调幅电路实验报告4
幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验十、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真十一、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。
十二、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。
引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。
引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。
引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。
用来调节偏置电流I5 及镜像电流I0 的值。
十三、实验内容及步骤1、乘法器失调调零2、观察调幅波形图二:K502 1-2短接波形图图三:K502 2-3短接波形图3、观测解调输出图四:解调输出波形图十四、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。
既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。
即有式中m是调幅波的调制系数(调幅度)。
同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。
十五、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。
温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。
十六、注意事项1.实验前先检查试验箱的电源是否正常;2.使用示波器将波形调至最合适的大小再读数据;3.实验结束后关闭各设备电源,清理好仪器和工具。
实验四和五(调幅及检波)

实验四振幅调制器一、实验目的:1.了解集成模拟乘法器的使用方法,掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
5.通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验原理1、幅度调制的基本原理在无线电通信中,其基本任务是远距离传送各种信息,如语音、图象和数据等,而在这些信息传送过程中都必须用到调制与解调。
调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。
通常称高频振荡为载波信号。
代表信息的低频信号称为调制信号,调制即是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数(振幅、频率或相位)按照调制信号的规律变化。
按照所控制载波参数(幅度、频率、相位)区分,调制可分为幅度调制、频率调制和相位调制。
幅度调制(调幅)就是载波的振幅(包络)受调制信号的控制,随调制信号的变换而变化的一种调制。
在幅度调制中,又根据所取出已调信号的频谱分量不同,分为普通调幅(标准调幅,AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。
它们的主要区别是产生的方法和频谱结构。
在学习时要注意比较各自特点及其应用。
2、单片集成双平衡模拟相乘器MC1496集成模拟乘法器是完成两个模拟量相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频等过程,均可看成两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件简单,且性能优越。
因此,在无线电通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有:BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等等。
实验5 调幅电路

实验五 调幅电路一、实验目的1、掌握模拟乘法相器实现AM信号和DSB信号的方法与过程,并研究已调波与二输入信号的关系。
2.把握用示波器测量调幅系数的方法。
3.分析实验现象。
二、实验原理1.用调制信号去控制高频振荡信号的幅度,使其幅度变化量随调制信号成正比地变化,这一过程称为调幅。
本实验采用MC1496集成模拟相乘器来实现调幅。
2.原理框图:uω(t)是高频载波信号,uΩ(t)是低频调制信号,U=是直流电压。
U=为零时,输出平衡调幅波,如波形图左;U=不为零时,输出正常调幅波,如波形图右;射极跟随器是在乘法器与负载间起到隔离作用以减小相互间的影响。
3.认识实验电路信号输入:u c(t)从10 ,8 脚输入(IN1) ,uΩ(t) 从4,1 脚输入(IN2)信号输出:从6脚输出【注意】载波信号,调制信号u c(t)、uΩ(t)幅度均小于26mv 时实现理想相乘; |uΩ(t)|<26mV,u c(t)为任意值,相乘器工作于线性时变状态; |uΩ (t)|<26mV, |u c(t)|>260 mV时,相乘器工作于开关状态。
直流电的输入:电源+12V 14脚 -8V (先接直流电再接信号)RP1:调节1 4 脚间的直流电位平衡(V1=V4=0V)RP2:调节8 10 脚间电位平衡(V8=V10=6V)R8:负反馈电阻扩展UΩ (t)线性范围(2 3 脚之间)R9::可调节Io/2的大小,电流源的基准电路三极管:射极跟随器,以提高调幅器带负载能力。
三、实验内容及步骤1.直流调制特性测量:1)调节R P2使载波输入端平衡:不加载波,IN2端加峰值约为100mv,频率约为1KHZ的正弦信号,调节R P2,用示波器观察输出端使输出信号最小。
2)去掉IN2输入信号,在IN1端加峰值为10mv ,fc=100KHZ的正弦信号。
用万用表测量A B间的电压U AB,用示波器观察输出端的波形,由1端至另一端调节R P1使U AB以0.25V为步长变化,记录输出波形及其峰值电压。
实验4 振幅调制器

高频电子线路实验报告(实验4 振幅调制器)班级:姓名:学号:实验四振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.观察模拟乘法器MC1496正常工作时的输出波形图。
2.实现全载波调幅,改变调幅度,观察波形变化并画出波形图。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图4-1为MC1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对,由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图4-1 MC1496内部电路图用MC1496集成电路构成的调幅器电路图如图4-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
图4-2 MC1496构成的振幅调制电路四、硬件说明:1.本实验要用到“振荡器与频率调制”、“低频调制信号”、“振幅调制”三个实验模块,它们都在试验箱的左上角,分别找到这三个实验模块的位置。
调幅与解调实验报告

