ≥2,n ∈N ∗). (1)若数列{b n }满足b n =a n +1n+1(n ∈N ∗),求证:数列{b n }是等比数列; (2)设c n =2n(n+1)a n+1,记 S n =c 1⋅c 2+c 2⋅c 3+⋯+c n ⋅c n+1,求使S n >79的最小正整数n 的值.18. 如图,已知C 点在圆O 直径BE 的延长线上,CA 切圆O 于A 点,DC 是∠ACB 的平分线交AE 于点F ,交AB 于D 点.(1)求∠ADF 的度数; (2)AB =AC ,求AC ∶BC .19. 从某大学中随机选取8名女大学生,其身高x 和体重y 数据如表所示.求根据女大学生的身高预报体重的回归方程,并预报一名身高为174cm 的女大学生的体重.(结果精确到0.01,且每一步用上一步的近似值进行计算)参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ̂=b ̂x +a ̂的斜率和截距的最小二乘估计公式分别为b ̂=∑x i n i=1y i −nxy−∑x i 2n i=1−nx−2=∑(n i=1x i −x −)(y i −y −)∑(n i=1x i −x −)2,a ̂=y −−b ̂x −.20. 已知椭圆C 的离心率为√32,长轴长为4,焦点在x 轴上,斜率为1的直线l 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的标准方程 (2)求|AB|的最大值.21. 已知函数f(x)=lnx −12ax 2+ax ,a ∈R . (1)当a <0时,讨论函数f(x)的极值点的个数;(2)若关于x 的不等式f(x)≤2ax −x −1恒成立,求整数a 的最小值; (3)对于函数f(x)图象上任意给定的两点A(x 1,f(x 1))、B(x 2,f(x 2)),试判断f′(x 1+x 22)与f(x 1)−f(x 2)x 2−x 1的大小关系(其中f′(x )是函数f(x)的导函数),并给出证明.22. 直线l :ρcos(θ−π6)=2,圆C :ρ=2sinθ.以极点O 为原点,极轴为x 轴正半轴建立直角坐标系xOy .(1)求直线l 的直角坐标方程和圆C 的参数方程;(2)已知点P 在圆C 上,点P 到直线l 和x 轴的距离分别为d 1,d 2,求d 1+d 2的最大值.23. 设函数f(x)=|x −a|,a ∈R .(1)若不等式f(x)<1的解集为{x|0<x <2},求a 的值; (2)若存在x 0∈R ,使f(x 0)+x 0<3,求a 的取值范围.。
【名师解析】陕西省西安市第一中学高三上学期期中考试数学(文)试题版含解析

则满足 f ( x) 1的 x 值为(
)
log 3 x, x 0
(A) 0
( B) 3
( C) 0或3
( D) 1 3
解得, x 值为 0或3 ,故选 D.
考点:分段函数,指数函数、对数函数的性质 .
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
2
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
20. (本题 13 分)在 ABC 中,角 A , B , C 对应的边分别是 a, b,c ,已知
cos2 A 3 cos(B C ) 1. (1)求角 A 的大小;
(2)若 ABC 的面积 S 5 3,b 5 ,求 sin B sinC 的值 .
考点:函数方程,指数函数的图象 .
8. 函数 f ( x) 1 2 x
1 的定义域为(
).
x3
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
9. 函数 f ( x) ex x 2 (e为自然对数的底数) 的零点个数为(
)
(A) 0
( B) 1
6. 已知函数 f ( x) 为奇函数,且当 x
0时, f ( x)
x2
1 ,则 f ( 1)
(
)
x
(A) 2
( B) 1
( C) 0
( D) 2
7. 已知关于 x 的方程 3x 1 m 有一解,则 m 的取值范围为(
)
(A) m m 0或m 1 ( B) m m 0或m 1 ( C) m m 1 ( D) m m 0
陕西省西安中学高三(上)期中数学试卷含答案

∵ 퐴퐷 + 퐴퐸 = 푥퐴퐵 +푦퐴퐶,则푥 + 푦 = 2,
∵ 点 D,E 是线段 BC 上两个动点, ∴ 푥 > 0,푦 > 0.
∴
1 푥
+
4 푦
=
11 2(푥
+
4 푦)(푥
+ 푦)
=
12(5
+
푦 푥
+
4푦푥)
≥
12(5
∴ 푏4 = 푎3 + 푎5 = 2푎4 = 23,푎4 = 4,
又푏5 = 푎4 +2푎6 = 24,∴ 푎6 = 6 ,
∴ 푎6 = 푎4 +2푑,得푑 = 1,
第 8 页,共 19 页
푎6 = 푎1 +5푑 푎 = 1
,得
,
∴ 푎푛 = 푛.
1
∴ 푎2019 + 푏9 = 2019 + 28 = 2275,
푛
}的通项公式以及数列{푎푛}的通项公式即可计算出푎2019 + 푏9的值.
【解答】
解: ∵ 푏1 = 1,푏3 = 푏2 +2,{푏 }
∴ 푏1푞2 = 푏 1푞
+ 2,푞2 = 푞
是正项等比数列, + 2,푛 解得푞 = −1(舍)或푞
= 2,
∴ 푏푛 = 2푛−1,
∵ 数列{푎푛}是等差数列,푏4 = 푎3 + 푎5,푏5 = 푎4 +2푎6,
减函数,故正确. 故选 D.
