2017届徐汇区高三数学一模(含答案)

合集下载

徐汇区2017届高三一模数学卷答案及官方评分标准

徐汇区2017届高三一模数学卷答案及官方评分标准

参考答案一、填空题 (共54分,第1题至第6题每小题4分;第7题至第12题每小题5分)1.2 2.92 3.2 4.2 5.160 6.4π7.01m <≤8.32−9.410.4032011.01m ≤<12.[]3,2−−二、选择题 (共20分,每小题5分)13.C 14.D 15.C 16.C、解答题17、解 1 ∵⊥PA 平面ABC ,AB PA ⊥,又∵AB AC ⊥,⊥∴AB 平面PAC ,所 DPA ∠就是PD 平面PAC 所成的角.………4分在PAD Rt ∆中,23,2==AD PA ,………………………………………6分所 43arctan =∠DPA ,即PD 平面PAC 所成的角的大小为43arctan.………………………8分 2 PDB ∆绕直线PA 旋转一周所构成的旋转体,是 AB 为底面半径、AP 为高的圆锥中挖去一个 AD为底面半径、AP 为高的小圆锥.………10分所 体 πππ23223(312)3(3122=⋅⋅−⋅⋅=V .……………14分.18、解 1 由条件得 21cos 21()sin cos sin 222x f x x x x x +=+⋅=+,即1()cos 2sin 22f x x x =++………2分sin(2)3x π=++,………3分因为[0,]2x π∈,所 sin(2[3x π+∈因 ()sin(23f x x π=++1]+………6分2 由(2Af =,化简得sin(3A π+=因为(0,)A π∈,所 4(,)333A πππ+∈,所 233A ππ+=,即3A π=.………8分由余弦定理得 2216b c bc +−=,所 2()316b c bc +−=,又5b c +=,解得3bc =,………12分所 1sin 2ABC S bc A ∆==.………14分19、解 1 1()(0)4f x x x =≥.……3分,()0)g x x =≥.………6分 2 设B 产品的投资额为x 万元,则A 产品的投资额为 10x − 万元,创业团队获得的利润为y 万元,则1()(10)(10)(010)4y g x f x x x =+−=+−≤≤.………10分t =,()1002545412≤≤++−=t t t y ,即21565((04216y t t =−−+≤≤,当52t =,即 6.25x =时,y 取得最大值4.0625………13分答 当B 产品的投资额为6.25万元时,创业团队获得的最大利润为4.0625万元.……14分20、解 1 易得1(2,0)F −,2(2,0)F ,Γ的渐近线方程为y x =,由对 性,妨设:2) l y x =−,即20x −−=,------------------2分所 ,1(2,0)F −到l 的距离2d ==.-----------------------------4分 2 当直线l 的斜率为1时,l 的方程为2y x =−,------------------------5分因 ,(0,2)Q −,-----------------------------6分又1(2,0)F −,故1(2,2)F Q =−,设Γ右支 的点P 的坐标为(,),(0)x y x >,则1(2,)F P x y =+ ,由110F P F Q ⋅= ,得2(2)20x y +−=,-----------------------8分又2213x y −=,联立消去y 得2212150x x ++=,由根 系数的关系知, 方程无 根,因 ,在双曲线Γ的右支 存在点P ,满足110F P F Q ⋅=.--------------------10分 3 设1122(,),(,) A x y B x y ,则1212(,)44x x y y M −−−−,----------------11分由M 点在曲线 ,故212212(4()134x x y y −−−−−=(*)设:(2)l y k x =−联立l Γ的方程,得2222(13)121230k x k x k −+−−=---------------------------12分由于l Γ交于 同两点,所 ,k ≠.所 ,21221213k x x k −+=−,因 ,12121224(2)(2)()413k y y k x k x k x x k k−+=−+−=+−=−.------------14分从而(*)即为22222124()3()481313k k k k−−−=−−,解得k =.即直线l的方程为20x ±−=.-------------------------------------------16分21、解 1由条件得1122a b +==,令,即1a=2+,1b=2.----------4分 2 充分性 当{}n a 为常数数列时,{}n a 是公差为零的等差数列 --------------5分必要性 当{}n a 为等差数列时,1120m m m a a a −++−=对任意2,*m m N ≥∈恒成立,----------------------------------------------------------------------6分而112m m ma a a −++−=1m a −+1211()()m m m m a b a b −−+−+=121()m m m a b b −+−=1111(22m m m a b b −−−++−,0>0=,即11m m a b −−=,-------------9分从而1111122m m m m m m a b a a a a −−−−−++===对2,*m m N ≥∈恒成立,所 {}n a 为常数列.------------------------------------------------------------------------10分3 因为任意*,2n N n ∈≥,112n n n n a b a b −−+=≥=,--------------12分又已知11a b ≥,所 n n n c a b =−.从而11n n a b ++−=111((2)()2222n n n n n n n n n a b a b a b b a b +=+−≤+−=−,即112n n c c +≤,----------------------------------------------------------------------------------14分则n c ≤121n c −≤2212n c −≤…≤1112n c −,----------------------------------------------16分所 2n c c ++⋯≤112c +⋯+1112n c −=11(12n −−1c <1c .-------------------18分。