调幅与解调实验报告一、引言调幅(Amplitude Modulation,简称AM)是一种将信息信号调制到载波信号上的调制方式,而解调则是将调制信号中的信息信号分离出来的过程。
调幅与解调是通信领域中基础而重要的技术,本实验旨在通过搭建调幅与解调电路,实现调幅与解调的过程,并验证调幅电路和解调电路的正常工作。
二、实验设备与原理2.1 实验设备本实验所用设备如下:- 信号发生器- 三角波生成器- 振荡器- 信号变换电路- 甄别电路- 示波器- 电阻、电容等元件2.2 实验原理2.2.1 调幅原理调幅原理是将一个较低频率的信息信号通过乘法运算调制到一个高频的载波信号上。
设载波信号为c(t) = A_c\cdot \cos(2\pi f_c t),调制信号为m(t) =A_m\cdot \cos(2\pi f_m t),调幅信号为s(t) = (A_c + A_m\cdot m(t))\cdot \cos(2\pi f_c t)。
2.2.2 解调原理解调过程即提取调制信号中携带的信息信号,常用的解调方法是相干解调。
相干解调的基本原理是将收到的调幅信号再与一个同频率同相位的载波进行乘法运算,然后通过低通滤波器滤除高频成分,得到信息信号。
三、实验步骤3.1 调幅实验1. 搭建调幅电路,将信号发生器输出的正弦波作为调制信号,通过信号变换电路将其调制到振荡器产生的载波信号上。
2. 将调幅信号连接至示波器,调整信号发生器的频率和振荡器的幅度,观察调幅信号的波形特点。
3.2 解调实验1. 将调幅信号连接至甄别电路,通过相干解调原理进行解调。
2. 将甄别电路的输出信号通过低通滤波器滤除高频成分,并连接至示波器。
3. 调整振荡器的幅度和频率,观察解调后波形的恢复情况。
四、实验结果与分析4.1 调幅实验结果通过调幅电路实验,观察示波器上的调幅信号波形特点。
可以发现调幅信号的幅度在载波频率下发生变化,且幅度变化的幅度与调制信号的幅度成正比关系。
集电极调幅实验实验报告

一、实验目的1. 理解集电极调幅的基本原理和过程;2. 掌握集电极调幅电路的组成和特性;3. 学习使用示波器等仪器进行信号测量和分析;4. 通过实验验证集电极调幅电路的工作性能。
二、实验原理集电极调幅是一种高频调制方式,其基本原理是利用低频调制信号去控制晶体管的集电极电压,从而改变集电极高频电流的基波分量,实现信号的调制。
在集电极调幅电路中,晶体管处于丙类工作状态,其集电极电流的基波分量随调制信号的规律变化,从而实现调幅。
三、实验仪器与设备1. 晶体管实验板;2. 晶体管(如2SC1815);3. 信号发生器;4. 示波器;5. 交流电源;6. 负载电阻;7. 连接线。
四、实验步骤1. 搭建集电极调幅实验电路,如图所示。
2. 将晶体管固定在实验板上,确保管脚正确连接。
3. 将信号发生器输出端连接到晶体管的基极,输入端连接到示波器,用于观察输入信号波形。
4. 将示波器的地线连接到实验板的地线。
5. 打开交流电源,调节信号发生器的输出电压,使其在晶体管的截止和饱和之间变化。
6. 观察示波器上的输入信号波形,分析输入信号的变化对集电极调幅电路的影响。
7. 改变信号发生器的输出频率,观察不同频率下集电极调幅电路的性能。
8. 改变负载电阻的阻值,观察负载电阻对集电极调幅电路的影响。
9. 记录实验数据,包括输入信号波形、输出信号波形、调制系数等。
五、实验结果与分析1. 输入信号波形:在实验过程中,观察到输入信号波形为正弦波,频率与信号发生器输出频率一致。
2. 输出信号波形:在实验过程中,观察到输出信号波形为调幅波,其幅度随输入信号的变化而变化。
3. 调制系数:通过计算输入信号与输出信号的峰值比,得出调制系数M。
4. 频率影响:改变信号发生器的输出频率,观察到在不同频率下,集电极调幅电路的性能基本稳定。
5. 负载电阻影响:改变负载电阻的阻值,观察到负载电阻对集电极调幅电路的影响较小。
六、实验结论1. 集电极调幅电路能够将输入的低频调制信号调制到高频信号上,实现信号的调制。
幅度调制实验