4.【答案】D
【解析】解:푎−2 = 0,即푎 = 2时,−4 < 0,恒成立;
{ 푎−2
≠ 0时,
푎−2 < 0 4(푎−2)2 + 16(푎−2) < 0,解得−2 < 푎
陕西省.西安中学.高三上学期期中考试数学(理)试题(解析版)【全国百强校高考预测真题】

15.在平面直角坐标系中,角 的始边落在 x 轴的非负半轴,终边上有一点是
,若
,则
______.
16.在△ABC 中,M 为边 BC 的中点,N 为线段 BM 的中点.若 小值为______________。
,则
的最
三、解答题 17.已知函数
求 的最小正周期;
,.
求 在闭区间
上的最大值和最小值.
18.如图所示,在平面四边形 ABCD 中,AD=1,CD=2,AC= 7 .
妨
2x1
2
2k
,2x2
2
2
2m
,∴ x1
x2
2
(k
m)
,又∵
x1
x2
min
3
,
∴ ,故选 D.
2
3
6
考点:三角函数的图象和性质.
【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考
17.(1) ;(2)最大值为 ,最小值为
【解析】 【分析】
利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.
利用正弦函数的定义域和值域,求得 在闭区间 【详解】
,Hale Waihona Puke ,可得再利用微积分基本定理即可得出.
【详解】
,
,
.
则
.
故答案为: 【点睛】 本题考查了微积分基本定理、三角函数求值,考查了推理能力与计算能力,属于基础题. 16. 【解析】 【分析】
先计算出
,再求出
和
再利用基本不等式求得
.
【详解】 由条件知
陕西省西安市第一中学高三数学上学期期中试题 理(含解析)

市一中大学区2021-2022度第一学期期中考试高三数学试题(理)一、选择题(本大题共12个小题,每小题5分,共60分.) 1.设集合{}|1A x x =>,集合{}2B a =+,若A B φ=,则实数a 的取值范围是( ).A .(,1]-∞-B .(,1)-∞-C .[1,)-+∞D .[1,)+∞【答案】A【解析】本题主要考查集合的运算. 因为{}|1A x x =>且AB 为空集,所以21a +≤,即1a -≤,所以当1a -≤时,满足A 与B 的交集为空集的条件. 故选A .2.已知为i 虚数单位,若复数1i()1i a z a -=∈+R 的虚部为3-,则||z =( ). A .5B 13C .23D 10【答案】C 【解析】因为1i (1i)(1i)1(1)i 111i 2222ia a a a a a z -----+-+====-+, 所以132a+-=-,所以5a =,所以23i z =--,所以22(2)(3)13z -+- 故选C .3.已知命题:p x ∀∈R ,12(2)0x -<,则命题p ⌝为( ). A .0x ∃∈R ,120(2)0x ->B .x ∀∈R ,12(1)0x -> C .x ∀∈R ,12(1)0x -≥D .0x ∃∈R ,120(2)0x -≥【答案】C【解析】解:因为原命题为全称命题,所以原命题的否定是特称命题, 即命题p x ⌝∀∈R ,20x >,的否定是::p x ∃∈R ,20x ≤. 故选C .4.执行如图所示的算法框图,则输出的S 值是( ).是否S=4i=1i=9S=22Si =i +1输出S结束开始A .1-B .23C .32D .4 【答案】D【解析】i 1=,1S =-;i 2=,23S =;i 3=,32S =; i 4=,4S =;i 5=,1S =-;;i 8=,4S =;i 9=,结束循环,输出S 的值是4.故选D .5.设55log 4log 2a =-,2ln ln33b =+,1lg5210c =,则a ,b ,c 的大小关系为( ).A .a b c <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】解:∵13log 20a =<,112211log log 132b =>=,0.30110122c ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,∴a c b <<. 故选A .6.若函数()f x 满足1(1)()2f x f x +=,则()f x 的解析式在下列四式中只有可能是( ). A .2x B .12x +C .2x -D .12log x【答案】C【解析】本题主要考查函数的解析式. 由已知该函数具有性质1(1)()2f x f x +=,将此运用到四个选项中: A 项,1(1)2x f x ++=,1()24xf x =,不符合题意,故A 项错误; B 项,3(1)2f x x +=+,11()224x f x =+,不符合题意,故B 项错误;C 项,(1)11(1)22()22x x f x f x -+-+==⨯=,符合题意,故C 项正确; D 项,12(1)log (1)f x x +=+,112211()log log 22f x x x ==D 项错误. 故选C .7.函数e x y x =和图象是( ).A .xyOB .yOx C .yOx D .yOx【答案】C 【解析】8.在区间[0,2]上随机取两个数x ,y ,则[0,2]xy ∈的概率是( ). A .1ln 22- B .32ln24- C .1ln 22+ D .12ln22+ 【答案】C【解析】本题主要考查微积分的基本定理和几何概型.由题意可将所求概率转化为图中阴影部分面积和正方形面积之比,故所求概率212222(ln )2d 11ln 2442x x S x P S +++====⎰阴影正方形.【注意有文字】故选C .xy O412343219.