届徐汇区高三数学一模

届徐汇区高三数学一模

上海市徐汇区 2017 届高三一模数学试卷一. 填空题(本大题共 12 题, 1-6 每题 4 分, 7-12 每题 5 分,共 54 分)1. lim2n 5nn 12. 已知抛物线 C 的极点在平面直角坐标系原点,焦点在 x 轴上,若 C 经过点 M (1,3) ,则其焦点到准线的距离为3. 若线性方程组的增广矩阵为a 0 2 ,解为x 21 b y,则 a b14. 若复数 z 知足: i z 3 i ( i 是虚数单位) ,则 | z |5. 在 ( x22 ) 6的二项睁开式中第四项的系数是(结果用数值表示)x6. 在长方体 ABCD A 1 B 1C 1 D 1 中,若 AB BC 1, AA 12 ,则异面直线 BD 1 与 CC 1所成角的大小为7.2x , x的值域为 (,1] ,则实数 m 的取值范围是若函数 f (x)x 2 m,x 0uuur uuur8. 如图,在△ ABC 中,若 AB AC 3, cos BAC 1 , DC 2BD ,则uuur uuur2AD BC9. 定义在 R 上的偶函数 yf (x) ,当 x0 时, f ( x) lg( x 23x 3) ,则 f ( x) 在 R 上的零点个数为 个10. 将 6 辆不一样的小汽车和 2 辆不一样的卡车驶入如下图的10 个车位中的某 8 个内,此中2 辆卡车一定停在 A 与 B 的地点,那么不一样的泊车地点安排共有 种(结果用数值表示)11. 已知数列 { a n } 是首项为 1,公差为 2m 的等差数列,前 n 项和为 S n ,设 b nS nn 2nN * ) ,若数列 {b n } 是递减数列,则实数( n m 的取值范围是12. 若使会合 A { x | ( kx k 26)( x 4)0, x Z} 中的元素个数最少,则实数k 的取值范围是二. 选择题(本大题共 4 题,每题 5 分,共 20 分)13. “ xk( k Z ) ”是“ tan x 1 ”的()条件4A. 充足不用要B. 必需不充足C. 充足必需D.既不充足也不用要14. 若 12i ( i 是虚数单位)是对于 x 的方程 x 2 bx c0 的一个复数根,则()A. b 2 , c 3B.b 2 ,c 1C.b2 , c 1D.b 2 ,c 315. 已知函数 f ( x) 为 R 上的单一函数, f - 1 (x) 是它的反函数, 点 A(- 1,3) 和点 B(1,1)均在函数 f (x)的图像上,则不等式 | f1(2 x ) | 1 的解集为()A. (1,1)B.(1,3) C.(0,log 2 3)D.(1,log 2 3)2y2y 2216. 如图,两个椭圆x1 、 x 1内部重叠地区的界限记为曲线 C ,P 是曲线2525 99C 上的随意一点,给出以下三个判断:(1) P 到 F 1 ( 4,0) 、 F 2 (4,0) 、 E 1 (0, 4) 、E 2 (0, 4) 四点的距离之和为定值(2)曲线 C 对于直线y x 、 yx 均对称(3)曲线 C 所围地区面积必小于36上述判断中正确命题的个数为()A.0 个B.1 个C.2个D.3个三 . 解答题(本大题共 5 题,共 14+14+14+16+18=76 分)17. 已知 PA 平面 ABC , AC AB ,AP BC 2, CBA 30 ,D 是 AB 的中点;(1)求 PD 与平面 PAC 所成角的大小; (结果用反三角函数值表示)(2)求△ PDB 绕直线 PA 旋转一周所组成的旋转体的体积;(结果保存 )18. 已知函数 3 cos 2 xsin x f ( x);cos x1(1)当 x [0, ] 时,求 f ( x) 的值域;2(2)已知△ ABC 的内角 A, B, C 的对边分别为a,b,c ,若 f ( A)3 , a 4, b c5 ,2求△ ABC 的面积;19. 某创业团队拟生产A 、B 两种产品,依据市场展望,A 产品的收益与投资额成正比(如图1),B 产品的收益与投资额的算术平方根成正比(如图2);(注:收益与投资额的单位均为万元)(1)分别将A 、B 两种产品的收益 f ( x)、 g(x)表示为投资额x 的函数;(2)该团队已筹集到10 万元资本,并打算所有投入A 、B 两种产品生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获取最大收益,最大收益为多少?20. 如图,双曲线: x 2y 2 1的左、右焦点 F 1 、 F 2 ,过 F 2 作直线 l 交 y 轴于点 Q ;3(1)当直线 l 平行于的一条渐近线时,求点F 1 到直线 l 的距离;(2)当直线 l 的斜率为 1 时,在uuur uuur0 ?,若存在,的右支上能否存在点 P ,知足 F P FQ11求点 P 的坐标,若不存在,说明原因;uuur uuur uuuur r(3)若直线 l 与 交于不一样两点 A 、B ,且上存在一点 M ,知足 OA OB 4OM 0(此中 O 为坐标原点),求直线 l 的方程;21.正数数列{ a n}、{b n}知足:a1b1,且对全部k 2,k N,a k是a k 1与b k 1的等差中项, b k是 a k 1与 b k 1的等比中项;(1)若a2 2 , b2 1,求 a1、 b1的值;(2)求证:{ a n}是等差数列的充要条件是a n为常数数列;(3)记c n | a n b n |,当n 2, n N ,指出 c2 L c n与 c1的大小关系并说明原因;参照答案一.填空题1. 22.92 4. 2 5. 160 6. 7.3.2 4m 18.3 4 10.40320 11.[0,1)12.[3,2]9.2二. 选择题13. C 14. D 15. C 16. C三. 解答题17. ( 1) arctan3;(2)3 ;4218. ( 1) [0,3 2] ;(2) 33 ;2 419.(1)f ( x) 1 x , g( x)5 x ;44(2)对 A 投资万元,对 B 投资万元,可获取最大收益65万元;1620. ( 1) 2 ;( 2)不存在;(3) x 2 y 2 ;21. ( 1) a 1 2 3 , b 1 2 3 ;( 2)略;( 3) c 2 L c n c 1;。

07.2017年上海高三数学一模分类汇编:解析几何

07.2017年上海高三数学一模分类汇编:解析几何

2(2017徐汇一模). 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则其焦点到准线的距离为4(2017青浦一模). 等轴双曲线222x y a -=与抛物线216y x =的准线交于A 、B 两点,且||AB =,则该双曲线的实轴长等于4(2017崇明一模). 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为4(2017宝山一模). 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5(2017普陀一模). 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是6(2017浦东一模). 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6, 则b =6(2017金山一模). 点(1,0)到双曲线2214x y -=的渐近线的距离是 6(2017奉贤一模). 若抛物线22y px =的焦点与椭圆2215x y +=的右焦点重合,则p =7(2017虹口一模). 若双曲线2221y x b-=的一个焦点到其渐近线距离为线焦距等于8(2017普陀一模). 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直线与圆C 相切,则k 的取值范围是9(2017浦东一模). 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交 双曲线C 的两条渐近线于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为9(2017金山一模). 方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是 (结果化为普通方程)9(2017杨浦一模). 已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为10(2017松江一模). 设(,)P x y 是曲线1C =上的点,1(4,0)F -,2(4,0)F , 则12||||PF PF +的最大值为10(2017闵行一模). 已知x 、y 满足曲线方程2212x y +=,则22x y +的取值范围是10(2017杨浦一模). 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共点,则此双曲线的标准方程为11(2017虹口一模). 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于 抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于11(2017杨浦一模).平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是12(2017虹口一模). 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取 值与x 、y 均无关,则实数a 的取值范围是12(2017金山一模). 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称;③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ;其中,所有正确结论的序号是13(2017奉贤一模). 对于常数m 、n ,“0mn <”是“方程221mx ny +=表示的曲线 是双曲线”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14(2017静安一模). 已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均 为原点O ,从每条曲线上各取两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之 间的距离为( )A.1 B. 1 C. 1 D. 215(2017崇明一模). 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y +=16(2017杨浦一模). 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥16(2017闵行一模). 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过201716(2017徐汇一模). 如图,两个椭圆221259y x +=、221259y x+=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值(2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )A. 0个B. 1个C. 2个D. 3个17(20172017静安一模). 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅的取值范围; (2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程; 18(2017普陀一模). 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12arccos 9PF F ∠=,12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值, 并求出||MQ 取得最大值时M 的坐标;18(2017宝山一模). 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-;(1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||AB =试求直线l 的倾斜角;18(2017杨浦一模). 如图所示,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段,点A 、B 在1l 上,且位于M 点的两侧,C 在2l 上,AM BM NM CN ===; (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积9ABCN V =,求异面直线1l 、2l 之间的距离;19(2017青浦一模). 如图,1F 、2F 分别是椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,且焦距为AB 平行于x 轴,且11||||4F A F B +=; (1)求椭圆C 的方程;(2)若点P 是椭圆C 上异于点A 、B 的任意一点,且直线PA 、PB 分别与y 轴交于点M 、N ,若2MF 、2NF 的斜率分别为1k 、2k ,求证:12k k ⋅是定值;19(2017浦东一模). 已知椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为1F 、2F ,过2F 的一条直线交椭圆于P 、Q 两点,若△12PF F 的周长为4+,且长轴长与短轴长; (1)求椭圆C 的方程;(2)若12||||F P F Q PQ +=,求直线PQ 的方程;19(2017金山一模). 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短倍,直线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;19(2017崇明一模). 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;19(2017杨浦一模). 如图所示,椭圆22:14x C y +=,左右焦点分别记作1F 、2F ,过1F 、2F 分别作直线1l 、2l 交椭圆于AB 、CD ,且1l ∥2l ;(1)当直线1l 的斜率1k 与直线BC 的斜率2k 都存在时,求证:12k k ⋅为定值; (2)求四边形ABCD 面积的最大值;20(2017闵行一模). 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距为P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围;(3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;20(2017奉贤一模). 过双曲线2214y x -=的右支上的一点P 作一直线l 与两渐近线交于A 、B 两点,其中P 是AB 的中点;(1)求双曲线的渐近线方程;(2)当P 坐标为0(,2)x 时,求直线l 的方程; (3)求证:||||OA OB ⋅是一个定值;20(2017虹口一模). 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;20(2017松江一模). 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;20(2017徐汇一模). 如图,双曲线22:13x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ;(1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=?,若存在, 求点P 的坐标,若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程;。

2017高考上海各区数学一模(含答案)

2017高考上海各区数学一模(含答案)

