2014.1闸北区高三数学一模(word)
闸北区2014学年度第二学期高三数学(文科)期中练习卷及答案

闸北区2014学年度第二学期高三数学(文科)期中练习卷考生注意:1. 本次测试有试题纸和答题纸,解答必须在答题纸上,写在试题纸上的解答无效.2. 答卷前,考生务必在答题纸上将姓名、学校、考试号,以及试卷类型等填写清楚,并在规定区域内贴上条形码.3. 本试卷共有18道试题,满分150分.考试时间120分钟.一、填空题(60分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得6分,否则一律得零分.1. 设幂函数()f x 的图像经过点()8,4,则函数()f x 的奇偶性为____________.2. 已知实数,x y 满足⎪⎩⎪⎨⎧≤+-≤≥.,12,1m y x x y y 如果目标函数z x y =-的最小值为1-,则实数m 等于____________.3. 直线1y =与曲线2y x x a =-+有四个交点,则实数a 的取值范围是____________. 4. 已知定义域为R 的函数()y f x =的图像关于点()1,0-对称,()y g x =是()y f x =的反函数,若120x x +=,则()()12g x g x +=____________.5. 设⎪⎩⎪⎨⎧∈≥∈≤≤=-.N ,3,31,N ,21,21n n n n a n n n 数列{}n a 的前n 项和为n S ,则=∞→n n S lim ___________.6. 设复数122,12z i z i =+=+,在复平面的对应的向量分别为,OA OB ,则向量AB 对应的复数所对应的点的坐标为____________.7.若二项式nx ⎛⎝展开式中只有第四项的系数最大,则这个展开式中任取一项为有理项的概率是____________.8. 观察下表: 12 3 4 3 4 5 6 74 5 6 7 8 9 10…………设第n 行的各数之和为n S ,则2lim_______________.nn S n →∞=9. 从双曲线()222210,0x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于点P ,若M 是线段FP 的中点,O 为原点,则MO MT -的值是____________. 10. 已知集合(){},,U x y x R y R =∈∈,(){},M x y x y a =+<,()(){},P x y y f x ==,现给出下列函数:①xy a=;②log a y x = ;③()sin y x a =+;④cos y ax =.若01a <<时,恒有U P C M P =,则所有满足条件的函数()f x 的编号是____________.二、选择题(15分)本大题共有3题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分. 11. 下列命题中,正确的个数是……………………………………………………………【 】(1) 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; (2) a 、b 为异面直线,则过a 且与b 平行的平面有且仅有一个; (3) 直四棱柱是直平行六面体;(4) 两相邻侧面所成角相等的棱锥是正棱锥.A 、0B 、1C 、2D 、312. 已知函数()2f x x x c =++,若()00f >,()0f p <,则必有…………………【 】A 、()10f p +>B 、()10f p +<C 、()10f p +=D 、()1f p +的符号不能确定13. 如图,下列四个几何题中,它们的三视图(主视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是…………………………………………………………【 】A 、(1)、(2)B 、(1)、(3)C 、(2)、(3)D 、(1)、(4)(1)棱长为2的正方体 (2)底面直径和高均为2的圆柱(3)底面直径和高均为2的圆锥 (4)底面边长为2高为2的直平行六面体 三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对 应的题号)内写出必要的步骤.14. (本题满分12分,第(1)小题5分,第(2)小题7分)如图,AB 是圆柱体1OO 的一条母线,已知BC 过底面圆的圆心O ,D 是圆O 上不与点,B C 重合的任意一点,5AB =,5BC =,3CD =.(1)求直线AC 与直线BD 所成角的大小;(2)将四面体ABCD 绕母线AB 旋转一周,求ACD ∆的三边在旋转过程中所围成的几何体的体积.15. (本题满分14分,第(1)、(2)小题各3分;第(3)、(4)小题各4分)请你指出函数()1xf x x=+()x R ∈的基本性质(不必证明),并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明.(1) 当x R ∈时,等式()()0f x f x +-=恒成立; (2) 若()()12f x f x ≠,则一定有12x x ≠;(3) 若0m >,方程()f x m =有两个不相等的实数解; (4) 函数()()g x f x x =-在R 上有三个零点.16. (本题满分15分,第(1)小题6分,第(2)小题9分)如图所示,某市拟在长为8km 道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数()sin 0,0y A x A ωω=>>[]()0,4x ∈的图像,且图像的最高点为(3,S ,赛道的后一部分为折线段MNP ,且120MNP ∠=. (1)求M 、P 两点间的直线距离;(2)求折线段赛道MNP 长度的最大值.17. (本题满分16分,第(1)小题6分,第(2)小题10分)已知圆()221:18C x y ++=,点()21,0C ,点Q 在圆1C 上运动,2QC 的垂直平分线交1QC 于点P .(1)求动点P 的轨迹W 方程;(2)过点10,3S ⎛⎫- ⎪⎝⎭且斜率为k 的动直线l 交曲线W 于,A B 两点,在y 轴上是否存在定点D ,使以AB 为直径的圆恒过这个点?若存在,请求出点D 的坐标;若不存在,请说明理由.18. (本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)我们把一系列向量()1,2,,i a i n =按次序排成一列,称之为向量列,记作{}n a ,已知向量列{}n a 满足:()1,11=a , ()()11111,,2n n n n n n n a x y x y x y ----==-+()2n ≥. (1)证明:数列{}n a 是等比数列;(2)设n θ表示向量1n a -与n a 间的夹角,若21n n b n θ=-,n n b b b S +⋅⋅⋅++=32,求n S ;(3)设2log n n n c a a =⋅,问数列{}n c 中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.文科答案一. 填空题1、偶函数;2、53、51,4⎛⎫⎪⎝⎭4、2-5、55186、()1,1-7、478、4 9、b a - 10、①②④ 二. 选择题11、B 12、A 13、A 、C 三.解答题 14、(1) ……………………………………………………5分 (2)15π………………………………………………………………7分15、由()110111,01x x f x x x ⎧-≥⎪⎪+=⎨⎪--<⎪-⎩,参考图像:(1)对于任意的R x ∈,()()1xf x f x x--==-+, 故()()0f x f x -+=恒成立;(2)由于()y f x =为单调递增函数,故如果12x x =,则()()12f x f x =恒成立,因此()()12f x f x ≠,一定有12x x ≠;(3)由图像可知当1m ≥时,y m =与()y f x =无公共点,方程()f x m =无实数根,故结论(3)不正确; (4)()11x x xg x x x x-=-=++,若()0g x =,则只有0x =,故结论(4)不正确. 16、解法一:(1)依题意,有A = ……………………………………………1分 又34T =, 而2T πω=, 6πω∴= ……………………………1分6y x π∴=当4x =时,233y π==,()4,3M ∴,又()8,0P5MP ∴== ………………………………………3分(2)在MNP ∆中,120MNP ∠=,5MP =.