设实数x ,y 满足22010210x y x y x y +-⎧⎪-+⎨⎪--⎩≤≥≤,则11y x --的最小值是( ).A .5-B .12-C .12D .5【答案】B【解析】(1,1)xyOy=x+44000x y x y -+⎧⎪⎨⎪⎩≥≤≥所表示的区域如图所示 11y z x -=-表示区域中的点到点(1,1)的斜率, 故原点到点(1,1)的斜率最大. 故选B .10.若将函数π()2sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,所得图象最新y 轴对称,则ϕ的最小正值是( ). A .5π12B .π3C .2π3D .5π6-【答案】A【解析】把该函数的图象右移ϕ个单位,所得图象对应的函数解析式为:π2sin 223y x ϕ⎛⎫=+- ⎪⎝⎭,又所得图象最新y 轴对称,则 π3π22πk ϕ-=+,k ∈Z , ∴当1k =-时,ϕ有最小正值是 5π12.故选A .11.设函数266,0()34,0x x x f x x x ⎧-+=⎨+<⎩≥,若互不相等的实数1x ,2x ,3x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是( ).A .11,63⎛⎤⎥⎝⎦B .2026,33⎛⎫ ⎪⎝⎭C .2026,33⎛⎤ ⎥⎝⎦D .11,63⎛⎫ ⎪⎝⎭【答案】D【解析】解:函数266,0()34,0x x x f x x x ⎧-+=⎨+<⎩≥的图象,如图,xO y65432143211234564321不妨设123x x x <<,则2x ,3x 最新直线3x =对称,故236x x +=,且1x 满足1703x -<<;则123x x x ++的取值范围是:12376063x x x -+<++<+,即12311,63x x x ⎛⎫++∈ ⎪⎝⎭.故选D .12.已知定义在(0,)+∞上的函数()f x ,满足(1)()0f x >;(2)()()2()f x f x f x '<<(其中()f x '是()f x 是导函数,e 是自然对数的底数),则(1)(2)f f 的范围为( ). A .11,2e e 2⎛⎫⎪⎝⎭B .211,e e ⎛⎫ ⎪⎝⎭C .(e,2e)D .3(e,e )【答案】B【解析】构造函数()()e x f x g x =,(0,)x ∈+∞,则2()e ()e ()()()(e )e x x x xfx f x f x f x g x ''--'==, 由已知()()f x f x '<得()0g x '>在(0,)+∞上恒成立,则函数()g x 在(0,)+∞上递增, 所以(1)(2)g g <,即2(1)(2)e ef f <,又因为()0f x >,所以根据2(1)(2)e ef f <有2(1)e (2)e f f <,即(1)1(2)e f f <, 再构造函数2()()(e )x f x h x =,(0,)x ∈+∞,2242()(e )()2(e )()2()()(e )(e )x x x x fx f x f x f x g x ''⋅-'==, 由已知()2()f x f x '<,所以()0h x '<在(0,)+∞,则函数()h x 在区间(0,)+∞上单调递减, 所以(1)(2)h h >,即24(1)(2)e ef f <,又因为()0f x >, 所以根据24(1)(2)e e f f <有24(1)e (2)e f f <,即2(1)1(2)e f f <,所以21(1)1e (2)e f f <<. 故选B .二、填空题(本大题共4小题,每小题5分,共20分)13.计算11130.7536170.027*********-⎛⎫+--= ⎪⎝⎭__________. 【答案】31【解析】原式1133316412590.33625697295-⎛⎫⨯- ⎪-⎝⎭⎛⎫=-+-+- ⎪⎝⎭3109913643553=-+-+- 31=.14.已知423401234(23)x a a x a x a x a x =++++,则2202413()()a a a a a ++-+=__________. 【答案】1【解析】令1x =,得401234(23)a a a a a =++++; 令1x =-,得401234(23)a a a a a -=-+-+;两式相加得22024130123402413()()()()a a a a a a a a a a a a a a a ++-+=++++⋅++--444(23)(23)(1)1=⋅-=-=.15.一个类似杨辉三角形的数阵: 则第九行的第二个数为__________.18221891177115653139【答案】见解析【解析】解:观察首尾两数都是1,3,5,7,可以知道第n 行的首尾两数均为21n -, 设第(2)n n ≥行的第2个数构成数列{}n a , 则有323a a -=,435a a -=,547a a -=,,123n n a a n --=-,相加得232335(23)(2)(2)2n n a a n n n n +--=+++-=⨯-=-23(2)23n a n n n n =+-=-+. 因此,本题正确答案是:223n n -+.16.某班班会,准备从包括甲、乙两人的七名同学中选派4名学生发言,要求甲、乙两人中至少有1人参加,则甲、乙都被选中且发言时不相邻的概率为__________. 【答案】见解析【解析】解:22534475A A 1201A A 9401206==--.三、解答题:(共70分)17.(10分)已知函数2π()3cos sin 02222f x x x x ϕϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫=++++<< ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的图像经过点π,13⎛⎫ ⎪⎝⎭.(1)求()f x .(2)在ABC △中,A 、B 、C 的对边为a 、b 、c ,5a =25ABC S =△,角C 为锐角且π72126C f ⎛⎫-= ⎪⎝⎭,求C 边长. 【答案】见解析.