上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市崇明县2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 复数(2)i i +的虚部为 2. 设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则((1))f f -=3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2xP x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞=6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为8. 若21(2)nx x+*()n N ∈的二项展开式中的第9项是常数项,则n =9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y += 16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求: (1)异面直线11B C 与1AC 所成角的大小; (2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与 点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数;(1)当1a b ==时,证明:()f x 不是奇函数; (2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4.34 5. 4 6. 187. 75π 8. 12 9. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题 17.(1)5arccos10;(2)33;18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29;20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =;当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;上海市金山区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2{|20}M x x x =-<,{|||1}N x x =>,则MN =2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =3. 如果5sin 13α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x xf x x x=的最小正周期是5. 函数()2x f x m =+的反函数为1()y f x -=,且1()y f x -=的图像过点(5,2)Q ,那么m =6. 点(1,0)到双曲线2214x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是41012283036⋅⋅⋅二. 选择题(本大题共4题,每题5分,共20分)13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.110x y-> B. 11()()022x y -<C. 22log log 0x y +>D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;18. 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短轴长的2倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;20. 已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围; (3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和; (3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;参考答案一. 填空题1. (1,2)2. 12i -3. 512-4. π5. 16. 557. 4 8. 48 9. 20x y -= 10. 2 11. 324 12. ②③④二. 选择题13. A 14. B 15. A 16. C三. 解答题 17.(1)310arccos 10;(2)43;18.(1)2211()sin sin()sin(2)33366f x x x x ππ=+=+-,(0,)3x π∈; (2)递增区间(0,]6π,6x π=;19.(1)2212x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1[,8]2;(3)min 4M =;21.(1)n b n =;(2)201822033134+;(3)不存在;上海市虹口区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,4,6,8}A =,{|2,}B x x k k A ==∈,则A B =2. 已知21zi i=+-,则复数z 的虚部为 3. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4. 已知二元一次方程111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是5. 数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2lim n n nSa →∞=6. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条件(填“充 分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)7. 若双曲线2221y x b-=的一个焦点到其渐近线距离为22,则该双曲线焦距等于8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 9. 一个底面半径为2的圆柱被与其底面所成角是60°的平 面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是二. 选择题(本大题共4题,每题5分,共20分)13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( ) A. 若m ∥α,m 、n 不平行,则n 与α不平行 B. 若m ∥α,m 、n 不垂直,则n 与α不垂直 C. 若m α⊥,m 、n 不平行,则n 与α不垂直 D. 若m α⊥,m 、n 不垂直,则n 与α不平行14. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱锥P ABC -中,已知底面等边三角形的边长为6,侧棱长为4; (1)求证:PA BC ⊥;(2)求此三棱锥的全面积和体积;18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处; (1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);19. 已知二次函数2()4f x ax x c =-+的值域为[0,)+∞; (1)判断此函数的奇偶性,并说明理由;(2)判断此函数在2[,)a+∞的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域;20. 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;21. 已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ;参考答案一. 填空题1. {2,4,8}2. 13. 04. 21x y =⎧⎨=⎩ 5. 146. 充分非必要7. 68. 29. 43 10. 6011. 22或42 12. [5,)+∞二. 选择题13. A 14. B 15. C 16. C三. 解答题17.(1)略;(2)9793S =+,63V =; 18.(1)291;(2)东偏北41.8︒, 6.4v =海里/小时; 19.(1)非奇非偶函数;(2)单调递增;(3)当02a <<,()0g a =;当2a ≥,4()4g a a a=+-;值域[0,)+∞; 20.(1)22143x y +=;(2)12;(3)2;21.(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;上海市闵行区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 方程lg(34)1x +=的解x = 2. 若关于x 的不等式0x ax b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A BC D -,12AA =,E 为 棱1CC 的中点,则三棱锥1D ADE -的体积为 7. 从单词“shadow ”中任意选取4个不同的字母排成一排, 则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅取值范围是 10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足 1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒, (1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小; (用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量,铺设管道的费用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂 的距离为x 千米,求联合建厂的总费用y 与x 的函数关系 式,并求y 的取值范围;20. 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距 为25,点P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围; (3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤); (1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列, 点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;上海市松江区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =2. 已知a 、b R ∈,i 是虚数单位,若2a i bi +=-,则2()a bi +=3. 已知函数()1x f x a =-的图像经过(1,1)点,则1(3)f -=4. 不等式|1|0x x ->的解集为5. 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为6. 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道,在由2名中国运动员和6 名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为 7. 按下图所示的程序框图运算:若输入17x =,则输出的x 值是8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y 是曲线22:1259x y C +=上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为11. 已知函数243,13()28,3xx x x f x x ⎧-+-≤≤⎪=⎨->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212lim n n na a -→∞=二. 选择题(本大题共4题,每题5分,共20分) 13. 已知a 、b R ∈,则“0ab >”是“2b aa b+>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在截面1A DB 上,则线段AP 的最小值为( ) A.13 B. 12 C. 33 D. 2215. 若矩阵11122122a a a a ⎛⎫⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈,且111221220a a a a =,则这样的互不相等的矩阵共有( )A. 2个B. 6个C. 8个D. 10个 16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++> 的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在正四棱锥P ABCD -中,PA AB a ==,E 是棱PC 的中点; (1)求证:PC BD ⊥;(2)求直线BE 与PA 所成角的余弦值;18. 已知函数21()21x xa f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;19. 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”, 兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求:(1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)20. 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;21. 如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H 型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时, 试判断数列{}n c 是否为“H 型数列”,并说明理由;参考答案一. 填空题1. {1}2. 34i -3. 24. (0,1)(1,)+∞5. π6.147. 143 8. 11 9. 17π 10. 10 11. 3(0,)312. 12-二. 选择题13. B 14. C 15. D 16. A三. 解答题 17.(1)略;(2)33; 18.(1)1a =-,偶函数;1a =,奇函数;a R ∈且1a ≠±,非奇非偶函数; (2)[2,3];19.(1)18.9米;(2)6.9°;20.(1)2213y x -=;(2)3;(3)(1,0)-; 21.(1)1(,0)(,)2-∞+∞;(2)不存在;(3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02xx m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD 上的两个动点,且2MN =,则AM AN ⋅的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( ) A. 关于y 轴对称 B. 关于原点对称 C. 关于直线0x y +=对称 D. 关于直线0x y -=对称 15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则213a a a >D. 若10a <,则2123()()0a a a a --> 16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A BC D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点; (1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角 形的四面体成为鳖臑,试问四面体1DCDE 是 否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ; (1)若3B π=,7b =,△ABC 的面积332S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;。

上海市徐汇区2017年高三一模数学试题Word版含答案

上海市徐汇区2017年高三一模数学试题Word版含答案

上海市徐汇区2017届高三一模数学试卷2016.12.21一.填空题(本大题共 12题,1-6每题4分,7-12每题5分,共54分)2n1. Iimj n 12. 已知抛物线C 的顶点在平面直角坐标系原点,焦点在 x 轴上,若C 经过点M(1,3),则 其焦点到准线的距离为勺0 2】,解为片2,则a 心<0 1 b 丿 [y=14.若复数z 满足:i n =、,3 • i ( I 是虚数单位),则|z|二2 65. 在(X 2)的二项展开式中第四项的系数是 _______________ (结果用数值表示)X6. 在长方体ABCD —ABQ 1D 1中,若AB=BC=1,AA =J 2,则异面直线BD 1与CC 1 所成角的大小为 _________「2X , x 兰07. 若函数f(x)=《的值域为(皿,1],则实数m 的取值范围是 ____________-x^m, x >01 ■—8.如图,在△ ABC 中,若 AB =AC =3,cos BAC 二一,DC =2BD ,贝V2AD BC 二 _________ 9.定义在R 上的偶函数y 二f(x),当x_0时,f (x) =lg(x 2-3x • 3),则f (x)在R 上的零点个数为 _________个10.将6辆不同的小汽车和 2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在 A 与B 的位置,那么不同的停车位置安排共有 ____________ 种(结果用数值 表示)(n ・N *),若数列{b n }是递减数列,则实数 m 的取值范围是 __________3.若线性方程组的增广矩阵为AIf11.已知数列{a n }是首项为1,公差为2m 的等差数列,前n 项和为S n ,设b n =S n nn 2。

