比例加减运算电路

比例加减运算电路
比例加减运算电路

测控电路实验报告

小组人员名单

班号1201131 组长

姓名李欣尤

电话

姓名学号姓名学号李欣尤1120110126

石洪宇1120110115

实验题目比例加减运算电路

实验类型

仿真

实验目的1.掌理解运算放大器的基本性质和特点。

2.熟悉集成运放构成的几种运算电路的结构及特点,测定其运算关系。

3.锻炼仿真能力。

实验

设计

仿真电路图:

仿真电路图如上,由此设计出的比例加减运算电路可以经过适当调整得到同相加法运算电路,反向加法运算电路以及减法运算电路。

实验步骤:

1.在Multisim软件上设计出比例加减运算电路;

2.对其进行变换得到各种运算电路(同相加法运算电路,反向加法运算电路以及减法

运算电路)。

实验设备设备名称型号/规格用途备注仿真软件Multisim 实验仿真

1

实验数据及处理1.同向加法运算电路

如图,输出567)6

O

U R R R VDD V

=++?=

2.反向加法运算电路

如图,输出567

-)-6

O

U R R R VDD V

=++?=

3.减法运算电路

如图,

213

O

U VDD VDD V

=-=

2

实验结论实验结论:设计的比例加减运算电路符合要求。

分析与讨论:设计初期有些迷茫,经过查找资料后经过一系列的思考,设计与修改终于完成了最终要求。

教师签字实验成绩

实验设计

操作与数据处理

3

加减法运算电路设计

电子课程设 ——加减法运算电路设计¥ 学院:电信息工程学院; 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月 19日

加减法运算电路设计 一、设计任务与要求 # 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: % 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 例如: 若选择加法运算方式,则(1001) 2+(0111) 2 =(10000) 2 十进制9+7=16, 并在七段译码显示器上显示16; 若选择减法运算方式,则(1001) 2-(0111) 2 =(00010) 2 十进制9-7=2, 并在七段译码显示器上显示02。 三、选择器件 ~ 1.器件种类: } ^ 表3-1 2.重要器件简介: (1)[ (2). 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压:输出高电平电流:输出低电平电流: 8mA。 2).引脚图:

比例求和运算电路知识讲解

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ?? ? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块 四、预习要求 1、计算表8-l 中的V 0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V 0值 5、计算表8-7中的V 0值

五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器 按表8-l内容实验并测量记录。 V i (V)-2 -0.5 0 0.5 0.98 V (V) R L =∞ R L = 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器 (l) 按表8-2内容实验并测量记录. 直流输入电压U i (mV)30 100 300 9803000 输出电压U 理论估算 (mV) 实测值(mV)10800 误差 (2) 按表8-3要求实验并测量记录. 测试条件理论估算值实测值 ΔU R L 开路,直流输入信号

集成运放基本运算电路的分析与设计

实验报告 实验名称集成运放基本运算电路的分析与设计 课程名称模电实验 院系部:控计专业班级: 学生姓名:学号: 同组人:实验台号: 指导老师:成绩: 实验日期: 华北电力大学 一、实验目的和要求 1.掌握使用集成运算放大器构成反相输入比例运算电路、同相输入比例运算电路、反相输入求和运算电路、减法运算电路的方法。2.进一步熟悉该基本运算电路的输出与输入之间的关系。 二、实验设备 1.模拟实验箱 2.数字万用表 3.运算放大器LM324 4.10K、20K、100K的电阻若干

5.模拟实验箱上有滑动变阻器可供同学使用 三、实验原理. 实际运放具有高增益、低漂移、高输出阻抗、低输出阻抗、可靠性高的特点,可视为理想器件。运放的理想参数: 1.开环电压增益 A=∞vd2.输入电阻 R=∞,R=∞icid3.输出电阻 R =0 o4.开环带宽 BW= ∞ KCMR =∞.共模抑制比5 .失调电压、电流6 、=0VI=0 ioio 根据分析时理想运放的条件,得出两个重要结论: =V 虚开路:I=0 V虚短路:i+-下图为反相比例运算放大器与同相比例运算放大器。 四、实验方法与步骤: 1.反向输入比例运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uiO相比较,分析误差产生的原因。 2.同向输入比例运算 参照反相输入比例运算的电路,设计比例系数为6的同相比例运算电路,设计出相应的电路图及表格,得到四组数据。并将测量值与设计要求进行比较。 输入电压不能过大,要保证运放工作在线性区。

