高一三角函数诱导公式练习题

合集下载

三角函数诱导公式练习题 答案

三角函数诱导公式练习题  答案

三角函数的引诱公式1一.选择题1.假如|cosx|=cos (x+π),则x 的取值聚集是()A .-2π+2kπ≤x≤2π+2kπ B.-2π+2kπ≤x≤2π3+2kπC .2π+2kπ≤x≤2π3+2kπ D.(2k+1)π≤x≤2(k+1)π(以上k∈Z)2.sin (-6π19)的值是()A .21 B .-21 C .23D .-233.下列三角函数:①sin(nπ+3π4);②cos(2nπ+6π);③sin(2nπ+3π);④cos[(2n+1)π-6π];⑤sin[(2n+1)π-3π](n∈Z).个中函数值与sin 3π的值雷同的是()A .①②B .①③④C .②③⑤D .①③⑤ 4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为()A .-36B .36 C .-26 D .265.设A.B.C 是三角形的三个内角,下列关系恒成立的是()A .cos (A+B )=cosCB .sin (A+B )=sinC C .tan (A+B )=tanCD .sin 2B A +=sin 2C6.函数f (x )=cos 3πx (x∈Z)的值域为()A .{-1,-21,0,21,1} B .{-1,-21,21,1}C .{-1,-23,0,23,1} D .{-1,-23,23,1}二.填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________.8.sin21°+sin22°+sin23°+…+sin289°=_________.三.解答题9.求值:sin (-660°)cos420°-tan330°cot(-690°).10.证实:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ. 11.已知cosα=31,cos (α+β)=1,求证:cos (2α+β)=31.12.化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13.求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tanθ.14.求证:(1)sin (2π3-α)=-cosα; (2)cos (2π3+α)=sinα.参考答案1一.选择题1.C 2.A 3.C 4.B 5.B 6.B 二.填空题7.-sinα-cosα 8.289三.解答题 9.43+1.10.证实:左边=θθθθ22sin cos cos sin 2-1-- =-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--,左边=右边,∴原等式成立.11.证实:∵cos(α+β)=1,∴α+β=2kπ.∴cos(2α+β)=cos (α+α+β)=cos (α+2kπ)=cosα=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证实:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tanθ=右边,∴原等式成立.14证实:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cosα.(2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sinα.三角函数的引诱公式2一.选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为() A. 21B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为() A.23 B. 21C. 23±D. —233.化简:)2cos()2sin(21-•-+ππ得()2 C.sin2-cos2 D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中准确的是()A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD.cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于(),A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4)二.填空题: 6.cos(π-x)= 23,x∈(-π,π),则x 的值为.7.tanα=m,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ.8.|sinα|=sin(-π+α),则α的取值规模是. 三.解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos2(65π-x )的值. 11.求下列三角函数值:(1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12.求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5;(2)sin [(2n+1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π 7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:(1)sin 3π7=sin (2π+3π)=sin 3π=23.(2)cos 4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22.注:应用公式(1).公式(2)可以将随意率性角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin 3π4·cos 6π25·tan 4π5=sin (π+3π)·cos(4π+6π)·tan(π+4π)=(-sin 3π)·cos 6π·tan 4π=(-23)·23·1=-43.(2)sin [(2n+1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++--- =θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cosθ-1,∴f(3π)=cos 3π-1=21-1=-21.三角函数公式1. 同角三角函数根本关系式sin2α+cos2α=1 sinαcosα =ta nαtanαcotα=12. 引诱公式 (奇变偶不变,符号看象限)(一)sin(π-α)=sinα sin(π+α)=-sinαcos(π-α)=-cosα cos(π+α)=-cosα tan(π-α)=-tanα tan(π+α)=tanα sin(2π-α)=-sinα sin(2π+α)=sinα cos(2π-α)=cosα cos(2π+α)=cosα tan(2π-α)=-tanα tan(2π+α)=tanα(二) sin(π2 -α)=cosα sin(π2+α)=cosαcos(π2 -α)=sinα cos(π2 +α)=- sinαtan(π2 -α)=cotα tan(π2 +α)=-cotαsin(3π2 -α)=-cosα sin(3π2 +α)=-cosαcos(3π2 -α)=-sinα cos(3π2 +α)=sinαtan(3π2 -α)=cotα tan(3π2+α)=-cotαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα3. 两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin (α+β)=sinαcosβ+cosαsinβ s in (α-β)=sinαcosβ-cosαsinβ tan(α+β)= tanα+tanβ1-tanαtanβtan(α-β)= tanα-tanβ1+tanαtanβ4. 二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2 cos2α-1=1-2 sin2α tan2α=2tanα1-tan2α5. 公式的变形 (1)升幂公式:1+cos2α=2cos2α 1—cos2α=2sin2α (2)降幂公式:cos2α=1+cos2α2 sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)全能公式(用tanα暗示其他三角函数值)sin2α=2tanα1+tan2α cos2α=1-tan2α1+tan2α tan2α=2tanα1-tan2α6. 拔出帮助角公式asinx +bcosx=a2+b2 sin(x+φ) (tanφ= ba )特别地:sinx±cosx= 2 sin(x±π4)7. 熟习情势的变形(若何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx 1-tanα1+tanα 1+tanα1-tanα若A.B 是锐角,A+B =π4,则(1+tanA )(1+tanB)=28. 在三角形中的结论若:A +B +C=π , A+B+C 2 =π2则有tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A2=1。