【上海中学】2017年高考模拟数学试卷(一)-答案

【上海中学】2017年高考模拟数学试卷(一)-答案

上海中学2017年高考模拟数学试卷(一)答 案一、填空题 1.0 2.0 3.5 4.4 5.()(24)a a a a ---,,6.837.1924 8.129.11()0)({}-∞-+∞,,10.11.24 12.8.413.cos cos (2||||OB OC AB B AC COP AB AC l +=++ 二、选择题 14-17.DDAB 三、解答题18.解:(1)∵222cos π()cos ()11sin(2)26x f x x x x x x =-∈∈=+-=-+R R ,w w w w w w .由于它的最小正周期为π,故2ππw=,∴1w =.故π1sin(2(6))f x x -+=.(2)∵]π[0x ∈,, ∴ππ13π2[]6x +∈,.列表如下:如图:19.解:(1)设i z a b =+(a ,b R ∈且0b ≠)则i z a b =-∵||21510|z z +=+∴|()|2152i (+10)i|a b a b ++-∴2275a b +==∴||z =(2)设i z c b =+(c ,b ∈R 且0b ≠)假设存在实数a 使z aa z+∈R 则有2222()R z a c ac b ab a z a c b a c b +=++-∈++ ∴220b ab a c b-=+ ∵0b ≠∴a =由(1=∴a =±20.解:(1)11B C C A ⊥证明如下: 在平面1BA 内,过1B 作1B D AB ⊥于D , ∵1BA ABC ⊥侧面平面,∴1B D ABC ⊥平面,1B BA ∠是1BB 与平面ABC 所成的角,∴1π2ππ33B BA ∠=-=,连接1BC , ∵11BB CC 是菱形,∴11BC B C ⊥,1CD A B ⊥平面,1B D AB ⊥, ∴1B C AB ⊥, ∴11B C ABC ⊥平面, ∴11B C C A ⊥.(2)解:由题意及图,11111222423B ACC A B A AC A ABC V V V ---===⨯答:四棱锥11B ACC A -的体积为221.解:(1)210110%0.(1)2.8y n n n n n =+++∈N *, (2)由20.2 1.810 1.1%n n n p +≤⨯,得0.2 1.8%10 1.1nn p +≥⨯, 令0.2 1.810 1.1n nn a +=⨯,由11n n nn a a a a +-≥⎧⎨≥⎩,得12n ≤≤, ∴122%11p a a ≥==, ∴20011p ≥. 22.解:(1)∵当2b =,4m =-时,()()f x g x ≥恒成立,∴2225804||28()30x x x c x x x x x ⎧-+-≥⎪≥=⎨---<⎪⎩,---,,由二次函数的性质得74c ≥-.(2)2()||32x b x --=-,即2(||)1b x x -=+有四个不同的解,∴2()(1)0xb x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解, 由根的分布得1b ≥且514b <<, ∴514b <<. 23.解:(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩即220020ax ax x ax -+= ∴222200440a x a x ∆=-= ∴l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点00()N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣ 则22222000044()0(1)a x a by ax by =+>△﹣﹣ ∴22242220000000ax by b y ax abx y -+-+> ∴22001by ax +>∴00()N x y ,在椭圆C 的外部.(3)同理可得此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y l l l l +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l 上,即01011ax x by y +=,整理得12222001112()10ax by ax by l +-++-= 同理得关于2l 的方程,类似.即1l 、2l 是222200211(0)1ax by ax by l +-++-=的两根 ∴120+=λλ.上海中学2017年高考模拟数学试卷(一)解 析一、填空题1.【考点】3Q :函数的周期性;3L :函数奇偶性的性质.【分析】根据()f x 是奇函数可得()()f x f x -=-,又根据()f x 是以2为周期的周期函数得()()2f x f x +=,取1x =-可求出()1f 的值.【解答】解:∵()f x 是以2为周期的周期函数, ∴1(1)()f f =-, 又函数()f x 是奇函数, ∴()(111)()f f f -=-=, ∴()(0)11f f =-= 故答案为:02.【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成复数的代数标准形式,根据实部和虚部互为相反数,得到实部和虚部和为0,得到结果. 【解答】解:∵1(1)(1)1(1)111(1)(1)222bi bi i b b i b b i i i i ++-++-+-===+++-, ∵实部和虚部互为相反数,∴11022b b +-+=, ∴202b =,∴0b =, 故答案为:03.【考点】DC :二项式定理的应用.【分析】由题意可得(122)Tr Cnr x r rCnrxr +==分别令3r =,1r =可得含3x ,x 项的系数,从而可求 【解答】解:由题意可得二项展开式的通项,(122)Tr Cnr x r rCnrxr +== 令3r =可得含3x 项的系数为:38Cn ,令1r =可得含x 项的系数为12Cn ∴31882Cn Cn =⨯ ∴5n = 故答案为:54.【考点】7C :简单线性规划.【分析】先根据条件画出可行域,设2z x y =+,再利用几何意义求最值,将最小值转化为y 轴上的截距,只需求出直线2z x y =+,过可行域内的点2(1)A ,时的最小值,从而得到z 最小值即可.【解答】解:设变量x 、y 满足约束条件126x y x y ≥⎧⎪≥⎨⎪+≤⎩,在坐标系中画出可行域三角形,A (1,2),(4,2),C (1,5), 则目标函数2z x y =+的最小值为4. 故答案为:4.5.【考点】R2:绝对值不等式.【分析】把不等式转化为0||3x a a <+<-,利用绝对值不等式的几何意义,即可求出不等式的解集. 【解答】解:因为0a <,则关于x 的不等式3||1ax a>+,所以不等式0||3x a a <+<-, 根据绝对值不等式的几何意义:数轴上的点到a -的距离大于0并且小于3a -, 可知不等式的解集为:()()24a a a a -⋃--,,. 故答案为:()()24a a a a -⋃--,,. 6.【考点】K4:椭圆的简单性质.【分析】由椭圆的定义可知12||10||PF PF +=,根据椭圆方程求得焦距,利用内切圆的性质把三角形PF 1F 2分成三个三角形分别求出面积,再利用面积相等建立等式求得P 点纵坐标. 【解答】解:根据椭圆的定义可知12||10||PF PF +=,12||6F F =, 令内切圆圆心为O则1212121212|||1(2|||)PF F POF POF OF F PF r PF r S S S S F F r =++++=△△△△=1212||||11(||)28PF PF F F +⋅=+=又∵12121||23PF F F F yP yP S ⋅==△. 所以38yp =,83yp =.故答案为83.7.【考点】8E :数列的求和;6F :极限及其运算.【分析】先分奇数与偶数分别求前n 项和记为S n ,再求它们的极限.【解答】解:当2n k =时,221111[1()][1()]9924111149nnSn --=+-- 当21n k =+时,1221111[1()][1()]9924111149nn Sn +--=+-- ∴lim21193824n n S −−→∞=+=故答案为1924. 8.【考点】C7:等可能事件的概率.【分析】把城市A 被选中的情况和城市A 未被选中的情况都找出来,即可得到城市A 被选中的概率. 【解答】解:从这八个中小城市中选取三个城市,但要求没有任何两个城市相邻,则城市A 被选中的情况有:ACE ACF ACG ACH ADF ADG ADH AEG AEH AFH 、、、、、、、、、,共10种.则城市A 未被选中的情况有:BDF BDG BDH BEG BEH BFH CEG CEH CFH DFH 、、、、、、、、、,共10种.故城市A 被选中的概率为:101=10+102, 故答案为:12. 9.【考点】J9:直线与圆的位置关系.【分析】据题意设1y 22y kx =-+,画出函数1y k 的取值范围.【解答】解:根据题意设1y 22y kx =-+, 当0k =时,方程只有一个解0x =,满足题意; 当0k ≠时,根据题意画出图象,如图所示:根据图象可知,当1k ->或1k -<-时,直线2y kx =-+与y = 综上,满足题意k 的取值范围为0k =或1k >或1k <-. 故答案为:11()0)({}-∞-⋃+∞⋃,,.10.【考点】9S :数量积表示两个向量的夹角;93:向量的模;HP :正弦定理.【分析】由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,根据海仑公式得:22422162416(12128)S a a a =-+-=--+,再结合二次函数的性质求出答案即可.