3.反向输入比例求和运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uOi相比较,分析误差产生的原因。 4.减法运算 参照反相输入求和运算的电路,设计比例系数为5的减法运算电路,设计出减法运算的电路图及相应的表格,得到四组数据。然后将测量值与设计要求进行比较。. 输入电压不能过大从而保证运放工作在线性区。五、实验结果与数据处理反向输入比例运算(V) U i U(V) o A 实验值u A-5 计算值 -5 -5 -5 u同向输入比例运算自行设计的电路图 自行设计的表格 (V)i (V) U o A 实验值u A6 6 6 6 计算值u反向输入求和运算 U(V) i1U-1 1 -1 (V) 1 i2U实验值o U计算值o减法运算自行设计电路图 自行设计表格 U (V) i1. -1 1 -1 1 (V) U i2U 实验值o U 计算值o六、思考题第

设计一个一位十进制加减法++数字电路课程设计报告

课程设计报告 课程:微机系统与接口课程设计学号: 姓名: 班级: 教师:

******大学 计算机科学与技术学院 设计名称:设计一个一位十进制加减法器 日期:2010年1月 23日 设计内容: 1、0-9十个字符和“+”“-”分别对应一个按键,用于数据输入。 2、用一个开关控制加减法器的开关状态。 3、要求在数码显示管上显示结果。 设计目的与要求: 1、学习数字逻辑等电路设计方法,熟知加减法器、编码器、译码显示的工作原理及特点; 2、培养勤奋认真、分析故障和解决问题的能力。 设计环境或器材、原理与说明: 环境:利用多功能虚拟软件Multism8进行电路的制作、调试,并生成文件。器材:74LS283或者4008, 4个异或门(一片74LS86)(减法);74LS08,3输入或门(加法) 设计原理: 图1二进制加减运算原理框图 分析:如图1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 设计过程(步骤)或程序代码: 实验电路: 1:减法电路的实现: (1):原理:如图1所示(如下),该电路功能为计算A-B。若n位二进制 原码为N 原,则与它相对应的补码为N 补 =2n-N 原 ,补码与反码的关系式为N 补 =N 反 +1, A-B=A+B 补-2n=A+B 反 +1-2n (2):因为B○+1= B非,B○+0=B,所以通过异或门74LS86对输入的数B求 其反码,并将进位输入端接逻辑1以实现加1,由此求得B的补码。加法器相加的结果为: A+B 反 +1, (3):由于2n=24=(10000) 2 ,相加结果与相2n减只能由加法器进位输出信号完成。当进位输出信号为1时,它与2n的差为0;当进位输出信号为0时,它与2n差值为1,同时还要发出借位信号。因为设计要求被减数大于或等于减数,所以所得的差值就是A-B差的原码,借位信号为0。

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22 110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ??? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块

四、预习要求 1、计算表8-l中的V0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V0值 5、计算表8-7中的V0值 五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器按表8-l内容实验并测量记录。 表 8-1 V i(V)-2 -0.5 0 0.5 0.98 V0(V)R L=∞ R L= 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器(l) 按表8-2内容实验并测量记录. 表8-2

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

加减法运算电路设计

电子课程设 ——加减法运算电路设计 学院:电信息工程学院 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月19日

加减法运算电路设计 一、设计任务与要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 3.led灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算 模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