实验三幅度调制一、实验目的1、理解用乘法器实现幅度调制的原理。
2、掌握用集成模拟乘法器构成的调幅电路。
3、掌握集成模拟乘法器的使用方法。
二、实验原理1、调幅原理调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。
振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。
把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
2、集成四象限模拟乘法器MC1496简介:MC1496是目前常用的平衡调制/解调器。
它内部电路含有8 个有源晶体管,有两个输入端V X、V Y和一个输出端V O。
一个理想乘法器的输出为V O=KV X V Y,而实际上输出存在着各种误差,其输出的关系为:V O=K(V X +V XOS)(V Y+V YOS)+V ZOX。
为了得到好的精度,必须消除V XOS、V YOS与V ZOX三项失调电压。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
本实验箱在幅度调制,同步检波,混频电路三个基本实验项目中均采用MC1496。
MC1496的管脚功能和内部原理图如图1所示,各引脚功能如下:1)、SIG+ 信号输入正端2)、GADJ 增益调节端3)、GADJ 增益调节端4)、SIG- 信号输入负端5)、BIAS 偏置端6)、OUT+ 正电流输出端7)、NC 空脚8)、CAR+ 载波信号输入正端9)、NC 空脚10)、CAR- 载波信号输入负端11)、NC 空脚12)、OUT- 负电流输出端13)、NC 空脚14)、V- 负电源三、实际电路分析本实验的电路如图2所示,图中U301是幅度调制乘法器,音频信号和载波分别从J301和J302输入到乘法器的两个输入端,K301和K303可分别将两路输入对地短路,以便对乘法器进行输入失调调零。
调幅信号处理实验电路(f题)

调幅信号处理实验电路(f题)
摘要:
一、实验目的
二、实验原理
1.调幅信号基本概念
2.调幅信号处理电路工作原理
三、实验器材与设备
四、实验步骤
1.搭建调幅信号处理实验电路
2.调整电路参数
3.观察实验现象
4.分析实验结果
五、实验总结与思考
正文:
调幅信号处理实验电路(f题)是针对调幅信号进行处理的一种实验,主要目的是让学生了解调幅信号的基本概念,掌握调幅信号处理电路的工作原理,并学会分析实验结果。
实验原理部分,首先需要了解调幅信号的基本概念。
调幅信号是一种模拟信号,通过对信号的振幅进行调制,将信息信号转换为载波信号。
调幅信号处理电路则是利用电子元器件对调幅信号进行处理的电路。
在实验器材与设备部分,需要准备调幅信号发生器、示波器、放大器等电
子元器件。
实验步骤分为四个部分,首先是搭建调幅信号处理实验电路,学生需要按照电路图连接电路,并确保电路正常工作。
其次是调整电路参数,通过调整电路中的可变电容、可变电阻等参数,观察电路输出信号的变化。
第三步是观察实验现象,通过示波器观察电路输出信号的波形,分析信号的振幅变化。
最后一步是分析实验结果,根据观察到的实验现象,分析电路的工作原理,理解调幅信号的处理过程。
实验总结与思考部分,学生需要总结实验中学到的知识,包括调幅信号的基本概念、调幅信号处理电路的工作原理等,并思考如何将实验中学到的知识应用到实际生活中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调幅电路实验报告
姓名:
学号:
班级:
一、实验目的
1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。
2.掌握测量调幅系数的方法。
3.通过实验中波形的变换,学会分析实验现象。
二、实验内容及步骤
(1)普通调幅电路
1.利用EWB软件绘制出如图 1.9的普通调幅实验电路。
2. 按图设置各个元件参数,打开仿真开关,从示波器上观察调幅波波形及与调制信号U1的关系。
画出波形图。
3. 改变直流电压U0的值为4V,观察过调幅的现象,并做好记录。
画出波形图。
附图1.9 普通调幅实验电路
U0=6V
(2)双边带调幅电路
1.利用EWB软件绘制出如图 1.12的双边带调幅实验电路。
2. 按图设置各个元件参数,打开仿真开关,从示波器上观察双边带波形。
画出波形图。
附图1.12 双边带调制实验电路
三.实验报告要求
1. 画出100%调幅波形及抑制载波双边带调幅波形,比较二者的区别。
抑制载波双边带调幅波形
100%调幅波形
100%调幅波的包迹随调制信号的大小成比例变化,它反映了调制信号的变化规律;双边带调幅波的包迹不再随载波振幅的上下变化,而是在横轴的上下变化,并使高频波在调制信号过0点时出现倒相现象,它的包迹不再反映调制信号的变化规律。
2.画出过调幅时的输入、输出波形。
U0=4V
四.思考题
说明普通调幅波和双边带调幅波的区别。
答:普通调幅波中只有上、下边带反映调制信号的信息,载频分量不含调制信号的信息,但它却占用了调幅波的绝大部分功率,而双边带调幅波则将调幅波中的载频分量抑制掉,仅将上、下边带向外发送,这样大大节省了发送设备的功率,使其体积大大减小。