比例运算电路(有数据版)

合集下载

比例求和运算电路知识讲解

比例求和运算电路知识讲解

比例求和运算电路实验八 比例求和运算电路—、实验目的1、掌握用集成运算放大器组成比例、求和电路的特点及性能。

2、学会上述电路的测试和分析方法。

二、实验原理1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出:反相比例放大器 10R R V V A Fi f-==1R r if = 同相比例放大器 101R R V V A Fi f +== ()id Od r F A r +=1式中Od A 为开环电压放大倍数FR R R F +=11id r 为差模输入电阻当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。

反相求和电路 22110i Fi F V R R V R R V •+•-=若 21i i V V = ,则 ()210i i FV V RR V +=双端输入求和电路⎪⎭⎫ ⎝⎛-'=∑∑21120i i F V R R V R R R R V 式中:F R R R //1=∑ 32//R R R ='∑三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器4、集成运算放大电路模块四、预习要求1、计算表8-l 中的V 0和A f2、估算表8-3的理论值3、估算表8-4、表8-5中的理论值 4、计算表8-6中的V 0值5、计算表8-7中的V 0值五、实验内容1、电压跟随器实验电路如图8-l所示.图8-l电压跟随器按表8-l内容实验并测量记录。

Vi(V)-2 -0.5 0 0.5 0.98V(V)RL=∞RL= 5K1 4,962、反相比例放大器实验电路如图8-2所示。

图8-2反相比例放大器(l) 按表8-2内容实验并测量记录.直流输入电压Ui(mV)30 100 300 9803000输出电压U理论估算(mV)实测值(mV)10800误差(2) 按表8-3要求实验并测量记录.测试条件理论估算值实测值ΔURL开路,直流输入信号ΔUABUi由0变为800mVΔUR2ΔUR1ΔUOLUi=800mVRL由开路变为5K1(3) 测量图8-2电路的上限截止频率。

比例运算放大电路

比例运算放大电路

比例运算放大电路
比例运算放大电路,又称“比例放大器”,是一种放大器电路,它能够放大输入电压的比例,并且能够有效地控制输出电压的大小。

它通常用于电气设备的控制,如功率放大器、放大器、数据采集器等。

比例运算放大电路由一个或多个反馈电路构成,反馈电路可以检测输出电压,并且将其反馈到输入端,从而改变输入电压的大小。

多个反馈电路可以有效地控制输出电压的波动,从而改变输出电压的大小。

比例运算放大电路的主要特点是它能够有效地控制输出电压的大小。

比例运算放大器的反馈电路可以检测输出电压,并且可以根据输出电压的变化来调节输入电压,从而控制输出电压的大小。

这样,在改变输入电压的情况下,输出电压也可以保持一定的比例。

比例运算放大器的另一个特点是它可以放大微小的电压,这对于检测微小的输入信号是非常有用的。

比例放大器可以放大微小的输入信号,从而使得检测微小的输入信号变得更容易。

比例运算放大器还有一些其他优点,比如它可以提供高精度的放大比例,可以改变输入电压的大小,可以提供低噪声的放大比例,还可以提供低负载对输入电压的影响,这对于放大微小的输入信号是非常有用的。

此外,比例运算放大器还有一些缺点,比如它的输入阻抗很低,它的输出阻抗很高,而且它的输入电压的变化率也较低,这使得它的响应时间较慢。

尽管比例运算放大器有一些缺点,但它在电气设备的控制中也非常重要。

它可以有效地放大微小的输入信号,并且可以有效地控制输出电压的大小,因此它在电气设备的控制中发挥着重要作用。

差分比例运算电路

差分比例运算电路

差分比例运算电路
1什么是差分比例运算电路
差分比例运算电路(Differential Proportionate Operation Circuit),简称差比运算电路(DPOC),是数字电路领域中的一种重要的基础技术。

DPOC的主要目的是构建Y=F(X)的非线性函数,使用在各种电子设备中,如焦耳,图像像素等。

2差分比例运算电路的结构
DPOC由三部分组成:比较器,增量数据传输及控制器。

比较器用来比较输入函数X到输出函数Y的数值,当X和Y的数值不匹配时,连接的增量数据传输就会发挥作用,增量数据传输将X和Y的数值变换成标准信号,将数据传回控制器,控制器会根据信号调节X和Y的数值,从而达到X值与Y值的匹配。