【解答】解:由题意可得:|||AC BC =,设△ABC 三边分别为2,a ,三角形面积为S ,所以设22a p +=所以根据海仑公式得:S = 所以22422162416(12128)S a a a =-+-=--+,当212a =时,即当a =ABC 的面积有最大值,并且最大值为故答案为11.【考点】L3:棱锥的结构特征;L2:棱柱的结构特征.【分析】先把判断几何体的形状,把展开图沿虚线折叠,得到一个四棱锥,求出体积,再计算棱长为12的正方体的体积,让正方体的体积除以四棱锥的体积,结果是几,就需要几个四棱锥.【解答】解:把该几何体沿图中虚线将其折叠,使P Q R S ,,,四点重合,所得几何体为下图中的四棱锥, 且底面四边形ABCD 为边长是6的正方形,侧棱PD ABCD ⊥平面,6PD =∴1666723P ABCD V =⨯⨯⨯=四棱锥﹣∵棱长为12的正方体体积为1212121728⨯⨯= ∵17282472=, ∴需要24个这样的几何体,就可以拼成一个棱长为12的正方体. 故答案为2412.【考点】4R :反函数.【分析】根据题意画出图形,如图,设()A x ax ,,函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,得出点A 到直线y x =的距离为AB 的一半,利用点到直线的距离公式及()A x ax ,在函数1y x=的图象上得到18.4a =≈即可. 【解答】解:根据题意画出图形,如图, 设()A x ax ,,∵函数(1)y ax a =>和它的反函数的图象与函数1y x=的图象关于直线0x y -=对称,∴||AB =,⇒点A 到直线y x =,x=⇒2ax x =﹣,① 又()A x ax ,在函数1y x=的图象上,⇒1ax x =,②由①②得:12x x -=⇒1x x=,∴11)2-=,⇒18.4a =≈ 故答案为:8.4.13.【考点】F3:类比推理;LL :空间图形的公理. 【分析】由题意可得:cos cos (0||||AB B AC C BC AB AC l ⋅+=,即BC 与cos cos (||||AB B AC CAB AC l +垂直,设D 为BC的中点,则2OB OCOD +=,可得cos cos (||||AB B AC C DP AB AC +=λ,即可得到0BC DP ⋅=,进而得到点P 在BC 的垂直平分线上,即可得到答案. 【解答】解:由题意可得:cos cos (||||0||||AB B AC CBC BC BC AB AC l ⋅+=-+=∴BC 与cos cos (||||AB B AC CAB AC l +垂直 设D 为BC 的中点,则2OB OCOD +=, 所以cos cos (2||||OB OC AB B AC COP AB AC l +=++, 所以cos cos (||||AB B AC C DP AB AC l +=,因为BC 与cos cos (||||AB B AC CAB AC l +垂直所以0BC DP ⋅=, 又∵点D 为BC 的中点,∴点P 在BC 的垂直平分线上,即P 的轨迹会通过△ABC 的外心. 故答案为:cos cos (2||||OB OC AB B AC COP AB AC l +=++. 二.选择题14.【考点】H5:正弦函数的单调性;HA :余弦函数的单调性.【分析】可把A B C D ,,,四个选项中的值分别代入题设中进行验证,只有D 项的符合题意.【解答】解:cos2y x =在区间π[0]2,上是减函数,πsin )6π([0]3y x =+,上单调增,在ππ[]32,上单调减,故排除A .πsin )4π([0]4y x =+,在π[0]4,单调增,在ππ[]42,上单调减,故排除B .πsin )3π([0]6y x =+,在π[0]6,单调增,在ππ[]62,上单调减,故排除C .(πsin )2y x =+在区间π[0]2,上也是减函数,故选D .15.【考点】HP :正弦定理.【分析】根据正弦定理分别求得AC 和AB ,最后三边相加整理即可得到答案. 【解答】解:根据正弦定理sin sin BC ACA B =,sin sin(120)BC AB A B =-∴sin sin BC AC B B A ==,sin(120)s 3cos in B A CB B AB B =-= ∴△ABC的周长为π3cos 36sin 3)6(B B B B ++=++故选D .16.【考点】IH :直线的一般式方程与直线的性质.【分析】先根据点M 、N 在直线上,则点坐标适合直线方程,通过消元法可求得a 与c 的关系,从而可判定点)(1P c a ,,1()Q b c,和l 的关系,选出正确选项.【解答】解:∵点)(1M a b ,和)(1N b c ,都在直线l :1x y +=上∴11a b +=,11b c += 则11b a =-即1111a c+=-化简得11c a +=∴点)(1P c a ,在直线l 上而11b c +=则1()Q b c,在直线l 上故选A .17.【考点】8H :数列递推式;8E :数列的求和.【分析】1223111n n n a a a a a a na a ++⋯++=+,①;12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②;①-②,得11()12112n n n n a a na a n a a -++=+++﹣,1214n n n n a a +++-=,同理,得114n n n na a ++-=,整理,得12211n n n a a a ++=+,1{}an是等差数列. 由此能求出1297111...a a a ++. 【解答】解:1223111n n n a a a a a a na a ++⋯++=+,①12231()11212n n n n n a a a a a a a a n a a ++⋯+++++=++,②①-②,得11()12112n n n n a a na a n a a -++=+++﹣,∴1214n n n na a +++-=, 同理,得114n n n na a ++-=, ∴12111n n n n n n n n a a a a ++++--=-, 整理,得12211n n n a a a ++=+, ∴1{}an 是等差数列. ∵114a =,215a =,∴等差数列1{}an 的首项是114a =,公差2111541d a a =-=-=,14(1)13nn n a =+-⨯=+. ∴12971119796 (974150442)a a a ⨯++=⨯+⨯=. 故选B .18.【考点】HK :由(n )si y A x w j =+的部分图象确定其解析式.【分析】(1)利用三角函数的恒等变换化简函数π1sin(2())6f x x w =-+,再由它的周期等于π求出1w =,故π1sin(2(6))f x x =-+.(2)由]π[0x ∈,,可得ππ13π2[]666x +∈,,列表作图即得所求. 19.【考点】A8:复数求模.【分析】(1)设z a bi =+(a ,b R ∈且0b ≠)则z a bi =-代入条件||21510|z z +=+然后根据复数的运||z 的值(2)对于此种题型可假设存在实数a 使z aR a z+∈根据复数的运算法则设(z c bi =+(c ,b R ∈且0b ≠))可得2222()z a c ac b ab R a z a c b a c b +=++-∈++即220b ab a c b -=+再结合0b ≠和(1)的结论即可求解.20.【考点】MI :直线与平面所成的角;LF :棱柱、棱锥、棱台的体积.【分析】(1)判断知,B 1C 与C 1A 垂直,可在平面BA 1内,过B 1作1B D AB ⊥于D ,证明11B C ABC ⊥平面,再由线面垂直的定义得出线线垂直;(2)由图形知,111122B ACC A B A AC A ABC V V V ---==,变换棱锥的底与高后,求出它的体积即可; 21.【考点】8B :数列的应用.【分析】(1)210110%0.2( 1.8)N *y n n n n n =+++∈, (2)由20.2 1.8101.1%n n n n p +≤⋅,得0.2 1.8%10 1.1nn p +≥⨯,令0.2 1.810 1.1nn n a +=⨯,由此能求出p 的最小值. 22.【考点】3R :函数恒成立问题.【分析】(1)将2b =,4m =-代入函数解析式,根据()()f x g x ≥恒成立将c 分离出来,研究不等式另一侧函数的最大值即可求出c 的取值范围;(2)将3c =-,2m =-代入函数解析式得2()||1x b x =+﹣有四个不同的解,然后转化成2()(1)0x b x x =+≥﹣有两个不同解以及2()(1)0x b x x +=+<也有两个不同解,最后根据根的分布建立关系式,求出b 的取值范围.23.【考点】KG :直线与圆锥曲线的关系.【分析】(1)22222220000001()201ax by aby a x x ax x a by ax x b y ⎧+=⎪⇒+-+-=⎨+=⎪⎩,由根的差别式能得到l 与椭圆C 相切.(2)逆命题:若直线l :001ax x by y +=与椭圆C 相交,则点)00(N x y ,在椭圆C 的外部.是真命题.联立方程得222220000210()aby a x x ax x by ++=﹣﹣.由22222000044()0(1)a x a by ax by =+>△﹣﹣,能求出00()N x y ,在椭圆C 的外部.(3)此时l 与椭圆相离,设11()M x y ,,()A x y ,则101110111x x x y y y l l l l +⎧=⎪+⎪⎨+⎪=⎪+⎩代入椭圆C :221ax by +=,利用M 在l上,得222220011111()0ax by ax by l +-++-=.由此能求出120l l +=.。