【解析】解:(1)∵2()3cos sin 222f x x x x ϕϕϕ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31cos(2))2x x ϕϕ-+=++ 311)cos(2)22x x ϕϕ=+-++ π1sin 262x ϕ⎛⎫=+-+ ⎪⎝⎭,∵图象经过点π,13⎛⎫⎪⎝⎭,∴ππ1sin 21362ϕ⎛⎫⋅+-+= ⎪⎝⎭,即π1sin 22ϕ⎛⎫+= ⎪⎝⎭,即1cos 2ϕ=,∵π02ϕ<<,∴π3ϕ=, ∴π1()sin 262f x x ⎛⎫=++ ⎪⎝⎭.(2)∵π17sin 21226C f C ⎛⎫-=+= ⎪⎝⎭,∴2sin 3C =, ∴45cos 19C =-, ∵112sin 525223ABC S ab C b ==⋅=△,∴6b =,∴22252cos 53625621c a b ab C =+-=+-=, ∴21c =18.(12分)已知ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍. (1)求sin sin BC∠∠.(2)若1AD =,2DC =BD 和AC 的长. 【答案】见解析.【解析】(1)1sin 2ABD S AB AD BAD =⋅△∠,1sin 2ADC S AC AD CAD =⋅△∠, 因为2ABD ADC S S =△△,BAD CAD =∠∠,所以2AB AC =, 在ABC △中,由正弦定理得:sin sin AC AB B C =∠∠,所以sin 1sin 2B AC C AB ==∠∠. (2)设ADB θ=∠,则πADC θ=-∠. 由(1)知12AC b AB c ==,所以2c b =①, 由2CD =2BD = 在ACD △中,由余弦定理,2222121π)b θ=+-⨯-⎝⎭, 即2322b θ=+②, 在ABD △中,由余弦定理,21222c θ=+-,即2322c θ=-③, 由①②③得1b =,故1AC =.19.(12分)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁) [15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数 510151055赞成人数46 9 6 34(1(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率.(3)在(2)在条件下,再记选中的4人中不.赞成..“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.频率组距0.010.020.03【答案】见解析.【解析】(1)由表知年龄在[15,25)内的有5人,不赞成的有1人,年龄在[25,35) 内的有10人,不赞成的有4人,恰有2人不赞成的概率为:11122464442222510510C C C C C 424666622(2)C C C C 1025104522575P ξ==⋅+⋅=⋅+⋅==. (2) ξ的所有可能取值为:0,1,2,3,226422510C C 4515(0)C C 22575P ξ==⋅==, 21112646442222510510C C C C C 41562410234(1)C C C C 1045104522575P ξ⋅==⋅+⋅=⋅+⋅==, 124422510C C 46124(3)C C 104522575P ξ==⋅=⋅==, 所以ξ的分布列是: ξ0 1 2 3 p1575 3475 2275 475 所以ξ的数学期望65E ξ=.20.(12分)已知在直角坐标系xOy 中,圆C 参数方程为32cos 42sin x y θθ=+⎧⎨=-+⎩(θ为参数). (1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程. (2)已知(2,0)A -,(0,2)B ,圆C 上任意一点(,)M x y ,求ABM △面积的最大值.【答案】见解析.【解析】(1)圆C 的参数方程为32cos 42sin x y θθ=+⎧⎨=-+⎩(θ为参数), 所以普通方程为22(3)(4)4x y -++=,所以圆C 的及坐标方程为26cos 8sin 210ρρθρθ-++=.(2)点(,)M x y 到直线:20AB x y -+=的距离2d =,ABM △的面积1π|||2cos 2sin 9|22924S AB d θθθ⎛⎫=⨯⨯=-+=-+ ⎪⎝⎭, 所以ABM △的面积的最大值为922+21.(12分)已知函数()|3|f x x =+,()2|11|g x m x =--,若2()(4)f x g x +≥恒成立,实数m 的最大值为t .(1)求实数t .(2)已知实数x 、y 、z 满足22236(0)x y x a a 2++=>,且x y z ++的最大值是20t ,求a 的值. 【答案】见解析.【解析】解:(1)根据题意可得(4)2|411|2|7|g x m x m x +=-+-=--,若2()(4)f x g x +≥恒成立, ∴2|3|2|7|x m x +--≥,即2(|3||7|)m x x ++-≤.而由绝对值三角不等式可得2(|3||7|)2|(3)(7)|20x x x x ++-+--=≥, ∴20m ≤,故m 的最大值20t =.(2)∵实数x 、y 、z 满足222236(0)x y z a a ++=>,由柯西不等式可得2222222[(2)(3)(6)]236236236x y z x y z ⎡⎤++⋅++⎢⎥⎢⎥⎣⎦≥, ∴21)a x y z ⨯++≥(, ∴x y z a ++再根据x y z ++的最大值是120t =, 1a ,∴1a =.22.(12分)已知二次函数2()1f x x ax m =+++,最新x 的不等式2()(21)1f x m x m <-+-的解集为(,1)m m +,(0)m ≠,设()()1f xg x x =-. (1)求a 的值.