设PMN θ∠=,则060θ<<. (1)由正弦定理得()sin120sin sin 60MP NP MNθθ==-,NP θ∴=,()60MN θ=-, ……………………………………………………3分故()()10360sin 60NP MN θθθ+=+-=+ (3)分060θ<<,∴当30θ=时,折线段赛道MNP 最长. ……………………2分解法二 :(1)同解法一.(2)在MNP ∆中,120MNP ∠=, 5.MP =由余弦定理得2222MN NP MN NP COS MNP MP +-⋅⋅∠=,即2225MN NP MN NP ++⋅=; …………………………3分故()22252MN NP MN NP MN NP +⎛⎫+-=≤ ⎪⎝⎭,从而()23254MN NP +≤…4分即MN NP +≤,当且仅当MN NP =时等号成立. ………………2分亦即,设计为MN NP =时,折线段赛道MNP 最长.注:本题第(2)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方法,还可设计为:①N ;②N ;③点N 在线段MP 的垂直平分线上等. 17、(1)2QC 的垂直平分线交1QC 于点P ,2PQ PC ∴=. (1)分211122PC PC PQ PC QC C +=+===,所以动点P 的轨迹W 是以点1C 、2C 为焦点的椭圆. …………………………2分设椭圆的标准方程为22221x y a b+=()0a b >>,则2a =,22c =,2221b a c =-=,椭圆的标准方程为2212x y +=…………………………………………………………2分a) 直线l 的方程为13y kx =-,联立直线和椭圆的方程得221132y kx x y ⎧=-⎪⎪⎨+=⎪⎪⎩,即()2291212160k x kx +--=,易知点10,3S ⎛⎫- ⎪⎝⎭在椭圆内部,所以直线l 与椭圆必交于两点. (1)分设()()1122,,,A x y B x y ,则()()121222416,312912k x x x x k k +==-++,……………………2分 假设在y 轴上存在定点()0,D m 满足题设,则()()1122,,,DA x y m DB x y m =-=-. 因为以AB 为直径的圆恒过点D ,则()()1122,,0DB x y DA m x y m ⋅=-⋅-=. ……………………2分即()()()12120*x x y m y m +--=,因为112211,33y kx y kx =-=-,所以(*)变为()()()12122121212121221213111333x x y m y m x x y y m y y m kx m kx kx x x kx m ⎛⎫⎛⎫+-⎛⎫=+--=+-++⋅---+-+ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭ ()()()()()2121222222189121133186199521m k m k x x k x m m x m m k +⎛⎫=+--+-+++++= ⎝⎭+⎪. ………3分由假设得对于任意的k ∈R ,0DA DB ⋅=恒成立,即221818096150m m m ⎧-=⎪⎨+-=⎪⎩,解得1m =. 因此,在y 轴上存在点D ,点D 的坐标为()0,1 ………………………………………………3分18、(()()2222122a x y x y x y a =-++=+=………4分 (2)112cos n n n n na a a a θ--⋅==⋅,4n πθ∴= (2)分12n n b π∴=- ………………………………………………2分21n n b n θ=-()2121112224n n S n n n ππππ⎛⎫⎛⎫⎛⎫∴=-+-++-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…………2分 或()124121231222+--+=⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n S n ππππ都算对(3) 12222n nn a --⎛== ,22222nn n c --∴=⋅ ……………………………………………………2分假设 {}n c 中的第 n 项最小,由 1c =,20c =,210.c c ∴≤<当3n ≥时,有0n c <,又由1n n c c +≤可得()()212222122222n nn n -+--+-⋅≤⋅, 即12221n n --≥-,22112n n -⎛⎫≥ ⎪-⎝⎭. 2670n n -+≥,3n ≥或3n ≤-(舍),5n ∴≥. …………2分即有567c c c <<<;由1n n c c +≥,得35n ≤≤,又210c c ≤<,541c c c ∴<<<; (2)分故数列{}n c 中存在最小项,最小项是325322c -=-⋅ (2)分。
2014届高三数学上册第一次月考文科试题(有答案)

2014届高三数学上册第一次月考文科试题(有答案)望江四中2014届高三上学期第一次月考数学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题时120分钟,满分150分。
第Ⅰ卷(选择题共10小题,每小题5分,共50分)一、选择题(每小题给出的四个选项中,只有一个选项符合题目要求.)1.若集合,,则()A.B.C.D.答案:A解析:集合A={},A={},所以,2.设是虚数单位,则“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C【解析】若复数z=(x2+2x-3)+(x-1)i为纯虚数,则,所以“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯虚数”的充要条件。
3.已知为等差数列,若,则的值为()A.B.C.D.答案:D解析:因为为等差数列,若,所以,,4.下列四个函数中,既是奇函数又在定义域上单调递增的是()A.B.C.D.答案:C【解析】A、D既不是奇函数,也不是偶函数,排除,B只是在区间上递增,只以C符合。
5.已知函数有且仅有两个不同的零点,,则()A.当时,,B.当时,,C.当时,,D.当时,,答案:B解析:函数求导,得:,得两个极值点:因为函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如下图:因此,可知,,只有B符合。
6.函数的最小正周期是()A.B.C.2πD.4π答案:B【解析】函数,所以周期为.7.函数的零点所在的区间为()A.B.C.D.答案:D【解析】<0,>0,所以,在上有零点。
8.设集合是的子集,如果点满足:,称为集合的聚点.则下列集合中以为聚点的有:;②;③;④()A.①④B.②③C.①②D.①②④答案:A【解析】①中,集合中的元素是极限为1的数列,∴在的时候,存在满足0<|x-1|<a的x,∴1是集合的聚点②集合中的元素是极限为0的数列,最大值为2,即|x-1|≥1对于某个a>1,不存在0<|x-1|,∴1不是集合的聚点③对于某个a<1,比如a=0.5,此时对任意的x∈Z,都有|x﹣1|=0或者|x﹣1|≥1,也就是说不可能0<|x﹣1|<0.5,从而1不是整数集Z的聚点④>0,存在0<|x-1|<0.5的数x,从而1是整数集Z的聚点故选A9.一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A.12种B.15种C.17种D.19种答案:D解析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法。
闸北区2014年一模-1期终卷答案

(1)证明:∵△ACB是等腰直角三角形
∴∠CAB=∠B=45°
∵CP//AB
∴∠DCA=∠CAB=45°…………………………………………………(1分)
∴∠DCA=∠B…………………………………………………(1分)
∴当CD= 时,△COD与△BEA相似.