上海市各区2017届高三一模数学试卷

3. 已知 M x
1 x P x ≥ 0, x R , x 1 ≤ 2, x R , 则 M ∩P 等于 x 2


4.抛物线 y x 2 上一点 M 到焦点的距离为 1,则点 M 的纵坐标为 5.已知无穷数列 {an } 满足 an 1
18.(本题满分 14 分)本题共有 2 个小题,第(1)小题满分 6 分,第(2)小题满分 8 分. 在一个特定时段内,以点 D 为中心的 7 海里以内海域被设为警戒水域.点 D 正北 55 海里处有一个雷达观测站 A. 某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 且与 点 A 相距 40 2 海里的位置 B 处, 经过 40 分钟又测得该船已行驶到点 A 北偏东 45 (其
你认为正确论断的序号都填上)
(注:把
12.已知 AB 为单位圆 O 的一条弦,P 为单位圆 O 上的点.若 f ( ) AP AB ( R) 的
最小值为 m ,当点 P 在单位圆上运动时, m 的最大值为 为 .
4 ,则线段 AB 的长度 3
二、选择题(本大题共有 4 题,满分 20 分)
x 1 0 的解集为 x2 x 5cos 4. 椭圆 ( 为参数)的焦距为 y 4sin
3. 不等式 5. 设复数 z 满足 z 2 z 3 i ( i 为虚数单位) ,则 z 6. 若函数 y
cos x sin x
sin x cos x
n
求实数 x 的取值集合;
21. 设集合 A 、 B 均为实数集 R 的子集,记: A B {a b | a A, b B} ; (1)已知 A {0,1, 2} , B {1,3} ,试用列举法表示 A B ;

2017年上海高三数学一模中档题

7. 抛掷一枚均匀的骰子(刻有1、2、3、4、5、6)三次,得到的数字依次记作a 、b 、c , 则a bi +(i 为虚数单位)是方程220x x c -+=的根的概率是8. 设常数0a >,9(x+展开式中6x 的系数为4,则2lim()n n a a a →∞++⋅⋅⋅+=9. 已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为10. 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共 点,则此双曲线的标准方程为11.平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得 ||2||PA PB =,则实数m 的取值范围是15. 一个公司有8名员工,其中6位员工的月工资分别为5200、5300、5500、6100、6500、 6600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是( )A. 5800B. 6000C. 6200D. 64007. 若函数22,0(),0x x f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(,1]-∞,则实数m 的取值范围是 8. 如图,在△ABC 中,若3AB AC ==,1cos 2BAC ∠=,2DC BD =uuu r uu u r ,则AD BC ⋅=uuu r uu u r9. 定义在R 上的偶函数()y f x =,当0x ≥时,2()lg(33)f x x x =-+,则()f x 在R 上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A 与B 的位置,那么不同的停车位置安排共有 种(结果用数值表示)11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n n S b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是18. 已知函数23sin ()cos 1x x f x x -=; (1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若()32Af =4a =,5b c +=,求△ABC 的面积;上海市长宁、嘉定区2017届高三一模数学试卷8. 若数列{}n a 23n n =+(*n N ∈),则 1221lim ()231n n a a a n n →∞++⋅⋅⋅+=+ 9. 如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为10. 有以下命题:① 若函数()f x 既是奇函数又是偶函数,则()f x 的值域为{0};② 若函数()f x 是偶函数,则(||)()f x f x =;③ 若函数()f x 在其定义域内不是单调函数,则()f x 不存在反函数;④ 若函数()f x 存在反函数1()f x -,且1()f x -与()f x 不完全相同,则()f x 与1()f x -图 像的公共点必在直线y x =上;其中真命题的序号是 (写出所有真命题的序号)17. 如图,已知AB ⊥平面BCD ,BC CD ⊥,AD 与平面BCD 所成的角为30°,且2AB BC ==;(1)求三棱锥A BCD -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM所成角的大小(结果用反三角函数值表示);8. 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直 线与圆C 相切,则k 的取值范围是9. 如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒, 1AB BC ==,若1A C 与平面11B BCC 所成的角为6π, 则三棱锥1A ABC -的体积为 10. 掷两颗骰子得两个数,若两数的差为d ,则{2,1,0,1,2}d ∈--出现的概率的最大值 为 (结果用最简分数表示)15. 设l αβ--是直二面角,直线a 在平面α内,直线b 在平面β内,且a 、b 与l 均不垂 直,则( )A. a 与b 可能垂直,但不可能平行B. a 与b 可能垂直,也可能平行C. a 与b 不可能垂直,但可能平行D. a 与b 不可能垂直,也不可能平行18. 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12PF F ∠=12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值,并求出||MQ 取得最大值时M 的坐标;8. 若21(2)n x x +*()n N ∈的二项展开式中的第9项是常数项,则n = 9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是15. 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A. 221255x y +=B. 2213010x y += C. 2213616x y += D. 2214525x y += 18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+(其中sin 26θ=,090θ︒︒<<)且与点A 相距海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由;9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x +的二项展开式中5x 的系数为144,则a =15. 设M 、N 为两个随机事件,给出以下命题: (1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =U ; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件; 其中正确命题的个数为( )A. 1B. 2C. 3D. 417. 如图,已知正三棱柱111ABC A B C -的底面积为4,侧面积为36; (1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1A C 与AB 所成的角的大小;上海市松江区2017届高三一模数学试卷8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y是曲线1C =上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF + 的最大值为15. 若矩阵11122122a a a a ⎛⎫ ⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈, 且111221220a a a a =,则这样的互不相等的矩阵共有( ) A. 2个 B. 6个 C. 8个 D. 10个18. 已知函数21()21x x a f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;8. 如图,一个空间几何体的主视图、左视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为1,那么这个几何体的表面积为9. 已知互异复数0mn ≠,集合22{,}{,}m n m n =,则 m n +=10. 已知等比数列{}n a 的公比为q ,前n 项和为n S ,对任意的*n N ∈,0n S >恒成立,则 公比q 的取值范围是15. 已知函数22sin ,0()cos(),0x x x f x x x x α⎧+≥⎪=⎨-++<⎪⎩([0,2))απ∈是奇函数,则α=( ) A. 0 B. 2π C. π D. 32π 18. 已知函数22()log (2)x x f x a a =+-(0)a >,且(1)2f =;(1)求a 和()f x 的单调区间;(2)(1)()2f x f x +->;8. 已知数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取值范围是9. 将边长为10的正三角形ABC ,按“斜二测”画法在水平放置的平面上画出为△A B C ''', 则△A B C '''中最短边的边长为 (精确到0.01)10. 已知点A 是圆22:4O x y +=上的一个定点,点B 是圆O 上的一个动点,若满足 ||||AO BO AO BO +=-uuu r uu u r uuu r uu u r ,则AO AB ⋅=uuu r uu u r14. 已知空间两条直线m 、n ,两个平面α、β,给出下面四个命题:①m ∥n ,m n αα⊥⇒⊥;②α∥β,m α,n β⇒m ∥n ;③m ∥n ,m ∥αn ⇒∥α;④α∥β,m ∥n ,m α⊥n β⇒⊥;其中正确的序号是( )A. ①④B. ②③C. ①②④D. ①③④17. 如图所示,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周 上不与A 、B 重合的一个点;(1)若圆柱的轴截面是正方形,当点C 是弧AB 的中点时,求异面直线1A C 与AB 的所成 角的大小(结果用反三角函数值表示);(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比;上海市浦东新区2017届高三一模数学试卷9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02x x m --<在区间[0,1]内恒成立,则实数m 的范围14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像() A. 关于y 轴对称 B. 关于原点对称C. 关于直线0x y +=对称D. 关于直线0x y -=对称15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则2a >D. 若10a <,则2123()()0a a a a --> 18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =,△ABC 的面积2S =,求a c +的值;(2)若22cos ()C BA BC AB AC c ⋅+⋅=u u r u u u r u u u r u u u r ,求角C ;上海市闵行区2017届高三一模数学试卷7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧»AB 上的一个动点,则OP AB ⋅uu u r uu u r 取值范围是10. 已知x 、y 满足曲线方程2212x y +=,则22x y +的 取值范围是17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)上海市虹口区2017届高三一模数学试卷8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为9. 一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( )A. 若m ∥α,m 、n 不平行,则n 与α不平行B. 若m ∥α,m 、n 不垂直,则n 与α不垂直C. 若m α⊥,m 、n 不平行,则n 与α不垂直D. 若m α⊥,m 、n 不垂直,则n 与α不平行15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅u u u r u u u r 的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处;(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);7. 根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫克的行为属 于饮酒驾驶,假设饮酒后,血液中的酒精含量为0p 毫克/100毫克,经过x 个小时,酒精含量降为p 毫克/100毫克,且满足关系式0rx p p e =⋅(r 为常数)若某人饮酒后血液中的酒精含量为89毫克/100毫克,2小时后,测得其血液中酒精含量降为61毫克/100毫克,则此人饮酒后需经过 小时方可驾车8. 已知奇函数()f x 是定义在R 上的增函数,数列{}n x 是一个公差为2的等差数列,满足 78()()0f x f x +=,则2017x 的值为9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅u u u r u u u u r 的最大值为13. 某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加, 那么不同的发言顺序有( )A. 336种B. 320种C. 192种D. 144种17. 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅uuu r uuu u r 的取值范围;(2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程;7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示)9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是 (结果化为普通方程)10. 若n a 是(2)n x +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+=15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点; (1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示)(2)求三棱锥P AFD -的体积;。