(2)()k k ∈R 如何取值时,函数()()ln(1)x g x k x ϕ=--存在极值点,并求出极值点. (3)若1m =,且0x >,求证:[(1)](1)22(*)n n n g x g x x +-+-∈N ≥.【答案】见解析.【解析】(1)因为最新x 的不等式2()(21)1f x m x m <-+-的解集为(,1)m m +, 即不等式22(12)0x a m x m m ++-++<的解集为(,1)m m +,所以22(12)()(1)x a m x m m x m x m ++-++=---,所以222(12)(21)(1)x a m x m m x m x m m ++-++=-+++,所以12(21)a m m +-=-+,所以2a =-.(2)由(1)得2()21()(1)111f x x x m mg x x x x x -++===-+---, 所以()()ln(1)(1)(1)1m x g x k x x k x x ϕ=--=-+---的定义域为(1,)+∞, 所以222(2)1()1(1)1(1)m k x k x k m x x x x ϕ-++-+'=--=---, 方程2(2)10x k x k m -++-+=(*)的判别式22(2)4(1)4k k m k m ∆=+---=+.①当0m >时,0∆>,方程(*)的两个实根为21241k k m x +-+=<,22241k k m x +++=>, 则2(1,)x x ∈时,()0x ϕ'<;2(,)x x ∈+∞时,()0x ϕ'>,所以函数()x ϕ在2(1,)x 上单调递减,在2(,)x +∞上单调递增,所以函数()x ϕ有极小值点2x . ②当0m <时,由0∆>,得2k m <--2k m >-2k m <-, 则21241k k m x +-+<,22241k k m x +++=>,故(1,)x ∈+∞时,()0x ϕ'>,所以函数()x ϕ在(1,)+∞上单调递增.所以函数()x ϕ没有极值点, 若2k m >-21241k k m x +-+=>,22241k k m x +++=>, 则1(1,)x x ∈时,()0x ϕ'>;12(,)x x x ∈时,()0x ϕ'<;2(,)x x ∈+∞时,()0x ϕ'>, 所以函数()x ϕ在1(1,)x 上单调递增,在12(,)x x 上单调递减,在2(,)x +∞上单调递增, 所以函数()x ϕ有极小值点2x ,有极大值点1x ,综上所述,当0m >时,k 取任意实数,函数()x ϕ有极小值点2x , 当0m <时,2k m >-()x ϕ有极小值点2x ,有极大值点1x , (其中2124k k m x +-+=2224k k m x +++=. (3)因为1m =, 所以1()(1)1g x x x =-+-, 所以1122122412211C C C C C n n n n n n n n n n n n x x x x x x x x------=+⋅+⋅=+++, 令122412C C C n n n n n n n T x x x----=+++, 则122412122412C C C C C C nn n n n n n n n n n n n n n T x x x x x x---------=+++=+++, 因为0x >,所以1222441221212C ()C ()C ()2(C C C )n n n n n n n nn n n n n n T x x x x x x --------=++++++=+++12102(C C C +C C C C )2(22)n n n n n n n n n n n -=+++++-=-,所以22n T -≥,即[(1)](1)22n n n g x g x +-+-≥.。
陕西省西安中学高三(上)期中数学试卷(文科)

A.1:1: 3
B.2:2: 3
C.1:1:2
D.1:1:4
7.(5 分)下列函数中,最小正周期为 π 的奇函数是( )
휋 A.y=sin(2x + 2)
휋 B.y=cos(2x + 2)
C.y=sin2x+cos2x
D.y=sinx+cosx
1 8.(5 分)若 tanθ = 3,则 cos2θ=( )
→
→
→→
4.(5 分)(2014•北京)已知向量a = (2,4),b = (﹣1,1),则 2a ‒ b = ( )
A.(5,7)
B.(5,9)
C.(3,7)
D.(3,9)
【考点】9J:平面向量的坐标运算. 【专题】5A:平面向量及应用.
【分析】直接利用平面向量的数乘及坐标减法运算得答案.
→
→
【解答】解:由a = (2,4),b = (﹣1,1),得:
휋
1
9.(5 分)(2016•新课标Ⅰ)将函数 y=2sin(2x + 6)的图象向右平移4个周期后,所得图象对应的函数
5
2021-2021 学年陕西省西安中学高三(上)期中数学试卷(文 科)
参考答案与试题解析
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.
1.(5 分)(2007•全国卷Ⅱ)cos330°=(
1 A.2
1 B. - 2
) 3
C. 2
→→
→→
【解答】解:①若|a|=|b|,但两向量方向不一定相同,则a = b不一定成立,故错误;
→→
②若 A,B,C,D 是不共线的四点,则AB = DC⇔AB=DC 且 AB∥DC⇔四边形 ABCD 为平行四边形,
西安中学202届高三数学上学期期中试题理含解析

故选:
【点睛】本题考查了空间角的求法,面面平行的性质定理,属于基础题.
第Ⅱ卷(90分)
本卷包括必考题和选考题两部分。第13题—第21题为必考题,每个试题考生都必须作答。第22题、第23题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。把答案填在答题卡上的相应位置.