3差分比例运算电路的优势
1、差分比例运算电路具有较高的动态范围。

这一点在精密设备中尤为重要,以捕捉各种微小的差异
2、它极大地提高了系统的精确度,因此能够更准确地传输信息。

3、当X与Y的数值不匹配时,由控制器调节X和Y的数值,使得系统响应更加迅速,更加稳定。

4差分比例运算电路的应用
差比运算电路在电子设备方面有着广泛的应用,如微处理器中的多路位置控制,焦耳操作,图像处理,雷达信号等。

在其他领域,DPOC还可用于控制各种真空测量仪器的关键参数,如真空管的漏电参数控制,伺服系统的位置控制,气体分析的信号控制等。

实验七比例求和运算电路

实验七比例求和运算电路

03 实验步骤与操作
搭建比例运算电路
选择合适的运算放大器
搭建电路
根据实验需求,选择具有适当性能指 标的运算放大器,如低失真、低噪声 等。
按照设计好的电路图,在面包板上搭 建比例运算电路,注意元件布局和走 线。
设计比例运算电路
根据所需放大倍数,设计合适的比例 运算电路,包括电阻、电容等元件的 选型和取值。
搭建求和运算电路
设计求和运算电路
根据实验需求,设计能够实现两 个或多个输入信号求和的运算电
路。
选择合适的元件
根据设计需求,选择合适的电阻、 电容等元件,实现信号的加权和求 和。
搭建电路
在面包板上按照设计好的电路图搭 建求和运算电路,确保连接正确且 紧固。
组合比例求和运算电路
连接比例运算电路和求和运算电路
实验意义及价值
拓展电子技术应用领域
比例求和运算电路作为一种基本的模拟电路,在电子技术应 用领域具有广泛的应用前景,如信号处理、自动控制等。
促进电子技术教学发展
通过本次实验,可以帮助学生深入理解和掌握模拟电路的基 本原理和设计方法,提高其实践能力和创新意识。
对未来研究的建议
深入研究高性能比例求和运算电路
实验七比例求和运算电路
目 录
• 引言 • 比例求和运算电路基本原理 • 实验步骤与操作 • 实验数据分析与讨论 • 实验结论与总结
01 引言
实验目的
掌握比例求和运算电 路的基本原理和实现 方法。
通过实验验证理论分 析和电路设计的正确 性。
学会使用运算放大器 构建比例求和电路。
实验背景
比例求和运算电路是模拟电子技术中的一种基本电路,广泛应用于信号处理、自动 控制等领域。

实验五 比例求和运算电路

实验五 比例求和运算电路
表3.5.4
Ui1/V Ui2/V U0/V
反相加法测试数据
0.3 0.2 -0.3 0.2
4.减法器电路 实验电路如图3.4.5所示,按表3.4.4要求测量并记录数据。 表3.5.5 减法器测试数据
Ui1/V Ui2/V U0/V 1 0.5 2 1.8 0.2 -0.2
五 、实验报告要求 1. 总结本实验中五种运算电路的特点及性能。 2. 分析理论值与实验结果误差的原因。
实验五
比例求和运算电路
一、实验目的 1. 掌握用集成运算放大电路组成比例、求和电路的特点与性 能。 2. 学会上述电路的测试和分析方法。 二、实验原理 集成运算放大器是高增益的直接耦合放大器。在它的输 入端和输出端之间加上不同的反馈网络,就可以实现不同的 电路功能。如可实现放大功能及加、减、微分、积分、等模 拟运算功能及其它非线性变换功能。 理想运放在线性运用时具有以下重要特性: (1)理想运放的同相和反相输入端电流近似为零,即I+≈I- ≈0 (2)理想运放线性放大时,两输入端电压近似相等,U+≈U-。
(注意:带负载电路调整Ui;随时换量程。)
100K 10K 15 10K RP 100K -12V
反相比例电路接线图
+12V
V
表 3.5.1 反相比例测试数据
直流输入电压Ui / V 输出 电压 U0 /V 理论值/V 测量值/V 误差 0.1 0.2 0.3 0.4
2. 同相比例放大电路 电路如图3.5.2所示。按表3.5.2进行测量,并记录实验数据。
Ui/R1 =-U0/Rf
图3.4.5 减法器
三.实验设备
1. 现代电子技术实验台 1套 2. 数字万用表 1块
8 7 6 5 2 - - μ A741 3 1 1 2 3 4 + 7