例如: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16,并在七段译码显示器上显示16; 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。 三、选择器件 1.器件种类: 表3-1 2.重要器件简介: (1) . 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压: 4.75V--5.25V 输出高电平电流: -0.4mA 输出低电平电流: 8mA 。 2).引脚图: 图3-1 引出端符号: A1–A4 运算输入端 B1–B4 运算输入端 C0 进位输入端 序号 元器件 个数 1 74LS283D 2个 2 74LS86N 5个 3 74LS27D 1个 4 74LS04N 9个 5 74LS08D 2个 6 七段数码显示器 4个 7 74LS147D 2个 8 开关 19个 9 LM7812 1个 10 电压源220V 1个 11 电容 2个 12 直流电压表 1个

运算电路设计

运算电路设计 预习资料: 一. 实验内容概述 本实验需要利用实验室提供的元器件在实验箱上搭建并调试一个运算电路,其电路功能为先将一正弦信号比例放大,再经过积分变为余弦信号,再通过减法运算消除信号中的直流分量。 二. 调试步骤 电路调试时通常做法是:先将整个电路图按功能划分为若干模块,本次电路应该会分为(比例运算电路、积分运算电路、减法运算电路)三个模块;然后分别将各模块内部电路连好,并按照信号流向逐级调试(即从最初信号开始,每次多加一个模块,直至最后整机电路调试成功),本次实验根据题目要求依次调试比例运算电路、积分运算电路、减法运算电路既可。 1. 按照设计好的电路图在实验箱上实现比例运算电路连线,详见下面各步: (1)选取电阻R1,并将其一端连接至运放反相输入端,如下图所示 (2)将电阻R1另一端连线至电源接地端,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7

(3)选取电阻Rf ,并将其一端连接至运放反相输入端,如下边左图所示 (4)将电阻Rf 另一端连线至运放输出端,如上边右图所示 (5)选取电阻R2,并将其一端连接至运放同相输入端,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7

(6)将信号发生器信号端连线至电阻R2另一端,并且将信号发生器接地端连线至电源接地端;如下图所示 (7)将电源+12V 连接至运放“7”脚,电源-12V 连接至运放“4”脚,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7信号发生器

加减运算电路设计

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:加减运算电路设计 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

根据反相与同相加法运算电路的运算关系,输出电压与各个输人电压的运算的关系为 单运放加减运算电路的外电路阻值不易计算和调整,双运放电路不仅克服了,上述缺点,而且对运放本身共模抑制比的要求也较低,如图6-2-2所示。 根据反相求和电路输出与输入关系,可得 若取RF1=R4,则

实验内容及步骤: 设计一个能完成的运算电路。要求选用单运放加减电路实现,其输出失调电压 1.电路形式及集成运算放大器的选择 电路形式如图6-2-1所示,集成运算放大器采用μA741,其输人失调电流=100~300nA 2.元器件参数的计算 (1)反馈电阻Rp的计算。Rp的最大值由运放允许的输出失调电压 和输人失调电流决定,即 其中,的大小按手册给定值或实测;为设计要求之一,包括输人失调电压,所引起的,而。与各电阻有关,故。为未知,所以只能按式(6-2-5) 取RF的值。 若未提此项要求,则Rr可在低于1MΩ内选取。RF值不宜过大,因为RF值越大,误差电压和噪声及漂移也越大; RF值也不宜过小,因为RF是负载的一部分,若过小,运放容易过载。 题意取,则 取RF=30kΩ (2)R1、R2、R3、R4的确定。设反向端、同向端各自输人信号为零时的直流等效电阻 RN、RP的值相等,可按反相求和原则计算R1、R2、R3、R4的值。

根据题目要求,则 (3)电阻R5的确定。R5是使RN=RP的平衡电阻,故首先计算在不包括R5时的反相端,同相端各自输入信号为零时的直流等效电阻RA和RB,即 4.电路的安装与调试 (1)静态的测试检查。 1)按电路图6-2-1搭接好实验电路,并细心检查运放组件各管脚位置的连接,切忌正负电源极性接反和输出端短路,否则会损坏集成块,确认无误后方可接通直电源。 2)将输入端接地,用万用表直流电压挡的相应量程测量输出端;此时,如果万用表显示不为零,则需要调整调零电位器旋钮,使输出端电压为零,在调零过程中,万用表的量程应从2V开始逐步变小,直至在毫伏级的量程下,测量输出为零时,结果最精确。此后的测量应保持电位器滑动端位置不变。 (2)动态测试。 1)当静态检查正常以后,将直流电源切断,输人端与“地”断开。 2)先对各输入信号电压进行初测,使其不超过规定的数值,然后