高一数学三角函数的诱导公式1

高一数学三角函数的诱导公式1
公式三: 公式四:
sin( ) sin cos( ) cos tan( ) tan
sin( ) sin cos( ) cos tan( ) tan
公式一 ~ 四可用下面的话来概括:
2k (k Z ), , 的三角函数值, 等于角的同名函数值,前面加上一个把 看成锐角时原函数值的符号。
练习:求下列三角函数值.
(1)sin405º ; (3)cos(-300 º ); (4)sin210 º; (2)cos390 º;
终边相 cos( 2k ) cos tan( 2k ) tan
(k Z )
公式三:
公式四:
公式一:
公式二:
sin( 2k ) sin sin( ) sin cos( 2k ) cos (k Z ) cos( ) cos tan( ) tan tan( 2k ) tan
公式二:
sin( ) sin cos( ) cos tan( ) tan sin( ) sin cos( ) cos tan( ) tan sin( ) sin cos( ) cos tan( ) tan
例1.利用公式求下列三角函数值: (1) sin210 º ; (2) cos225º ;
16 13 (3) sin(); (4)tan . 3 6 例2.把下列三角函数化为锐角三角函数: 11 17 (1)sin ; (2)sin( ) ; 10 3 (3) cos(51015'); (4) cos( 240 12 ').

三角函数诱导公式练习题-带答案

三角函数诱导公式练习题-带答案

三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

高一三角函数诱导公式练习题(带详解答案)

高一三角函数诱导公式练习题(带详解答案)

三角函数诱导公式1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33 C. 3 D .- 33.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。