实验报告模板(比例运算电路实验)4页word

实验报告模板(比例运算电路实验)4页word

华南师范大学实验报告学生姓名林荣淞学号 20093200144专业光电年级、班级 09光电2班课程名称电子技术实验讲义实验项目比例运算电路实验一、实验目的:a)熟悉由集成运算放大器组成的基本比例运算电路的运算关系。

b)掌握集成比例运算电路的调试和实验方法,验证理论分析结果。

二、仪器设备:示波器低频模拟电路实验箱低频信号发生器数字式万用表三、实验内容与步骤:(1)反相比例运算放大器①反相比例运算放大器测试电路如图1所示。

图中R f=100kΩ,R1=10kΩ,R2=R1∥Rf。

连接电路,检查无误后接通电源。

图1 反相比例运算放大器②调零。

将输入端接地,用直流电压表检测输出电压,检查U O是否等于零,保证Ui 等于零时,UO等于零(注:调零时必须已接入Rf)。

③在输入端加入直流信号,信号的电压值见表1。

用直流电压表测量输出电压UO,将测量值记入表1中。

④注:直流电压的得到:用直流电源1.5——24V调节得到输出为2V电压,然后通过10k 电位器分压得到所需的直流电压值。

(2)同相比例放大器① 同相比例放大电路测试电路如图2所示,图中R f ,R 1,R 2参数同(1)①,按图2接线,检查无误后接通电源。

图2同相比例放大器② 调零同(1)②。

③ 在输入端加入直流信号,信号的电压值见表1,测量值填入表1中。

(3)电压跟随器电压跟随器测试电路如图3所示。

图中R f =R 1=10k Ω,按图3接线,检查无误后接通电源,调零,输入端加入直流信号,信号的电压值见表2。

测量输出电压U O ,将测量值记入表2中图3电压跟随器(4)差动比例放大器差动比例放大器测试电路如图4所示。

图R f =R 3=100k Ω,R 1=R 2=10k Ω。

按图4接线,接通电源,调零,输入端U 11,U 12同时加入直流信号,信号电压值见表2(注意信号的极性),测量输出电压U O ,测量值记入表2中。

图4差动放大器四、 数据处理表1 U O 与U i 的关系表表2 UO 与Ui的关系表五、思考题:a)理想比例运算放大器有哪些特点?b)比例运算电路的运算精度与电路中哪些参数有关?如果运算放大器已选定,如何减少运算误差?c)在图1电路中,若输入对地短路,输出电压U O不等于零,说明电路存在什么问题?应如何处理?d)在图1电路中,输入端接地后,用电压表测量出电压U O,发现U O等于电源电压值,你是否说明电路发生了什么问题?e)希望以上资料对你有所帮助,附励志名言3条:f)g)1、有志者自有千计万计,无志者只感千难万难。

实验四比例求和运算电路实验报告

实验四比例求和运算电路实验报告

实验四比例求和运算电路实验报告
实验四比例求和运算电路实验报告是一份详细的文档,用于描述实验四比例求和运算电路的实验过程及实验结果。

它包括实验目的、原理说明、实验步骤、结果分析和结论性评价等内容。

1.实验目的:本次实验的目的主要是探究实验四中比例求和运算电路的工作原理,并通过分析实验结果来检验电路的正确性。

2.原理说明:比例求和运算电路是一种常用的电路,它的工作原理如下:将输入电压V1和V2乘以系数K1和K2(K1+K2=1),然后将两个乘积相加得到输出电压Vout,即: Vout=K1 * V1 + K2 * V2。

3.实验步骤:(1)首先,按照电路图将所有元件依次装上电路板,根据实验指导书的要求,正确接线。

(2)确认安装正确后,按照电路图将V1和V2先后依次调节至0.6V和1.4V,观察比例求和电路的输出电压Vout。

(3)将V1和V2先后依次调节至0.8V和1.2V,观察比例求和电路的输出电压Vout。

4.结果分析:从实验结果来看,当V1=0.6V,
V2=1.4V时,Vout=1.0V;当V1=0.8V,V2=1.2V时,
Vout=1.0V,说明电路电压求和运算正确。