由(1)得: …………………(1分)
∴ …………(1分)
化简得: …………………………………(1分)
解得 (舍), …………………………………(2+1分)
即当t= 3秒时, .
24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)
解:(1)根据题意:C(0,4)……………………………(1分)
(3)若△COD与△BEA相似,又△BEA与相似△DCA
即△COD与△DCA相似
∴只有△DCO∽△ACD……………………………………………(1分)
∴
∵∠DAO=∠CEO
∴∠CEO=∠EAB
∴tan∠CEO=y
即
∴ …………………………………………(1分)
∴
解得 , ……………………………(1分)
经检验 都是原方程的实数根, 不合题意舍去…(1分)
∵AB∥DE
∴∠3=∠B……………………………………………………………………(1分)
∵∠1=∠B
∴∠1=∠3…………………………………………………(1分)
∴△ACD∽△DEF…………………………………………………(1分)
∴ .…………………………………………………(1分)
23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)
2014学年第一学期闸北区高三期末试卷

2014学年第一学期闸北区高三期末试卷本试满分150分,考试时间120分钟。
全卷包括两大部分,第一大题为选择题;第二大题为综合分析题。
考生注意:1.答卷前,考生务必在答题卡上用黑色水笔填写学校、姓名,并用2B铅笔在答题卡上正确涂写考生号。
2.第一部分选择题(1-30)由机器阅卷,答案必须全部涂写在答题卡上,考生应将代表正确答案的小方格用2B铅笔涂黑。
注意试题号和答题卡编号一一对应,不能错位。
答案需要更改时,必须将原选项用橡皮擦去,重新选择。
答案不能填写在试卷上,填写在试卷上一律不给分。
一、选择题(每小题2分,共60分)(一)海拔较高,面积广大的高原,素有“大地的舞台”之称。
1. 下列有关高原的叙述,正确的是()A. 地形图上等高线中央稀疏边缘密集的地区即为高原B. 高原是在内力和外力的共同作用下形成的C. 与同纬度的平原相比,高原上气温较低气压较高D. 高原往往是世界各地寒潮的发源地2. 下列关于世界著名高原的地理特征描述,准确的是()A. 巴西高原是世界上面积最大、地表起伏最大的高原B. 帕米尔高原雄居亚洲中部,是许多大河的发源地C. 东非高原沙漠广布,地势高,中部有维多利亚湖D. 德干高原海拔不高,起伏和缓,西北部有“黑棉土”3. 世界上最高的高原形成于()A.新生代 B.中生代 C.古生代 D.元古代(二)千姿百态的地表形态是在地球内、外力共同作用下形成的。
4. 下列属于内力作用的有()①地壳运动②岩浆活动③地震④搬运作用⑤火山喷发⑥堆积作用A.①②④⑥B.①②③⑤C.①②③④⑤D.②③④⑤⑥5. 下列地理景观,以内力作用为主形成的是()A.石灰岩溶洞B.东非大裂谷C.撒哈拉沙漠D.长江三角洲(三)地图是学习地理的重要工具。
6. 在一张地图上,赤道上两地的图上距离是33.3厘米,地方时相差2小时,则此图的比例尺是()A.1:1000 B.五百万分之一 C.1:500000 D. 1:100000007. 下列地图能够最直观地表示一定区域内的地势高低起伏状况的是()A.等高线图 B.地形剖面图C.分层设色地形图D.平面示意图(四)一地接收太阳辐射量的多少受许多因素制约。
【2014上海闸北一模】上海市闸北区2014届高三上学期期末考试(一模)物理试题 Word版含答案.pdf

2013学年度第一学期高三物理学科期末练习卷(2014.1) 本试卷共8页,满分150分,考试时间120分钟。
全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。
考生注意: 1、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号。
2、第一、第二和第三大题的作答必须用2铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。
第四、第五和第六大题的作答必须用黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔)。
3、第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程的,不能得分。
有关物理量的数值计算问题,答案中必须明确写出数值和单位。
1. 2.. (B) (C) (D)以上都是 4. (A)1A=1C/s (B)1A=1J/V (C)1A=1V/Ω (D)1A=1kg/(T·s2) 5. (A)库仑发明了扭秤装置后,牛顿用类比的方法建立了万有引力定律 (B)库仑定律和万有引力定律都是平方反比律 (C). (A)一个带正电的粒子离该点电荷越近电势越高 (B)一个带正电的粒子离该点电荷越近电势能越大 (C)(D)一个带正电的粒子在该点电荷产生的电场中只受电场力作用,可以做曲线运动 7. 8.) 二.单项选择题(共24分,每小题3分,每小题只有一个正确选项。
) 9.右图为某质点做简谐振动的振动图像,从图中可知 ( ) (A)0.05s时质点的速度为零 (B)0.1s时质点加速度为正的最大值 (C)在0.15s到0.2s内质点速度不断增大 (D)在0到0.1s内质点通过的路程为12cm 10.甲、乙两船分别在河的上游和下游彼此相距200米处同时向两船中点处的一个漂浮物(漂浮物随水流漂移)匀速划去,设两船在静水中的速率相同。
2014学年第一学期闸北区高三期末试卷答案

2014学年第一学期闸北区高三期末试卷答案一、选择题(每小题2分,共60分)1.B2.D3.A4.B5. B6.D7.C8.B9.C 10.B 11.C 12.A 13.C 14.D 15.C 16.A 17.D 18.D 19.C 20.D21.C 22.B 23.A 24.C 25.A 26.B 27.D 28.B 29.A 30.B二、综合分析题(共90分)(十四)(10分)31.180°南(2分) 32. 11 180°向东到45°W 北美洲(3分)33.北半球梅雨夏威夷高压西南远(5分)(十五)(15分)34.澳大利亚中部和西部地区,地处南回归线附近;受副热带高气压带和信风带控制,盛行下沉气流;且由于山脉的阻挡;东南信风带来的暖湿气流无法达到;西部地区还受寒流减湿的影响,故降水稀少,气候干旱。