比例运算电路(有数据版)

暨南大学本科实验报告专用纸 课程名称模拟电子技术实验成绩评定 实验项目名称比例求和运算电路指导教师窦庆萍实验项目编号0712*******实验项目类型验证型实验地点实B406 学生姓名李佳学号2013053123 学院电气信息学院专业电子信息科学与技术 一、实验目的 1.掌握用集成运算放大电路组成比例、求和电路的特点及性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1.数字万用表 2.示波器 3.信号发生器 三、预习要求 1.计算表6.1中的Vo和Af 2.估算表6.3的理论值 3.估算表6.4、表6.5中的理论值 4.计算表6.6中的Vo值 5.计算表6.7中的Vo值

四、实验内容 1.电压跟随电路 实验电路如图6.1所示。 图6.1 电压跟随电路 按表6.1内容实验并测量记录。 表6.1 2.反相比例放大器 实验电路如图6.2所示。 图6.2 反相比例放大电路(1)按表6.2内容实验并测量记录。 (2)按表6.3要求实验并测量记录。

(3)测量图6.2电路的上限截止频率。 3.同相比例放大电路 电路如图6.3所示 (1)按表6.4和6.5实验测量并记录。 图6.3 同相比例放大电路 表6.4 (2)测出电路的上限截止频率。 上限截止频率为23.5KHz,且其为低通。 4.反相求和放大电路。 实验电路如图6.4所示。 按表6.6内容进行实验测量,并与预习计算比较。

图6.4反相求和放大电路 5.双端输入求和放大电路 实验电路为图6.5所示。 图6.5 双端输入求和电路 表6.7 按表6.7要求实验并测量记录。 五、实验小结 1.总结本实验中5种运算电路的特点及性能。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低。 反相比例放大器,输出电压按比例增大,相位与输入电压相反。同相比例放大器,输出电压按比例增大,相位与输入电压相同。

加减法运算电路设计

加减法运算电路设计 1.设计内容及要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数,且作减法运算时被减数要大于或等于减数。 2.led 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 3.提出至少两种设计实现方案,并优选方案进行设计 2.结构设计与方案选择 2.1电路原理方框图 电路原理方框图如下 → → 图1-1二进制加减运算原理框图 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 即: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16 并在七段译码显示器上显示16. 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2 置数 开关选择运算方式 加法运算电路 减法运算 电路 译码显示计算结果 显示所置入的两个一位十进制数

并在七段译码显示器上显示02. 2.2加减运算电路方案设计 2.2.1加减运算方案一 如图2-2-1所示:通过开关S2——S9接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U13和U15分别显示所置入的两个数。数A 直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S6——S9,通过开关S6——S9控制数B的输入。当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B的反码,且74LS283的进位信号C0为1,其完成S=A+B (反码)+1,实际上其计算的结果为S=A-B完成减法运算。由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)时加上6(0110),产生的进位信号送入译码器U10来显示结果的十位,U11显示结果的个位。由于减法运算时两个一位十进制数相减不会大于10,所以不会出现上述情况,用一片芯片U11即可显示结果。 2.2.2加减运算方案二 由两异或门两与门和一或门组成全加器,可实现一位二进制加逻辑运算,四位二进制数并行相加的逻辑运算可采用四个全加器串行进位的方式来实现,将低位的进位输出信号接到高位的进位输入端,四个全加器依次串行连接,并将最低位的进位输入端接逻辑“0”,就组成了一个可实现四位二进制数并行相加的逻辑电路。 通过在全加器电路中再接入两个反相器可组成一个全减器,实现一位二进制减逻辑运算,将来自低位的错位信号端接到向高位借位的信号端,依次连接四个全减器,构成可实现四位二进制数并行进行逻辑减运算的电路。 在两组电路置数端接开关控制置数输入加法还是减法运算电路,电路输出端接LED灯显示输出结果,输出为五位二进制数。