三角函数诱导公式练习题非常经典含有--答案

三角函数诱导公式练习题非常经典含有--答案

一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A.-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC . 2π+2k π≤x ≤2π3+2k πD .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z )2.sin (-6π19)的值是( )A . 21 B .-21C .23 D .-233.下列三角函数:①sin (n π+3π4);②cos(2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π];⑤sin [(2n +1)π-3π](n ∈Z ).其中函数值与sinπ的值3相同的是()A.①②B.①③④C.②③⑤D.①③⑤4.若cos(π+α)=-10,5且α∈(-π,0),则tan(2π3+α)2的值为()A.-6B.363C.-6D.2625.设A、B、C是三角形的三个内角,下列关系恒成立的是()A.cos(A+B)=cos C B.sin(A+B)=sin C C.tan (A+B)=tan C D.sin2B A =sin2C 6.函数f(x)=cos3πx(x ∈Z)的值域为()A.{-1,-1,0,21,21} B .{-1,-21,21,1}C .{-1,-23,0,23,1} D .{-1,-23,23,1}二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos(α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α;(2)cos (2π3+α)=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B二、填空题7.-sin α-cos α 8.289三、解答题 9.43+1.10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++, 右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--,左边=右边,∴原等式成立. 11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21 =︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:(1)sin(π3-α)2=sin[π+(π-α)]=-sin(2π-2α)=-cosα.(2)cos(π3+α)=cos[π+2(π+α)]=-cos(2π+α)=sinα.2三角函数的诱导公式2一、选择题:1.已知sin(π+α)=23,则4sin(3π-α)值为()4A.1 B. —21 C.223 D. —232.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( )A. 23 B. 21 C.23±D. —233.化简:)2cos()2sin(21-∙-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sin α=sin βB.sin(α-π2) =sin βC.cos α=cos βD. cos(π2-α) =-cos β5.设tan θ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ),A. 51(4+5) B. 51(4-5)C. 51(4±5) D. 51(5-4)二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 .7.tan α=m ,则=+-+++)c o s(-s i n ()c o s(3s i n (απα)απ)απ .8.|sin α|=sin (-π+α),则α的取值范围是 .三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin3π4·cos6π25·tan4π5;(2)sin[(2n+1)π-3π2].13.设f(θ)=)cos()π(2cos23)2πsin()π2(sin cos2223θθθθθ-+++-++-+,求f(3π)的值.参考答案21.C 2.A 3.C 4.C 5.A6.±65π7.11-+m m8.[(2k-1) π,2kπ]9.原式=)cos(·sin()cos()ns(sinαα)παπα--+--αi=)cos?(sin)cos(sin2αααα--=sin α 10.161111.解:(1)sin 3π7=sin(2π+3π)=sin 3π=23.(2)cos 4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin(-45°)=-sin45°=-2.2注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sinπ4·cos6π25·tan4π5=sin3(π+π)·cos(4π+6π)·tan(π+4π)3=(-sinπ)·cos6π·tan4π=(-323)·23·1=-43.(2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++--- =θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cosθ-1,∴f(3π)=cos3π-1=21-1=-1.2三角函数公式1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanαcosαtanαcotα=12.诱导公式(奇变偶不变,符号看象限)(一)sin(π-α)=sinαsin(π+α)=-sinαcos(π-α)=-cosαcos(π+α)=-cosαtan(π-α)=-tanαtan(π+α)=tanαsin(2π-α)=-sinαsin(2π+α)=sinαcos(2π-α)=cosαcos(2π+α)=cosαtan(2π-α)=-tanαtan(2π+α)=tanα(二)sin(π2-α)=cosαsin(π2+α)=cosαcos(π2-α)=sin αcos(π2+α)=- sin αtan(π2-α)=cot αtan(π2+α)=-cot αsin(3π2-α)=-cos αsin(3π2+α)=-cos αcos(3π2-α)=-sin αcos(3π2+α)=sin αtan(3π2-α)=cot αtan(3π2+α)=-cot αsin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα3.两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin (α+β)=sinαcosβ+cosαsinβsin (α-β)=sinαcosβ-cosαsinβtan(α+β)=tanα+tanβ1-tanαtanβtan(α-β)= tanα-tanβ1+tanαtanβ4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2 cos2α-1=1-2 sin2αtan2α=2tanα1-tan2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2αsin2α=21-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tan αtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)万能公式(用tanα表示其他三角函数值)sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a )特殊地:sinx±cosx= 2sin(x±π4 )7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosxtanx+cotx若A、B是锐角,A+B=π4,则(1+tanA)(1+tanB)=2 8.在三角形中的结论若:A+B+C=π,A+B+C2=π2则有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tan C2+tanC2tanA2=1。