(5分)35.澳大利亚东北部位于山脉东侧;东南信风的迎风地带,降水丰富;又受东澳大利亚暖流影响,增温增湿显著。
(3分)36.农牧业发达,养羊业是重要的生产部门,是世界重要的羊毛生产国和出口国;矿产资源丰富,采矿业已成为国民经济支柱;各地经济发展极不平衡,工农业主要分布在东南部。
(3分) 37.人口和主要城市集中在东南沿海;东南沿海地区地处亚热带,气候温暖湿润;地势较平坦;沿海地区,海运发达,交通便利等。
(4分)(十六)(13分)38.特点:积温均值线的数值由南向北递减;48ºN附近的中部地区积温均值线向南明显弯曲。
(2分)原因:由南向北随着纬度升高;获得的太阳辐射量减少,气温降低;中部地区受地形(山脉)的影响;气温比同纬度的其他地区低。
(4分)39.特点:水稻种植边界向北、西、东扩展;种植面积增大。
(2分)原因:随着全球气候变暖,使得各地年积温增加;农业技术提升,培育出更多适合不同地区种植的优良品种(2分)40.增加空气湿度,调节气候;涵养水源,净化水中污染物质;调节河流径流量,减少洪涝灾害;有利于保护生物多样性,为珍稀野生动物提供栖息地;为旅游观光提供旅游资源。
2014年上海市闸北区中考数学一模试卷

2014年上海市闸北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)(下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.)1.(4分)(2014•闸北区一模)对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都保持不变B.图形中线段的长度与角的大小都会改变C.图形中线段的长度保持不变、角的大小可以改变D.图形中线段的长度可以改变、角的大小保持不变【考点】M33N 相似三角形的应用【难度】容易题【分析】根据相似图形的性质得出相似图形的对应边成比例,对应角相等,即可得出对一个图形进行收缩时,图形中线段的长度改变,角的大小不变,故选D.【解答】D.【点评】本题主要考查对相似图形的性质的理解和掌握,能熟练地根据相似图形的性质进行说理是解此题的关键.2.(4分)(2014•闸北区一模)已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()A.B.C.D.【考点】M226 二次根式的加、减、乘、除及其混合运算M241 一元二次方程的概念、解法M33K 黄金分割【难度】中等题【分析】把AB当作已知数求出AC,求出BC,再分别求出各个比值,根据结果判断即可.具体为:AC2=BC•AB,AC2﹣BC•AB=0,AC2﹣(AB﹣AC)AB=0,AC2+AB•AC﹣AB2=0,AC=,∵边长为正值,∴AC=AB,BC=AB﹣AC=,∴==,===,==,即选项A、C、D错误,只有选项B正确;故选B.【解答】B.【点评】本题考查了解一元二次方程和黄金分割的应用,要求学生要有较强的计算能力.3.(4分)(2014•闸北区一模)下列关于抛物线和的关系说法中,正确的是()A.它们的形状相同,开口也相同B.它们都关于y轴对称C.它们的顶点不相同D.点(﹣3,3)既在抛物线上也在上【考点】M442 二次函数的图象、性质M443 二次函数的关系式【难度】容易题【分析】根据两个函数知道其二次项系数a的绝对值相等,则开口方向相反,都关于y轴对称,顶点都为原点,故A、C错误,B正确,故选B.【解答】B.【点评】本题考查了二次函数的性质,解题的关键是了解形如y=ax2的抛物线的性质.4.(4分)(2014•闸北区一模)下列关于向量的说法中,不正确的是()A. B.C.若,则或D.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】A、,故本选项正确;B、,故本选项正确;C、若,无法判定与的关系,因为向量有方向性;故本选项错误;D、,故本选项正确.故选C.【解答】C.【点评】此题考查了平面向量的定义与运算.此题比较简单,注意理解平面向量的定义是解此题的关键.5.(4分)(2014•闸北区一模)已知α、β都是锐角,如果sinα=cosβ,那么α与β之间满足的关系是()A.α=βB.α+β=90°C.α﹣β=90° D.β﹣α=90°【考点】M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】容易题【分析】根据α、β都是锐角,sinα=cosβ,则sinα=cos(90°﹣α)=cosβ,可得α、β互为余角,故选:B.【解答】B.【点评】本题考查了互为余角两三角函数的关系,两角都是锐角,一角的正弦等于另一角的余弦,这两个锐角互余.6.(4分)(2014•闸北区一模)如图,平行四边形ABCD中,F是CD上一点,BF交AD 的延长线于G,则图中的相似三角形对数共有()A.8对B.6对C.4对D.2对【考点】M33F 全等三角形概念、判定、性质M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】中等题【分析】根据平行四边形的性质,得到平行四边形的对边平行,即AD∥BC,AB∥CD;再根据相似三角形的判定方法:平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似,得△BEC∽△GEA,△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF,进而得△GAB∽△BCF,还有△ABC≌△CDA(是特殊相似),∴共有6对.故选:B.【解答】B.【点评】此题考查了相似三角形的判定方法(平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似)与平行四边形的性质(平行四边形的对边平行).解题的关键是要注意数形结合思想的应用,注意做到不重不漏.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2014•闸北区一模)已知a:b=3:2,则(a﹣b):a=.【考点】M33H 比例的性质【难度】容易题【分析】根据两內项之积等于两外项之积用a表示出b=a,然后代入比例式进行计算即(a﹣b):a=(a﹣a):a=1:3.【解答】1:3.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.