反向比例运算电路

反向比例运算电路 (1)电路的组成 图—1 反向比例运算电路的组成如图—1所示。由图可见,输入电压u i 通过电阻R 1加在运放的反向输入端。R f 是沟通输出和输入的通道,是电路的反馈网络。 同向输入端所接的电阻R P 为电路的平衡电阻,该电阻等于从运放的同向输入端 往外看除源以后的等效电阻,为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R 1//R f (2)电压放大倍数

图-2 理想运算放大器组成的反相比例运算电路见图-2,显然是一个电压并联负反馈电路。 在输入信号作用下,输入端有电流i I、i′I、 i f 。 根据虚断的特性有i'I≈0 于是i I≈i f 根据虚短的特性,有u+ ≈ u- 所以 放大倍数A u为 (3)反向比例运算电路的输入电阻 为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R1//R f (4)由于反向比例运算电路具有虚地的特点。所以共模输入电压为 反相比例运算电路由于具有“虚地”的特点,运放的同相输入端和反相输入端均为0电位,所以反相比例运算电路的共模输入电压等于0。 结论: 1. 电路是深度电压并联负反馈电路,理想情况下,反相输入端“虚地”,共模输入电压低。 2. 实现了反相比例运算。|Au| 取决于电阻 R f和 R1之比。U0与 U i反相, | Au | 可大于1、等于 1 或小于 1 。 3. 电路的输入电阻不高,输出电阻很低。 4. 虽然理想运放的输入电阻为无穷大,由于引入并联负反馈后,电路的输入电阻减少了,变成R 1 ,要提高反向比例运算放大器的输入电阻,需加大电阻 R 1的值。R 1 的值越大,R f 的值也必需加大,电路的噪声也加大,稳定性越差。 f o 1 I R u R u - ≈ 1 I I I I i R i u i u R= - = =

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性范围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

除法运算电路(模拟电路课程设计)

模拟电路课程设计报告设计课题:除法运算电路 专业班级: 学生: 学号: 指导教师: 设计时间:

目录 第一设计任务与要求 (3) 第二方案设计与论证 (3) 第三单元电路设计与参数计算 (4) 第四总原理图及元器件清单 (9) 第五安装与调试 (11) 第六性能测试与分析 (12) 第七结论与心得 (14) 第八参考文献 (15)

题目4:除法运算电路(4) 一、设计任务与要求 1.设计一个二输入的除法运算电路。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 该课程设计是做一个二输入的除法电路,而因此需要利用对数和指数运算电路实现或者用模拟乘法器在集成运放反馈通路中的应用来实现。 在产生正、负电源的实用电路中,多采用全波整流电路,最常用的是单向桥式整流电路,即将四个二极管首尾相连,引出两根线接变压器,另外两个接后面电路,并将桥式整流电路变压器副边中点接地,并将二个负载电阻相连接,且连接点接地。电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。 方案一: 除法电路的输出电压正比于其两个输入电压相除所得的商,所以利用对数电路、差分比例运算电路和指数电路,可得除法运算电路的方块图: I1 u

方案二: 利用反函数型运算电路的基本原理,将模拟乘法器放在集成运放的反馈通路中,便可构成除法运算电路。 比较: 方案一:该方案是利用对数电路、差分比例运算电路和指数电路的组合来设计的,运算放大器uA741要四个,电阻也很多,对焊接有很大的要求,要焊的器件比较多,相对来说比较复杂。 方案二:该方案是利用模拟乘法器放在集成运放的反馈通路中的应用, uA741只要一个,电阻也很少,焊接起来比较方便。 我选择方案二。 三、单元电路设计与参数计算 1.对数运输电路 (1)电路原理图 由二极管方程知 ) 1e (D S D -=T U u I i 当 u D >>U T 时, T U u I i D e S D ≈