5.结论性评价:本次实验成功地验证了比例求和运算电路的正确性,提高了对电路的深入理解。

模拟电子技术(7.4)--实验五比例、求和运算电路实验

模拟电子技术(7.4)--实验五比例、求和运算电路实验

实验五 比例、求和运算电路实验1.实验目的① 掌握比例、求和电路的设计方法,熟悉由集成运算放大器组成的基本比例运算电路的运算关系。

② 通过实验,了解影响比例、求和运算精度的因素,进一步熟悉电路的特点和功能。

2.实验电路及仪器设备(1)实验电路① 用一个运放设计一个数字运算电路,实现下列运算关系:U O=2U I1+2UI2-4U I3已知条件:U I1=50~100mV;U I2=50~200mV;U I3=20~100mV参考电路如下:② 设计一个能实现下列运算关系的电路:U O=-10U I1+5U I2;U I1=U I2=0.1~1V参考电路如下:比例运算实验电路如图1-22所示。

(2)实验仪器设备双路直流稳压电源、示波器、直流信号源、数字万用表、实验箱。

3.实验内容(1)根据设计题目要求,选定电路,确定集成运算放大器型号,并进行参数设计(2)按照设计方案组装电路(3)在设计题目所给输入信号范围内,任选几组信号输入,测出相应输出电压 u o,将实测值与理论值作比较,计算误差。

比例求和设计电路如下:注意:实际上输入可以是任意波形,由于实验室条件所限,本实验输入信号选用直流信号。

μΑ741参数:A od=105dB;R id=2MΩ;R o=1kΩ;f H=10Hz引脚说明:2脚IN--:反相输入端3脚IN+:同相输入端6脚OUT:放大器输出端4脚V--:负电源入端(-12V)7脚V+:正电源入(+12V)(4)在输入端加入不同的输入电压,用万用表直流电压档测量输出值,填写下表:4.实验报告要求准备报告: 写出电路的具体设计过程。

总结报告:根据实验结果,分析产生误差原因。

5.实验注意事项(1)实验完毕要交回元件完整的元件袋!(2)关闭电源连电路,做完实验拆电路时,也要关闭电源拆电路!(3)万用表在测量电阻后测电压时,要注意及时变换档位,否则会烧坏万用表!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

暨南大学本科实验报告专用纸
课程名称模拟电子技术实验成绩评定
实验项目名称比例求和运算电路指导教师窦庆萍实验项目编号0712*******实验项目类型验证型实验地点实B406 学生姓名李佳学号2013053123
学院电气信息学院专业电子信息科学与技术
一、实验目的
1.掌握用集成运算放大电路组成比例、求和电路的特点及性能。

2.学会上述电路的测试和分析方法。

二、实验仪器
1.数字万用表
2.示波器
3.信号发生器
三、预习要求
1.计算表6.1中的Vo和Af
2.估算表6.3的理论值
3.估算表6.4、表6.5中的理论值
4.计算表6.6中的Vo值
5.计算表6.7中的Vo值
四、实验内容
1.电压跟随电路
实验电路如图6.1所示。

图6.1 电压跟随电路
按表6.1内容实验并测量记录。

表6.1
2.反相比例放大器
实验电路如图6.2所示。

图6.2 反相比例放大电路(1)按表6.2内容实验并测量记录。

(2)按表6.3要求实验并测量记录。

(3)测量图6.2电路的上限截止频率。

3.同相比例放大电路
电路如图6.3所示
(1)按表6.4和6.5实验测量并记录。

图6.3 同相比例放大电路
表6.4
(2)测出电路的上限截止频率。

上限截止频率为23.5KHz,且其为低通。

4.反相求和放大电路。

实验电路如图6.4所示。

按表6.6内容进行实验测量,并与预习计算比较。

图6.4反相求和放大电路
5.双端输入求和放大电路
实验电路为图6.5所示。

图6.5 双端输入求和电路
表6.7
按表6.7要求实验并测量记录。

五、实验小结
1.总结本实验中5种运算电路的特点及性能。

电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低。

反相比例放大器,输出电压按比例增大,相位与输入电压相反。

同相比例放大器,输出电压按比例增大,相位与输入电压相同。

反相求和放大电路,输入电压反相相加再按比例放大。

同相求和放大电路,输入电压同相相加再按比例放大。

相关文档
最新文档