(4分)(2014•闸北区一模)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果DE:EF=3:5,AC=24,则BC=.【考点】M33I 平行线分线段成比例定理【难度】容易题【分析】根据平行线分线段成比例定理得出==,再根据BC=AC×代入计算得BC=24×=15,故答案为:15.【解答】15.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.9.(4分)(2014•闸北区一模)在Rt△ABC和Rt△DEF中,∠C=∠F=90°,当AC=3,AB=5,DE=10,EF=8时,Rt△ABC和Rt△DEF是的.(填“相似”或者“不相似”)【考点】M33E 勾股定理M33M 相似三角形性质、判定【难度】容易题【分析】如图所示:首先利用勾股定理得出BC==4,DF==6,则可得==,又∠C=∠F=90°,进而利用相似三角形的判定得出Rt△ABC∽Rt△DEF.故答案为:相似.【解答】相似.【点评】此题主要考查了勾股定理以及相似三角形的判定,根据已知得出==是解题关键.10.(4分)(2014•闸北区一模)两个相似三角形对应边的比为2:3,则它们的周长比为.【考点】M33M 相似三角形性质、判定【难度】容易题【分析】根据相似三角形周长的比等于相似比进行解答即得它们对应周长的比为2:3.故答案为:2:3.【解答】2:3.【点评】本题考查的是相似三角形的性质,关键是要知道相似三角形周长的比等于相似比.11.(4分)(2014•闸北区一模)化简:=.【考点】M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】直接利用三角形法则求解,即=+=.故答案为:.【解答】.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握三角形法则的应用.12.(4分)(2014•闸北区一模)如图,某人在塔顶的P处观测地平面上点C处,经测量∠P=35°,则他从P处观察C处的俯角是度.【考点】M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】容易题【分析】过P作平行于地平面的直线PO,∵∠P=35°,∴∠CPO=90°﹣∠P=55°,∵从P处观察C处的俯角即为∠CPO,∴从P处观察C处的俯角为55°.故答案为:55.【解答】55.【点评】本题考查了解直角三角形的应用,解答本题的关键掌握俯角是向下看的视线与水平线的夹角.13.(4分)(2014•闸北区一模)将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x轴上,则m=.【考点】M232 一元一次方程的概念、解法M41A 函数图像的几何变换M442 二次函数的图象、性质【难度】容易题【分析】把二次函数解析式整理成顶点式形式y=(x﹣1)2+m﹣1,再根据向下平移横坐标不变,纵坐标减写出平移后的解析式y=(x﹣1)2+m﹣2,然后根据顶点在x轴上,纵坐标为0列式m﹣2=0,解得m=2.故答案为:2.【解答】2.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.(4分)(2014•闸北区一模)在Rt△ABC中,∠C=90°,CD⊥AB于点D,若AD=9,BD=4,则AC=.【考点】M228 算术平方根、立方根M33D 直角三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定【难度】中等题【分析】根如图所示:∵Rt△ABC中∠C=90°,CD⊥AB,∴∠A+∠B=90°,∠A+∠ACD=90°,∠B+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴=,即CD2=AD•BD=9×4=36,解得CD=6,在Rt△ACD中,∵AD=9,CD=6,∴AC===.故答案为:.【解答】.【点评】本题主要考查的是相似三角形的判定与性质,属于中考高频考点,考生要注意掌握;对于本题熟知相似三角形的对应边成比例是解答此题的关键.15.(4分)(2014•闸北区一模)一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数解析式是.(不写定义域)【考点】M256 列方程(组)解应用题M348 四边形周长、面积M443 二次函数的关系式【难度】容易题【分析】原边长为3厘米的正方形面积为:3×3=9(平方厘米),边长增加x厘米后边长变为:x+3,则面积为:(x+3)2平方厘米,∴y=(x+3)2﹣9=x2+6x.故答案为:y=x2+6x.【解答】y=x2+6x.【点评】此题主要考查了根据实际问题列二次函数关系式,关键是正确表示出正方形的面积.16.(4分)(2014•闸北区一模)如图,在平行四边形ABCD中,AB=12,AD=18,∠BAD 的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF 的周长是.【考点】M339 等腰三角形的性质和判定M33E 勾股定理M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质【难度】中等题【分析】先计算出△ABE的周长,然后根据相似比的知识进行解答即可.具体为:解:∵在▱ABCD中,AB=CD=12,AD=BC=18,∠BAD的平分线交BC于点E,∴△ADF是等腰三角形,AD=DF=18;∵AB=BE=12,∴CF=6;∴在△ABG中,BG⊥AE,AB=12,BG=8,可得:AG=4,又∵BG⊥AE,∴AE=2AG=8,∴△ABE的周长等于32,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为16.故答案为16.【解答】16.【点评】本题意在综合考查平行四边形、相似三角形和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,相似三角形的周长比等于相似比,难度较大.17.(4分)(2014•闸北区一模)如图,点G是Rt△ABC的重心,过点G作矩形GECF,当GF:GE=1:2时,则∠B的正切值为.