上海市徐汇区数学高考一模卷(含答案)

上海徐汇区数学高考一模一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 25lim1n n n →∞-=+2. 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则其焦点到准线的距离为3. 若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪⎝⎭,解为21x y =⎧⎨=⎩,则a b += 4. 若复数z 满足:3i z i ⋅=+(i 是虚数单位),则||z =5. 在622()x x +的二项展开式中第四项的系数是 (结果用数值表示) 6. 在长方体1111ABCD A B C D -中,若1AB BC ==,12AA =,则异面直线1BD 与1CC 所成角的大小为7. 若函数22,0(),0x x f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(,1]-∞,则实数m 的取值范围是8. 如图,在△ABC 中,若3AB AC ==,1cos 2BAC ∠=,2DC BD =u u ur u u u r ,则AD BC ⋅=u u u r u u u r9. 定义在R 上的偶函数()y f x =,当0x ≥时,2()lg(33)f x x x =-+, 则()f x 在R 上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A 与B 的位置,那么不同的停车位置安排共有 种(结果用数值表示)11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n nS b n =⋅*()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值范围是二. 选择题(本大题共4题,每题5分,共20分) 13. “4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要14. 若1-(i 是虚数单位)是关于x 的方程20x bx c ++=的一个复数根,则( )A. 2b =,3c =B. 2b =,1c =-C. 2b =-,1c =-D. 2b =-,3c =15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在函数f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3)16. 如图,两个椭圆221259y x +=、221259y x+=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值 (2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )A. 0个B. 1个C. 2个D. 3个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知PA ⊥平面ABC ,AC AB ⊥,2AP BC ==,30CBA ︒∠=,D 是AB 的中点; (1)求PD 与平面PAC 所成角的大小;(结果用反三角函数值表示)(2)求△PDB 绕直线PA 旋转一周所构成的旋转体的体积;(结果保留π)18. 已知函数2sin ()1x xf x x -=;(1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若()2Af =,4a =,5b c +=,求△ABC 的面积;19. 某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2); (注:利润与投资额的单位均为万元) (1)分别将A 、B 两种产品的利润f (x )、g (x )表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?20. 如图,双曲线22:13x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ; (1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=u u u r u u u r?,若存在,求点P 的坐标,若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++=u u u r u u u r u u u u r r (其中O 为坐标原点),求直线l 的方程;21. 正数数列{}n a 、{}n b 满足:11a b ≥,且对一切2k ≥,k N *∈,k a 是1k a -与1k b -的等差中项,k b 是1k a -与1k b -的等比中项; (1)若22a =,21b =,求1a 、1b 的值;(2)求证:{}n a 是等差数列的充要条件是n a 为常数数列;(3)记||n n n c a b =-,当2n ≥,n N *∈,指出2n c c ++L 与1c 的大小关系并说明理由;参考答案一. 填空题 1. 2 2.92 3. 2 4. 2 5. 160 6. 4π7. 01m <≤8. 32- 9. 4 10. 40320 11. [0,1) 12. [3,2]--二. 选择题13. C 14. D 15. C 16. C三. 解答题17.(1)arctan (2)32π;18.(1);(219.(1)1()(0)4f x x x =≥,()0)g x x =≥;(2)对A 投资3.75万元,对B 投资6.25万元,可获得最大利润6516万元;20.(1)2;(2)不存在;(3)20x ±-=;21.(1)12a =12b =(2)证明略;(3)21n c c c ++<L ,理由略;。

2017届上海市徐汇区数学中考一模卷(含答案)(带参考答案)