诱导公式练习题答案

诱导公式练习题答案

诱导公式练习题答案诱导公式是三角函数中常用的公式,主要用于将正弦、余弦等三角函数的角转换为锐角,从而简化计算。

以下是一些诱导公式的练习题及其答案。

# 练习题1:求 \(\sin(90^\circ - x)\) 的值。

答案:根据诱导公式,我们知道 \(\sin(90^\circ - x) = \cos(x)\)。

# 练习题2:计算 \(\cos(180^\circ - x)\)。

答案:根据诱导公式,\(\cos(180^\circ - x) = -\cos(x)\)。

# 练习题3:给出 \(\tan(270^\circ - x)\) 的表达式。

答案:\(\tan(270^\circ - x) = -\cot(x)\)。

# 练习题4:求 \(\sin(360^\circ - x)\) 的值。

答案:\(\sin(360^\circ - x) = -\sin(x)\)。

# 练习题5:计算 \(\cos(90^\circ + x)\)。

答案:\(\cos(90^\circ + x) = -\sin(x)\)。

# 练习题6:给出 \(\tan(180^\circ + x)\) 的表达式。

答案:\(\tan(180^\circ + x) = \tan(x)\)。

# 练习题7:求 \(\sin(270^\circ + x)\) 的值。

答案:\(\sin(270^\circ + x) = -\cos(x)\)。

# 练习题8:计算 \(\cos(360^\circ + x)\)。

答案:\(\cos(360^\circ + x) = \cos(x)\)。

这些练习题涵盖了诱导公式的基本应用,通过这些练习,学生可以更好地理解和掌握诱导公式,提高解决三角函数问题的能力。

高中数学-三角函数诱导公式练习题与答案

高中数学-三角函数诱导公式练习题与答案

三角函数定义及诱导公式练习题1.代数式 sin120 cos210 的值为( )A. 34B. 343 C.2D. 142.tan120 () A .33B.33C . 3D . 33.已知角 α 的终边经过点 (3a ,-4a)(a<0),则 sin α+cos α 等于( ) A. 1 5 B. 7 5C . 1 -D .- 57 5 4.已知扇形的面积为 2cm 2, 扇形圆心角 θ的弧度数是 4, 则扇形的周长为( ) (A)2cm(B)4cm (C)6cm(D)8cm5.已知3 cos()sin() 2 2 f ( ),则cos( ) tan() 25 f ( ) 的值为()3A .1 2B .-1 2C .32D . -326.已知 tan( )3 4 ,且3 ( , ) 2 2,则sin( ) 2( )A 、 4 5B 、 4 5C 、3 5D 、3 57.若角 的终边过点 (sin30 , cos30 ) ,则sin _______.8.已知(0, ) 2,cos 4 5,则sin( )_____________.9.已知 tan=3,则24sin3sin cos 24cossin cos.试卷第 1 页,总 2 页10.(14 分)已知tanα=,求证:(1) sin a cos asin a cos a=-;(2)sin2α+sinαcosα=.11.已知tan 2.(1)求3s insin 2coscos的值;cos()cos()sin(232)(2)求的值;sin(3)sin()cos()(3)若是第三象限角,求cos的值.12.已知sin( α-3π) =2cos( α-4π) ,求 5 2si(n-)+co(s -)的值. 32sin sin--(-) 2试卷第 2 页,总 2 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

参考答案1.B【解析】o试题分析:180 ,故2o . 1203考点:弧度制与角度的相互转化. 2.A.【解析】试题分析:由诱导公式以可得,sin120 °cos210°=sin60 °×(-cos30 °)=-3 2×3 2 = 34, 选A.考点:诱导公式的应用.3.C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值. 由tan120 tan(180 60 ) tan60 3,选C.考点:诱导公式.4.A【解析】试题分析:r 5 5 ,sin 考点:三角函数的定义yr45, c os35,1sin cos . 故选A.55.C22=1 R=1,∴扇【解析】设扇形的半径为R,则错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的诱导公式1一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( ) A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z )2.sin (-6π19)的值是( ) A .21 B .-21 C .23 D .-23 3.下列三角函数: ①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin 3π的值相同的是( ) A .①② B .①③④C .②③⑤D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36C .-26D .265.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( ) A .cos (A +B )=cos C B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2B A +=sin 2C6.函数f (x )=cos 3πx(x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos (α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α; (2)cos (2π3+α)=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边, ∴原等式成立.14证明:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cos α. (2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sin α.三角函数的诱导公式2一、选择题: 1.已知sin(4π+α)=23,则sin(43π-α)值为( )A.21 B. —21C. 23D. —232.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( ) A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4)二、填空题: 6.cos(π-x)=23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin (-π+α),则α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值: (1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:(1)sin 3π7=sin (2π+3π)=sin 3π=23.(2)cos4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22. 注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin 3π4·cos 6π25·tan 4π5=sin (π+3π)·cos (4π+6π)·tan (π+4π) =(-sin3π)·cos 6π·tan 4π=(-23)·23·1=-43.(2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++ =θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++- =θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f (3π)=cos 3π-1=21-1=-21.三角函数公式1. 同角三角函数基本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α (二) sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ) (4)万能公式(用tanα表示其他三角函数值)sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=π4,则(1+tanA)(1+tanB)=28.在三角形中的结论若:A+B+C=π, A+B+C2=π2则有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1。

相关文档
最新文档