【考点】M33L 三角形重心、内心、外心M33M 相似三角形性质、判定M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M361 锐角的三角比的概念(正切、余切、正弦、余弦)【难度】中等题【分析】连接AG并延长交BC于点H,因为点G是Rt△ABC的重心,所以BH=CH,=,又GE∥BC,则由相似三角形的判定定理可知△AGE∽△AHC,故可得出==,设GE=2x,则CH=3x,再根据GF:GE=1:2可知,GF=HF=x,由于四边形GECF是矩形,故CE=GF=x,所以AC=2CE=3x,则tan∠B===.【解答】.【点评】本题主要考查的是三角形的重心,涉及相似三角形性质、判定,矩形性质等知识点;熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.18.(4分)(2014•闸北区一模)如图,已知等腰△ABC,AD是底边BC上的高,AD:DC=1:3,将△ADC绕着点D旋转,得△DEF,点A、C分别与点E、F对应,且EF与直线AB重合,设AC与DF相交于点O,则S△AOF:S△DOC=.【考点】M339 等腰三角形的性质和判定M33O 三角形面积M33E 勾股定理M33M 相似三角形性质、判定M361 锐角的三角比的概念(正切、余切、正弦、余弦)M372 图形的旋转与旋转对称图形【难度】较难题【分析】作DG⊥AB于G,∵AB=AC,AD⊥BC,∴∠ADB=∠ADC=90°,∠BAD=∠CAD,∠B=∠C.设AD=x,则BD=3x,由勾股定理,得AB=x,∴AC=x.∴,∴,∴GD=.∵==tan∠C.∴tan∠B=.∵∠ADG+∠GAD=90°,∠B+∠GAD=90°,∴∠ADG=∠B.∴tan∠ADG=,∴,∴AG=.∵△FDE是由△CDA旋转得来的,∴△FDE≌△CDA,∴DE=DA.∠F=∠C.∵DG⊥AB,∴AG=EG.∴AE=2AG,∴AE=.∴AF==.∵∠AOF=∠DOC,∠F=∠C,∴△AFO∽△DCO,∴S△AOF:S△DOC==()2.=.故答案为:.【解答】.【点评】本题考查了等腰三角形的性质的运用,勾股定理的运用,旋转的性质的运用,三角函数值的运用,相似三角形的判定与性质的运用,三角形面积公式的运用,涉及知识点较多且均属于中考常考知识点,考生要注意掌握!解答时证明三角形相似是关键.三、解答题19.(10分)(2014•闸北区一模)已知:抛物线y=﹣x2+bx+c经过A(﹣1,0)、B(5,0)两点,顶点为P.求:(1)求b,c的值;(2)求△ABP的面积;(3)若点C(x1,y1)和点D(x2,y2)在该抛物线上,则当0<x1<x2<1时,请写出y1与y2的大小关系.【考点】M414 用待定系数法求函数关系式M417 不同位置的点的坐标的特征M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M33O 三角形面积【难度】容易题【分析】(1)利用交点式得到y=﹣(x+1)(x﹣5),然后展开即可得到b和c的值;(2)先把抛物线的解析式配成顶点式得到P点坐标为(2,9),然后根据三角形面积公式计算即可;(3)由于抛物线的对称轴为直线x=2,开口向下,则根据二次函数的性质可确定y1与y2的大小关系.【解答】解:(1)设抛物线的解析式为y=﹣(x+1)(x﹣5), (1)所以y=﹣x2+4x+5,所以b=4,c=5; (3)(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,P点坐标为(2,9), (5)所以△ABP的面积=×6×9=27; (7)(3)抛物线的对称轴为直线x=2,开口向下,所以当0<x1<x2<1时,y1<y2. (10)【点评】本题考查了待定系数法求二次函数关系式:要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(10分)(2014•闸北区一模)已知:如图,EF是△ABC的中位线,设,.(1)求向量、(用向量、表示);(2)在图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】M334 三角形中位线定理M344 平行四边形(包括矩形、菱形、正方形)的判定与性质M382 向量的加法与减法M383 实数与向量的乘法M384 向量的线性运算【难度】容易题【分析】(1)由EF是△ABC的中位线,设,,利用三角形的中位线的性质,即可求得,然后由三角形法则,求得;(2)利用平行四边形法则,即可求得向量在、方向上的分向量.【解答】解:(1)∵EF是△ABC的中位线,.∴==, (3)∵,∴=﹣=﹣; (5)(2)如图,过点E作EM∥AC, (7)则与即为向量在、方向上的分向量. (10)【点评】此题考查了平面向量的知识.此题比较简单,属于向量方面的常规题型,注意掌握三角形法则与平行四边形法则的应用.21.(10分)如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D 的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1:1.875,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.【考点】M241 一元二次方程的概念、解法M33E 勾股定理M33M 相似三角形性质、判定M364 解直角三角形M365 仰角、俯角、坡度、坡角【难度】中等题【分析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.【解答】解:作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.在Rt△CFD中,i=1:1.875,即CF:DF=1:1.875=8:15; (2)设CF=8x米,则DF=15x米, (3)由勾股定理可得,(8x)2+(15x)2=CD2,∴CD=17x=3.4,∴x=0.2, (5)∴DF=15×0.2=3米,CF=8×0.2=1.6米. (6)∵FE:CF=NH:NM,∴FE:1.6=336:168,∴FE=3.2,∴BE=BD+DF+FE=2+3+3.2=8.2米. (8)∴AB:BE=MN:NH,∴AB:8.2=168:336,∴AB=4.1米.答:铁塔高度为4.1米. (10)【点评】本题是解直角三角形+坡度与坡角应用问题,是历年中考常考题型,考生要注意;本还涉及相似三角形的应用,对于本题构造直角三角形是解题的关键.22.