15. 2020年2月为支援武汉市抗击新型冠状病毒的疫情,计划从北京大兴国际机场空运部分救援物资,该杋场拥有世界上最大的单一航站楼,并拥有机器人自动泊车系统,解决了停车满、找车难的问题,现有4辆载有救援物资的车辆可以停放在8个并排的泊车位上,要求停放的车辆相邻,箭头表示车头朝向,则不同的泊车方案有__________种.(用数字作答)
A. B. C。 3D. 6
【答案】B
【解析】
【详解】
分析】
由祖暅原理可知,该不规则几何体的体积与已知三视图几何体体积相等,图示几何体是一个三棱锥,其直观图如下图:
其底面是底和高分别为5, 的三角形,高为 ,则该三棱锥的体积为V= 。从而该不规则几何体的体积为 。
点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽。由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
12。 平面 过正方体 的顶点 , 平面 , 平面 , 平面 ,则 、 所成角的正弦值为( )
A. B. C。 D。
2025届西安市高三数学上学期期中联考试卷附答案解析

2025届西安市高三数学上学期期中联考试卷本卷满分150分,考试时间120分钟2024.11一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合{}21,9,A a =,{}9,3B a =,则满足A B B = 的实数a 的个数为()A.1B.2C.3D.42.设1i z =-,则2i z +=()A.1B.iC.i -D.1-3.若()*13N nx n x ⎛⎫-∈ ⎪⎝⎭的展开式中各项系数和为16,则其展开式中的常数项为()A.54B.54-C.108D.108-4.已知a =,3log b =2log c =)A .b a c<< B.c a b<< C.c b a<< D.b c a<< 5.已知,αβ都是锐角,()2510cos ,sin 510αβα+==,则cos β=()A.10B.10C.2D.106.连掷两次骰子得到的点数分别为m 和n ,记向量(),a m n = 与向量()1,1b =- 的夹角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦的概率是()A.512 B.12C.712D.567.已知数列{}n a 是正项数列,()2*3n n n +=+∈N ,则9122310a a a++⋅⋅⋅+=()A.216B.260C.290D.3168.已知函数222,0()ln(1),0x x x f x x x ⎧++≤=⎨+>⎩的图像与直线y k x =-有3个不同的交点,则实数k 的取值范围是()A.1,4⎛⎫-+∞ ⎪⎝⎭B.(0,)+∞ C.1,24⎛⎤-⎥⎝⎦D.(]0,2二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.中国南宋时期杰出数学家秦九韶在《数书九章》中提出了已知三角形三边求面积的公式,求其法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =.现有ABC V 满足sin :sin :sin 3A B C =,且4ABC S =△,则()A.ABC V 外接圆的半径为3B.若A ∠的平分线与BC 交于D ,则AD 的长为334C.若D 为BC 的中点,则AD 的长为4D.若O 为ABC V 的外心,则()5AO AB AC ⋅+=10.在直三棱柱111ABC A B C -中,90BAC ∠=︒,12AB AC AA ===,E 、F 分别是BC 、11A C 的中点,D 在线段11B C 上,则下面说法中正确的有()A .//EF 平面11AA B BB.直线EF 与平面ABC 所成角的正弦值为255C.若D 是11B C 的中点,若M 是11B A 的中点,则F 到平面BDM 的距离是5D.直线BD 与直线EF 所成角最小时,线段BD 长为211.已知O 为坐标原点,点()2,1A 在抛物线()2:20C x py p =>上,抛物线的焦点为F ,过点()0,1B -的直线l 交抛物线C 于P ,Q 两点(点P 在点B ,Q 的之间),则()A.直线AB 与抛物线C 相切B.6OP OQ ⋅= C.若P 是线段BQ 的中点,则2||||PF QF = D.存在直线l ,使得||||2||PF QF BF +=三、填空题:本大题共3小题,每小题5分,共15分.12.已知ABC V 中,7BC =,8AC =,60C =︒,则BC CA ⋅=___________.13.甲和乙玩纸牌游戏,已知甲手中有2张10和4张3,乙手中有4张5和6张2,现从两人手中各随机抽取两张牌并交换给对方,则交换之后甲手中牌的点数之和大于乙手中牌的点数之和的概率为____14.已知函数()2sin e exxf x x -=-+,则关于x 的不等式()()2430f x f x -+<的解集为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某同学参加射击比赛,每人配发3颗子弹.射击靶由内环和外环组成,若击中内环得8分,击中外环得4分,脱靶得0分.该同学每次射击,脱靶的概率为14,击中内环的概率为14,击中外环的概率为12,每次射击结果相互独立.只有前一发中靶,才能继续射击,否则结束比赛.(1)若已知该同学得分为8分的情况下,求该同学只射击了2发子弹的概率;(2)设该同学最终得分为X ,求X 的分布列和数学期望()E X .16.如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(1)证明:1A D ⊥平面1A BC ;(2)求二面角11B A D B --的平面角的正切值.17.