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

加减法运算电路的课程设计

加减法运算电路的设计 一、设计任务 设计参数 设计一个一位十进制并行加(减)法运算电路;通过按键输入被减数和减数,并设置+、-号按键;允许减数大于被减数,负号可采用数码管或其他显示器件,并利用LED灯显示计算结果。 设计要求 根据技术参数设计电原理图;计算并选择电路元件及参数;仿真调试电路。 二、设计方案 设计电路原理: 1、置入两个四位二进制数。例如(1011)2,(0011)2和(0111)2,(0110)2,同时在两个七段译码显示器上显示出对应的十进制数10,3和7,6 2、通过开关选择加(减)运算方式 3、若选择加运算方式所置数送入加法运算电路进行运算;若选择减运算方式,则所置数送入减法运算电路运算 4、前面所得结果通过另外两个七段译码器显示 即显示结果: 若选择加法运算方式,则(0011)2+(0110)2=(1010)2 十进制3+6=9 并在七段译码显示器上显示 9 若选择减法运算方式,则(0101)2-(1000)2=(10011)2十进制5-8= -3 并在七段译码显示器上显示 -3 设计电路运算方案: 通过开关S1——S8接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U15和U16分别显示所置入的两个数。数A直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S5——S8,通过开关S5——S8控制数B的输入。当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B 的反码,且74LS283的进位信号C0为1,其完成S=A+B(反码)+1,实际上其计算的结果为S=A-B完成减法运算。由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)2时加上3(0011)2,产生的进位信号送入译码器U13来显示结果的十位,U12显示结果的个位。由于减法运算时两个一位十进制数相减不会大于10,所以不会出现上述情况,用一片芯片U12即可显示结果。 三、电路设计 加法电路的实现 用两片4位全加器74LS283和门电路设计一位8421BCD码加法器。 由于一位8421BCD数A加一位数B有0到18这十九种结果。而且由于显示的关系,当大于9的时候要加六转换才能正常显示。

反相比例运算电路仿真分析.doc

1 反相比例运算电路 1.1 综述 反相比例运算电路实际上是深度的电压并联负反馈电路。在理想情况下,反相输入端的电位等于零,称为“虚地”。因此加在集成运放输入端的共模电压很小。 输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。比例系数的数值可以大于或等于1,也可以小于1。 由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。1.2 工作原理 1.2.1 原理图说明 图1.2.1.1 反相比例运算电路 如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。输出电压经反馈电阻RF引回到反相输入端。 集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。因此,通常选择R2的阻值为R2=R1∥RF 经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。由于集成运放

的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。 由于“虚断”,U +=0 又因“虚短”,可得 U - =U + =0 由于 I -=0 , 则由图可见 I I =I F 即(U I -U - )/R1=(U—U )/RF 上式中U - =0,由此可求得反相比例运算电路的输出电压与输入电压的关系为 U 0=-RF·U I /R1 1.2.2 元件表 元件名称大小数量 集成运算放大器741 1 直流电源1V 1 电阻 6.8K 1 10K 1 20K 1 1.3 仿真结果分析 图1.3.1 仿真分析结果图 由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论。

01运算放大器16个基本运算电路设计

运算放大器16个基本运算电路设计 一、集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为 芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 1.1反向比例电路 第1题:电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。 v u u R R u i i f 5101 0-=-=-=根据虚断虚短得 1.2反向求和加法电路 第2题:电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电

路功能。 v u u u R R u R R u i i i f i f 3(10)212 3 11 0-=--=--=—根据虚断虚短得 1.3电压跟随电路 第4题 电路如下,推导输入与输出的关系,计算电路的理论值,并与仿真值比较,说明电路功能。 这是一个电压跟随器: mv u u R R u i i f 100)1(11 1 0==+=

1.4加减运算电路 加减运算电路如图4所示,输入信号1i u 、2i u 分别加在反相输入端和同相输入端,这种形式的电路也称为差分运算电路。 输出电压为: 2 21123 1 (1) f f o i i R R R u u u R R R R =+ - +

相关文档
最新文档