(10分)(2014•闸北区一模)已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.【考点】M226 二次根式的加、减、乘、除及其混合运算M228 算术平方根、立方根M253 分式方程M323 平行线的判定、性质M33O 三角形面积M33M 相似三角形性质、判定M373 图形的翻折与轴对称图形【难度】容易题【分析】(1)根据等高的三角形的面积的比等于底边的比求出BD=2CD,然后求出BC,再根据两组角对应相等两三角形相似求出△ABC和△DAC相似,然后根据相似三角形对应边成比例可得=,代入数据计算即可得解;(2)根据翻折的性质可得∠E=∠C,DE=CD,再根据两直线平行,内错角相等可得∠B=∠EDF,然后求出∠EDF=∠CAD,再根据两组角对应相等两三角形相似求出△EFD和△ADC相似,根据相似三角形面积的比等于相似比的平方求解即可.【解答】解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6, (2)∴BC=BD+DC=6+3=9, (3)∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3; (5)(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF, (6)∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC, (8)∴=()2=()2=. (10)【点评】本题考查了相似三角形的判定与性质,翻折变换的性质,以及平行线的性质,等高的三角形的面积的比等于底边的比,难点在于利用两组角对应相等,两三角形相似确定出相似的三角形.23.(12分)(2014•闸北区一模)小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:(1)如图1,已知锐角△ABC.求证:;(2)根据题(1)得到的信息,请完成下题:如图2,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?【考点】M241 一元二次方程的概念、解法M243 一元二次方程的应用M339 等腰三角形的性质和判定M33O 三角形面积M361 锐角的三角比的概念(正切、余切、正弦、余弦)M364 解直角三角形【难度】中等题【分析】(1)首先过点C作CE⊥AB于点E,则sinA=,进而得出EC的长,即可得出答案;此问简单(2)首先表示出△APQ的面积,进而得出△ABC的面积,进而利用求出t的值即可.此问中等【解答】解:(1)如图1,过点C作CE⊥AB于点E, (1)sinA=, (2)∴EC=ACsinA, (3)S△ABC=EC×AB=AB×ACsinA; (5)(2)如图2,过点P作PE⊥AC于点E,过点B作BF⊥AC于点F,设移动时间为t秒,则AP=2t,CQ=t,∴PE=APsinA,BF=12sinA, (7)S△APQ=AQ×PE=×(12﹣t)×APsinA=×(12﹣t)×2t×sinA=t(12﹣t)sinA,S△ABC=BF×AC=×12×12sinA=72sinA, (9)当,∴=, (11)∴整理得出:t2﹣12t+27=0,解得:t1=3,t2=9(不合题意舍去),∴当t=3秒时,. (12)【点评】此题主要考查了解直角三角形的应用和一元二次方程的解法,根据已知表示出△APQ的面积是解题关键.24.(12分)(2014•闸北区一模)已知:如图,抛物线与y轴交于点C,与x轴交于点A、B,(点A在点B的左侧)且满足OC=4OA.设抛物线的对称轴与x轴交于点M:(1)求抛物线的解析式及点M的坐标;(2)联接CM,点Q是射线CM上的一个动点,当△QMB与△COM相似时,求直线AQ 的解析式.【考点】M233 二元一次方程(组)的概念、解法M241 一元二次方程的概念、解法M33E 勾股定理M33M 相似三角形性质、判定M414 用待定系数法求函数关系式M415 动点问题的函数图像M416 函数图像的交点问题M41B 平面直角坐标系M442 二次函数的图象、性质M443 二次函数的关系式M444 二次函数的应用M422 一次函数的的图象、性质M423 一次函数的关系式M424 一次函数的应用【难度】较难题【分析】(1)令x=0求出点C的坐标,再求出OA的长度,然后写出点A的坐标,代入抛物线求出m的值,即可得解,再利用对称轴解析式求出点M的坐标即可;此问简单(2)求出OM的长,再利用勾股定理列式求出CM,令y=0,解关于x的一元二次方程求出点B的坐标,得到OB的长度,再求出BM,然后分①∠BQM=90°时,△COM和△BQM 相似,利用相似三角形对应边成比例列式求出BQ,过点Q作QD⊥x轴于D,解直角三角形求出BD、QD,然后求出OD,从而写出点Q的坐标,再利用待定系数法求一次函数解析式解答;②∠MBQ=90°时,△COM和△QBM相似,利用相似三角形对应边成比例列式求出BQ,再写出点Q的坐标,然后利用待定系数法求一次函数解析式解答.此问较难【解答】解:(1)令x=0,则y=4,∴点C(0,4),OC=4,∵OC=4OA,∴OA=1,.∴点A(﹣1,0),把点A坐标代入抛物线y=﹣x2+mx+4得,﹣×(﹣1)2+m×(﹣1)+4=0,解得m=, (2)∴抛物线解析式为y=﹣x2+x+4,∵抛物线的对称轴为直线x=﹣=2,∴点M的坐标为(2,0); (4)(2)∵OM=2,OC=4,∴CM==2,令y=0,则﹣x2+x+4=0,整理得x2﹣4x﹣5=0,解得x1=﹣1,x2=5, (5)∴点B的坐标为(5,0),∴OB=5,∴BM=OB﹣OM=5﹣2=3, (6)如图,①∠BQM=90°时,△COM和△BQM相似,∴=,即=,解得BQ=,过点Q作QD⊥x轴于D,则BD=BQ•cos∠QBM=×=,QD=BQ•sin∠QBM=×=,∴OD=OB﹣BD=5﹣=,∴点Q的坐标为(,﹣), (8)设直线AQ的解析式为y=kx+b(k≠0),则,解得,∴直线AQ的解析式为y=﹣x﹣; (9)②∠MBQ=90°时,△COM和△QBM相似,∴=,即=,解得BQ=6,∴点Q的坐标为(5,﹣6), (10)设直线AQ的解析式为y=kx+b(k≠0),则,解得,∴直线AQ的解析式为y=﹣x﹣1;综上所述,当△QMB与△COM相似时,直线AQ的解析式为y=﹣x﹣或y=﹣x﹣1. (12)【点评】本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点坐标的求法,待定系数法求二次函数解析式,待定系数法求一次函数解析式,相似三角形的性质,解直角三角形,难点在于(2)要分情况讨论,考生要注意,以防漏解。