已知函数()ln ()f x x ax a R =-∈.(1)讨论函数()f x 的单调性;(2)证明不等式2()x e ax f x --≥恒成立.18.如图,曲线y =设第n 个正三角形1n n n Q P Q - (0Q 为坐标原点)的边长为n a .(1)求12,a a 的值;(2)求出的通项公式;(3)设曲线在点n P 处的切线斜率为n k ,求证:*12233413(2,N 4)n n k k k k k k k k n n -++++<≥∈ .19.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为62,右顶点为)E .,A B 为双曲线C 右支上两点,且点A 在第一象限,以AB 为直径的圆经过点E.(1)求C 的方程;(2)证明:直线AB 恒过定点;(3)若直线AB 与,x y 轴分别交于点,M P ,且M 为PA 中点,求PBEMBES S 的值.2025届西安市高三数学上学期期中联考试卷1.若集合{}21,9,A a =,{}9,3B a =,则满足A B B = 的实数a 的个数为()A.1B.2C.3D.4【答案】B 【解析】【分析】利用A B B = ,知B A ⊆,求出a 的值,根据集合元素的互异性舍去不合题意的值,可得答案.【详解】因为A B B = ,所以B A ⊆,即31a =或者23a a =,解之可得13a =或0a =或3a =,当13a =时,11,9,9A ⎧⎫=⎨⎬⎩⎭,{}9,1B =符合题意;当0a =时,{}1,9,0A =,{}9,0B =符合题意;当3a =时,{}1,9,9A =,{}9,9B =根据集合元素互异性可判断不成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安中学高三年级第一学期期中考试数学试题一、选择题(本大题共有12小题,每小题5分,共60分)1.已知M={x|y=x ,x ∈R},}R x x y |y {N 2∈==,,则M ∩N 等于( )A .{(0,0),(1,1)}B .{ x|x ∈R }C .{y|y ≥0}D .φ2.已知集合A={a ,b ,c},集合B={m ,n},设映射f :A →B 。
如果集合B 中的元素都是A 中元素在f 下的象,那么这样的映射f 有( )A .8个B .6个C .4个D .2个3.奇函数y=f(x)(x ∈R )有反函数)x (f y 1-=,则必在)x (f y 1-=的图象上的点是( )A .(-f(a),-a )B .))a (f a (1--,C .(-f(a),a )D .))a (f a (1-, 4.已知f(x)是定义在R 上的奇函数,当x<0时,x )31()x (f =,那么)21(f 的值是( )A .33 B .3 C .3- D .9 5.函数)x x 6(log )x (f 231--=的单调递减区间是( )A .),∞+-21[B .]21-∞-,(C .),2 21[- D .]213--,( 6.定义在R 上的函数f(x)、g(x)都是奇函数,函数F(x)=af(x)+bg(x)+3在区间(0,+∞)上的最大值为10,那么函数F(x)在(-∞,0)上的最小值为( )A .-10B .7C .-7D .-47.若把函数y=f(x)的图象做平移,可以使图象的点P (1,0)变换成点Q (2,2),则函数y=f(x)的图象经过此变换后所得图象对应的函数为( )A .y=f(x-1)+2B .y=f(x-1)-2C .y=f(x+1)+2D .y=f(x+1)-28.若直线a ∥平面α,直线b ∥平面α,那么a 与b 不可能( )A .相交B .异面C .平行D .垂直 9.圆台上、下底面面积分别为22cm 49cm 1和,平行于底面的截面面积为2cm 25,那么截面到上、下底面距离之比为( )A .2:1B .1:2C .3:1D .1:310.圆锥的高h=8,它的侧面展开图的圆心角是216°,那么这个圆锥的全面积是( )A .96πB .24πC .84πD .60π11.正四棱台1111D C B A ABCD -下底面为ABCD ,上底边长:侧棱长:下底边长=1:2:3,侧面对角线11BC AD 与所成角的余弦值为( )A .73B .6524 C .73- D .75 12.三棱锥A-BCD 的高a 33AH =,H 为底面△BCD 的垂心,若AB=AC ,二面角A-BC-D 等于60°,G 为△ABC 重心,则HG 的长为( )A .a 10B .a 7C .a 6D .a 5二、填空题(本大题共有4道小题,每小题4分,共16分)13.若2x )1x (f =+(x ≤0),则)x (f 1-=_______________。
14.(如右图)矩形ABCD 边长分别为15,20,PA ⊥平面ABCD ,则点P 到CD 边的距离为_______________;点P 到BD 的距离为_______________。
15.(理科做)球外切圆台的上、下底半径分别为1和3,则球的体积是_______________。
(文科做)二面角内有一点,它到两个面的距离相等,并且等于它到棱的距离的一半,这个二面角的度数为_______________。
16.若f(x)是定义在R 上的奇函数,且f(x-2)=-f(x),给出下列四个结论:①f(2)=0;②f(x)是以4为周期的函数;③f(x)的图象关于直线x=0对称;④f(x+2)=f(-x)。
其中所有正确结论的序号是_______________。
三、解答题(本大题共有6道小题,17-21题每小题12分,22题14分,共74分)17.已知函数f(x)是奇函数,而且在(0,+∞)上是增函数,那么f(x)在(-∞,0)上是增函数还是减函数?写出你的推理过程。