2016学年第一学期徐汇区学习能力诊断卷初三数学 试卷2017.1一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果23x y =,那么下列格式中正确的是( )A .23x y = B .3xx y =- C .53x y y += D .25x x y =+ 2.如果一斜坡的坡比是1:2.4,那么该斜坡坡角的余弦值是( )A .125B .512 C .513D .12133.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是()221y x =-,那么原抛物线的表达式是( )A .()2232y x =--B .()2232y x =-+C .()2212y x =+-D .()2212y x =++4.在ABC 中,点D 、E 分别在边AB 、AC 上,连结DE ,那么下列条件中不能判断ADE 和ABC 相似的是( )A .//DE BCB .AED B ∠=∠C .AE ABAD AC= D .AE ACDE BC= 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是60︒,那么此时飞机与监测点的距离是 ( )A .6000米B .C .米D .米 6.已知二次函数2243y x x =-+-,如果y 随x 的增大而减小,那么x 的取值范围是( )A .1x ≥B .0x ≥C .1x ≥-D .2x ≥-二、填空题(本大题共12题,每题4分,满分48分)7.已知线段9a =,4c =,如果线段b 是a 、c 的比例中项,那么b =____________. 8.点C 是线段AB 延长线上的点,已知AB a =,CB b =,那么AC =____________. 9.如图1,////AB CD EF ,如果2AC =, 5.5AE =,3DF =,那么BD =____________.102,那么它们的周长比是____________.11.如果点P 是线段AB 的黄金分割点(AP BP >),那么请你写出一个关于线段AP 、BP 、AB 之间的数量关系的等式,你的结论是:____________.12.在Rt ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D ,如果4CD =,3BD =,那么A ∠的正弦值是_______. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1DE =,那么AF =________.14.已知抛物线24y ax ax =-与x 轴交于点A 、B ,顶点C 的纵坐标是-2,那么a =____________.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果:3:4AB BC =,那么AB 的长是____________.16.在梯形ABCD 中,//AD BC ,AC 、BD 相交于O ,如果BOC 、ACD 的面积分别是9和4,那么梯形ABCD 的面积是____________.17.在Rt ABC 中,90ABC ∠=︒,5AC =,3BC =,CD 是ACB ∠的平分线,将ABC 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是____________.18.如图3,在ABCD 中,:2:3AB BC =,点E 、F 分别在边CD 、BC 上,点E 是边CD 的中点,2CF BF =,120A ∠=︒,过点A 分别作AP BE ⊥、AQ DF ⊥,垂足分别为P 、Q ,那么APAQ的值是____________.三、(本大题共7题,第19-22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.(本题满分10分)计算:tan 452sin 60cot 30cot 45cos301︒︒-︒-︒+︒-.20.(本题共2小题,每题5分,满分10分)将抛物线244y x x =-+沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点B 、C 、D 坐标; (2)BCD 的面积.图1图2 图321.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,//AD BC ,4AB =,3AD =,AB AC ⊥,AC 平分DCB ∠,过点D 作//DE AB ,分别交AC 、BC 于F 、E ,设AB a =,BC b =. 求:(1)向量DC (用向量a 、b 表示); (2)tan B 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东60︒方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东45︒方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号);(2)如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).1.41≈1.73≈).图4图523.(本题共2小题.第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC 中,点D 在边BC 上,DAB B ∠=∠,点E 在边AC 上,满足AE CD AD CE ⋅=⋅. (1)求证://DE AB ;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF . 求证:DF AF =.24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线23y x bx =-++与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OB OC =,点D 是抛物线的顶点,直线AC 和BD 交于点E . (1)求点D 的坐标;(2)联结CD 、 BC ,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM 和ABC 相似,求点M 的坐标.25.(本题满分14分)图6图7如图8,已知ABC 中,3AB AC ==,2BC =,点D 是边AB 上的动点,过点D 作//DE BC ,交边AC 于点E ,点Q 是线段DE 上的点,且2QE DQ =,联结BQ 并延长,交边AC 于点P .设BD x =,AP y =. (1)求y 关于x 的函数解析式及定义域;(4分) (2)当PEQ 是等腰三角形时,求BD 的长;(4分)(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.(6分)图8备用图参考答案: 1-6,BDCDCA7,6 8,a b - 9,127 102 11,PB AP AP AB = ,答案不唯一 12,3513,94 14,12 15 16,16 17, 1819,3- 20,(1)()()5,0,0,5,-B C D -(2,9)(2)1521,(1)12DC a b =+ (2)tan ABC ∠=22,,7.3(2)小时 23,(1)证明略,(2)证明略24,(1)()223,1,4y x x D =-++ (2)3 (3)63(,)55M --25,(1)()930323x y x x -=<<+ (2) 1219 或65(3)2473。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市徐汇区2017届高三一模数学试卷
2016.12.21
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 25
lim
1
n n n →∞-=+
2. 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则 其焦点到准线的距离为
3. 若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪
⎝⎭,解为2
1
x y =⎧⎨=⎩,则a b += 4. 若复数z
满足:i z i ⋅=(i 是虚数单位),则||z =
5. 在6
22()x x
+
的二项展开式中第四项的系数是 (结果用数值表示) 6. 在长方体1111ABCD A B C D -中,若1AB BC ==
,1AA =1BD 与1CC 所成角的大小为
7. 若函数22,0
(),0
x
x f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(,1]-∞,则实数m 的取值范围是
8. 如图,在△ABC 中,若3AB AC ==,1
cos 2
BAC ∠=,2DC BD =,则
AD BC ⋅=
9. 定义在R 上的偶函数()y f x =,当0x ≥时,2()lg(33)f x x x =-+,则()f x 在R 上 的零点个数为 个
10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中 2辆卡车必须停在A 与B 的位置,那么不同的停车位置安排共有 种(结果用数值 表示)
11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n
n n
S b n =
⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是
12. 若使集合2
{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值 范围是
二. 选择题(本大题共4题,每题5分,共20分) 13. “4
x k π
π=+
()k Z ∈”是“tan 1x =”的( )条件
A. 充分不必要
B. 必要不充分
C. 充分必要
D. 既不充分也不必要
14. 若1-(i 是虚数单位)是关于x 的方程2
0x bx c ++=的一个复数根,则( )
A. 2b =,3c =
B. 2b =,1c =-
C. 2b =-,1c =-
D. 2b =-,3c = 15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在
函数
f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )
A. (1,1)-
B. (1,3)
C. 2(0,log 3)
D. 2(1,log 3)
16. 如图,两个椭圆
2
21259y x +=、2
2
1259
y x
+=内部重叠区域的边界记为曲线C ,P 是曲线 C 上的任意一点,给出下列三个判断:
(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、
2(0,4)E 四点的距离之和为定值
(2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )
A. 0个
B. 1个
C. 2个
D. 3个
三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 已知PA ⊥平面ABC ,AC AB ⊥,2AP BC ==,30CBA ︒
∠=,D 是AB 的中点; (1)求PD 与平面PAC 所成角的大小;(结果用反三角函数值表示) (2)求△PDB 绕直线PA 旋转一周所构成的旋转体的体积;(结果保留π)
18. 已知函数2sin ()1
x x
f x x -=;
(1)当[0,
]2
x π
∈时,求()f x 的值域;
(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若()2
A
f =,4a =,5b c +=, 求△ABC 的面积;
19. 某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比 (如图1),B 产品的利润与投资额的算术平方根成正比(如图2); (注:利润与投资额的单位均为万元) (1)分别将A 、B 两种产品的利润
f (x )、
g (x )表示为投资额x 的函数;
(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品生产,问:当B 产品 的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?
20. 如图,双曲线2
2:13
x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ; (1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;
(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=?,若存在, 求点P 的坐标,若不存在,说明理由;
(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程;
21. 正数数列{}n a 、{}n b 满足:11a b ≥,且对一切2k ≥,k N *
∈,k a 是1k a -与1k b -的等
差中项,k b 是1k a -与1k b -的等比中项; (1)若22a =,21b =,求1a 、1b 的值;
(2)求证:{}n a 是等差数列的充要条件是n a 为常数数列;
(3)记||n n n c a b =-,当2n ≥,n N *
∈,指出2n c c +
+与1c 的大小关系并说明理由;
参考答案
一. 填空题 1. 2 2. 92 3. 2 4. 2 5. 160 6. 4
π
7. 01m <≤ 8. 3
2
- 9. 4 10. 40320 11. [0,1) 12. [3,2]--
二. 选择题
13. C 14. D 15. C 16. C
三. 解答题
17.(1)arctan (2)32
π;
18.(1);(2;
19.(1)1()4f x x =,()g x =
(2)对A 投资3.75万元,对B 投资6.25万元,可获得最大利润65
16
万元;
20.(1)2;(2)不存在;(3)2x =+;
21.(1)12a =12b =(2)略;(3)21n c c c ++<;。

相关文档
最新文档