闸北区2015年高三数学一模试卷

2014学年度第一学期高三物理学科期末练习卷(2014.12)本试卷共8页,满分150分,考试时间120分钟。
全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。
考生注意:1、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号。
2、第一、第二和第三大题的作答必须用2B铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。
第四、第五和第六大题的作答必须用黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔)。
3、第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程的,不能得分。
有关物理量的数值计算问题,答案中必须明确写出数值和单位。
一.单项选择题(共16分,每小题2分,每小题只有一个正确选项。
)1. 下面物理量中不.属于标量的是()(A)电流强度(B)电场强度(C)功(D)磁通量2. 在牛顿第二定律公式F=kma中,比例系数k的数值()(A)在任何情况下都等于1(B)与质量m、加速度a和力F三者均无关系(C)是由质量m、加速度a和力F三者的大小所决定的(D)是由质量m、加速度a和力F三者的单位所决定的3.在下列公式中选出加速度a的定义式()(A)Fam=(B)vat∆=∆(C)22sat=(D)2saT∆=4. 奥斯特发现电流的磁效应的这个实验中,小磁针应该放在()(A)南北放置的通电直导线的上方(B)东西放置的通电直导线的上方(C)南北放置的通电直导线同一水平面内的左侧(D)东西放置的通电直导线同一水平面内的右侧5. 如图,一个物体在O点以初速度v开始作曲线运动,已知物体只受到沿x轴方向的恒力F作用,则物体动能的变化情况是()(A)不断减小(B)先增大后减小(C)先减小后增大(D)先减小后不变6. 在国际单位制(简称SI制)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闸北区高三一模数学试题(文、理) 2014.1
1.设,3602014k ⨯-= α
2014=β,若α是与β终边相同的最小正角,则=k 2.已知双曲线204522=-y x 的右焦点与抛物线px y 22=的焦点重和,则=p
3.设)sin ,(cos ),1,3(x x =-=,则函数x f ⋅=)(的最小正周期为
4.已知函数⎩⎨⎧≤>=)
0()0(log )(22x x x x x f ,则不等式1)(>x f 的解集为 5.已知直线l 的一个法向量),(b a =,其中0>ab ,则l 的倾斜角为
6.相距480米有两个垂直于水平地面的高塔AB 和CD ,两塔底D B ,的中点为P ,已知280=AB 米,320=CD 米,则APC ∠cos 的值是
7.设2,0,0=+>>b a b a ,则下列不等式恒成立的有
①1≤ab ; ②2≤+b a ; ③222≥+b a
8.若公差为d 的等差数列}{n a 的项数为奇数,11=a ,奇数项的和是175,偶数项的和是150,则=d
9.设1,0≠>a a ,函数2|2sin |2)(-+=x a x f x π(0>x )有四个零点,则a 的值为
10.由曲线||||22y x y x +=+所围成的封闭图形的面积为
11.如果},14|{},,12|{Z k k x x T Z n n x x S ∈±==∈+==,那么( )
A.S 真包含于T
B.T 真包含于S
C. T S =
D.S 与T 没有交集
12.在平面内,设B A ,为两个不同的定点,动点P 满足:2k =⋅(k 为实常数),则动点P 的轨迹为( ) A. 圆 B.椭圆 C.双曲线 D.不确定
13.给出下列等式:233321=+,23336321
=++,24333104321=+++,……现设 23333...321n a n =++++,2,*≥∈n N n ,则=∞→n
n a n 2lim ( ) A.0 B.1 C.2 D.4
14.(本题16=6+10分) 设ABC ∆的三个内角C B A ,,的对边分别为c b a ,,,且满足:
B b A a sin cos 3= (1)求A 的大小;
(2)若12
sin 22sin
222=+C B ,试判断ABC ∆的形状,并说明理由
15.(本题18=8+10分)定义域为的函数x x x f --=22)(x x x g -+=22)(
(1)请分别指出函数)(x f y =与函数)(x g y =的奇偶性、单调区间、值域和零点;
(将结论填入答题卡,不必证)
(2)设)
()()(x g x f x h =,请判断函数)(x h y =的奇偶性、单调区间,并证明你的结论。
(必要时,可以(1)中的结论作为推理与证明的依据)
16.(本题18分=8+10分) 如图所示,一块椭圆形的铁板Γ的长轴长为4米,短轴长2米。
(1)请你以短轴的端点A 为直角顶点,另外两个锐角的顶点C B ,都在椭圆铁板的边缘,截取等腰直角三角形,并求该三角形的面积(结果保留一位小数);
(2)请你按(1)中所述的方法,再切割出一个面积不同的等腰直角三角形,
并求该三角形的面积(结果保留一位小数)。
17.(本题20分=8+12分)
如图,在y 轴的正半轴上依次有点,...,...,21n A A A ,其中点)1,0(1A 、)10,0(2A 且||3||11+-=n n n n A A A A (,...4,3,2=n ),在射线x y =)0(≥x 上一次有点,...,...,21n B B B ,点)3,3(1B ,且22||||1+=-n n OB OB (,...4,3,2=n )
(1)求点n A 、n B 的坐标(用含n 的式子表示)
(2)设四边形11++n n n n A B B A 的面积为n S ,解答下列问题: ①求数列}{n S 的通项公式;
②问}{n S 中是否存在连续的三项21,,++n n n S S S *)(N n ∈恰好成等差数列?若存在,求出所有这样的三项;若不存在,请说明理由。