18.如图,三棱锥P-ABC 的底面△ABC 内接于圆O ,PA 垂直于圆O 所在的平面。
(1)求证:平面PAC ⊥平面PBC 。
(2)若PA :PB=4:3,65ABC cos =∠,求直线PB 和PAC 所成角的大小。
19.已知关于x 的方程lg(x-1)+lg(3-x)=lg(a-x)有实数解,求实数a 的取值范围。
20.已知四棱锥P-ABCD 的底面是边长为4的正方形,PD ⊥底面ABCD ,若PD=6,M ,N 分别是PB ,AB 的中点。
(1)求证:MN ⊥CD ;(2)求三棱锥P-DMN 的体积;(3)求二面角M-DN-C 的平面角。
(文科不做第(3)问)21.有甲、乙两种商品,经营销售这两种商品所获的利润依次是P 万元和Q 万元,它们与投入资金x 万元的关系可由经验公式给出:x 53Q x 51P ==,,今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分配应为多少才能获得最大利润?22.(理科做)已知函数)ka a (log )x (f y x a -==(0<a ≠1,k ∈R )。
(1)当0<a<1时,若f(x)在[1,+∞]内有意义,求k 的取值范围;(2)当a>1时,若f(x)的反函数就是它本身,求k 的值;(3)在(2)的条件下,解方程)x (f )2x (f 21=--。
(文科做)设函数y=f(x)满足lg(lgy)=lg(3x)+lg(3-x),(1)求f(x)的表达式;(2)求f(x)的值域;(3)求f(x)的单调区间。
参考答案:一、选择题(每小题5分,共60分)1.C 2.B 3.A 4.C 5.D 6.D 7.A 8.C 9.A 10.A 11.D12.B 二、填空题(每小题4分,共16分)13.014.343;1515.π34;60°16.①②④三、解答题(共6道小题,17-21题每小题12分,22题14分,共74分)17.解:设0x x 21<<<∞-,则+∞<-<-<12x x 0∵f(x)在(0,+∞)上是增函数,∴)x (f )x (f 12-<-又f(x)是奇函数,∴)x (f )x (f 12-<-∴)x (f )x (f 21<故f(x)在(-∞,0)上是增函数18.证(1)∵PA⊥平面ABC,ABCBC平面⊂∴PA⊥BC又∵AB是⊙O的直径∴BC⊥AC∴BC⊥平面PAC又PBCBC平面⊂∴平面PAC⊥平面PBC(2)∵BC⊥平面PAC∴∠BPC为PB和平面PAC所成的角设PA=4k,AB=3k,则PB=5k∵65ABCcos=∠,∴2k5ABCcosABBC=∠⋅=在Rt△PCB中,21PBBCBPCsin==∠∴∠BPC=30°为所求19.解:原方程等价于⎪⎩⎪⎨⎧+--=<<413)25x(a3x12由其图象易得当]4131(a,∈时,原方程有解20.(1)∵PD⊥平面ABCD∴PD⊥CD又CD⊥DA,∴CD ⊥平面PDA∴CD ⊥PA又∵M 、N 分别是PB 、AB 的中点∵MN ∥PA∴MN ∥CD(2)设AC ∩BD=0,连MO 、PN∵MO ∥PO∴MO ⊥平面ABCD 且3PD 21MO == ∵N 是AB 的中点,∴4821S 21S ADB NDB =⨯==∆∆ ∴4)36(431)MO PD (S 31V V V DNB DNB M DNB P DMN P =-⨯⨯=-=-=∆--- (3)过O 作DN 作垂线OK ,垂足为K ,连ON ,MK则MK ⊥ND ∴∠MKO 是二面角M-DN-C 的平面角∵2421S 21S DNB ODB =⨯==∆∆ 又52AN AD DN 22=+= ∴525222DN S 2OK DNO =⨯==∆ ∴253OK MO OKM tg ==∠ ∴253arctg OKM =∠为所求。
21.解:设投入乙种商品的资金为x 万元,则投入甲种商品的资金为(3-x )万元。
依题意,甲种商品可获利)x 3(51P -=万元,乙种商品可获利x 53Q =万元,共获利为 )3x 3x (51x 53)x 3(51Q P y ++-=+-=+= ]421)23x ([512+--= 当23x =,即49x =时 2021y max =(万元) 43x 3=- 答:甲种商品投入万元,乙种商品投入万元,可获得最大利润万元。
22.(理科)解:f(x)在[1,+∞)内有意义, 即0ka a x >-时x ∈[1,+∞)均成立,即1x x )a 1(aa k -=<时x ∈[1,+∞)均成立 ∵0<a<1,∴1a1> ∴1x )a1(-在[1,+∞)上是增函数, 当x=1时,其最小值为1,∴当k<1时,f(x)在[1,+∞)内有意义(2)显然k ≠0, 从而ka a lg x k a a a ka a a )ka a (lg y ya y xx y x a -=⇒-=⇒-=⇒-= ∴k a a lg )x (f x a 1-=- 为使)x (f )x (f 1=-对f(x)定义域内的一切x 都成立,则k a a ka a xx-=-, 整理得0a ak a )1k (x 2=+--对定义域中的一切x 都成立∴1k 0a ak 01k 2=⇒⎩⎨⎧=+-=- 此时)a a (lg )x (f )x (f x a 1-==-(x<1)(3)由a>1,12x 2<-<∞-及x<1得1x 3<<- )a a (lg )a a (lg )x (f )2x (f x a a xa 212-=-⇔=---1x 1x 302x x 2-=⇔⎪⎩⎪⎨⎧<<-=--⇔ ∴原方程有唯一解x=-1(文科)解:(1)x 9x3210)x (f +-=(0<x<3) (2)令427)23x (3u 2+--=,当x ∈(0,3)时,]427 0(,∈ ∴42710)x (f 1≤<(3)f(x)在]230(,上递增,在]3 23(,上递减。