初中数学《圆》章节知识点复习
初中数学知识点归纳圆

初中数学知识点归纳圆初中数学中与圆相关的知识点有很多,包括圆的定义、圆的性质、弦、切线、弧长、扇形、面积等。
下面将详细介绍这些知识点。
一、圆的定义和性质1.圆的定义:圆是平面上距离其中一定点(圆心)距离相等的所有点的集合。
2.圆的性质:(1)圆心到圆上任意一点的距离都相等。
(2)具有相同半径的两个圆互为同心圆。
(3)同心圆的内圆的半径小于外圆的半径。
二、弦和切线1.弦:弦是圆上的两个点之间的线段。
弦的长度可以通过通过勾股定理计算。
2.弦的性质:(1)圆心角相等的弦相等。
(2)等长的弦对应的圆心角相等。
(3)等长的弦与半径相等的圆心角相等。
3.切线:切线是圆与圆心的一条直线,它只与圆相交于一个点,这个点称为切点。
4.切线的性质:(1)切线与半径的夹角是直角(垂直)。
(2)切点到圆心的距离与切线的长度相等。
三、弧、弧长和扇形1.弧:弧是圆上两个点之间的一段弧线。
2.弧的性质:(1)相等弧所对的圆心角相等。
(2)圆的一条弧上的任意两个点与圆心和其他点构成的圆心角相等。
3.弧长:弧长是弧上的一段弧线的长度,可以通过圆的周长与圆心角的比例来计算。
4.扇形:扇形是由圆心、圆上两个点和相应的弧所构成的图形。
5.扇形的性质:扇形的面积可以通过扇形的圆心角与整个圆所对应的圆心角的比例来计算。
四、圆的面积1.圆的面积公式:圆的面积可以通过半径或直径来计算,公式如下:圆的面积=π*半径²=π*(直径/2)²2.π的近似值:π是一个无理数,通常取近似值3.14或22/7以上就是初中数学中与圆相关的知识点的归纳,涵盖了圆的定义和性质、弦和切线、弧、弧长和扇形、圆的面积等内容。
通过学习和掌握这些知识点,可以更好地理解和解决与圆相关的数学问题。
了解这些知识,不仅有助于学生提高数学水平,还能够培养学生的逻辑思维能力和解决问题的能力。
初中数学圆知识点总结归纳

初中数学圆知识点总结归纳一、圆的基本性质圆的定义:平面内到定点距离等于定长的所有点组成的图形叫做圆。
其中定点称为圆心,定长称为半径。
圆的基本性质:(1)圆是中心对称图形,对称中心为圆心。
(2)圆是轴对称图形,对称轴为经过圆心的任意一条直线。
(3)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
(4)圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(5)弦心距定理:在同圆或等圆中,弦心距等于所对弧的半径的一半。
二、圆的几何表示圆的方程:在平面直角坐标系中,以圆心为坐标原点,以半径为r的圆的方程为x^2 + y^2 = r^2。
圆的标准方程:以圆心为坐标原点,以半径为r,且经过点P(x0, y0)的圆的方程为(x - x0)^2 + (y - y0)^2 = r^2。
圆的参数方程:以x为参数,描述圆的方程为x = x0 + rcos(θ),y = y0 + rsin(θ),其中θ为参数。
三、与圆相关的定理和性质切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线性质定理:圆的切线上的任一点到圆心的距离等于半径。
切线长定理:经过圆外一点引两条切线,它们的切线长相等。
相交弦定理:经过圆内一点引两条弦,它们的交点与该点的距离乘积等于常数。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等。
圆幂定理:对于同圆或等圆中的两个相等的非零实数,有:(ab)(cd) = (ac)(bd) - (ad)(b*c)。
弦中点定理:经过弦的两个端点的直径垂直于这条弦。
相交弦定理:两弦交于圆内一点,各弦被这点所平分。
余弦定理:对于任何三角形ABC,有c^2 = a^2 + b^2 - 2ab*cos(C)。
正弦定理:对于任何三角形ABC,有a/sin(A) = b/sin(B) = c/sin(C)。
九年级圆章节知识点总结

九年级圆章节知识点总结圆是中学数学中一个重要的几何概念,它的相关知识点在九年级的数学学习中经常出现。
本文将对九年级圆章节的知识点进行总结和梳理,帮助同学们更好地掌握圆的相关知识。
一、圆的定义和性质1. 定义:圆是由平面上到一个确定点的距离都相等的所有点的集合。
2. 圆心和半径:圆心是圆的中心点,用O表示;半径是圆心到圆上任一点的距离,用r表示。
3. 直径和弦:直径是通过圆心的一条线段,用d表示;弦是圆上的一条线段,连接两点,用AB表示。
4. 弧和弧长:弧是圆上的一段弯曲部分,用AB表示;弧长是弧所占据的圆的周长的长度比例。
二、圆的相关定理1. 相等定理:圆心角相等的弧相等;等弧对应的弧相等。
2. 弧度:圆周角为360°,对应的弧长为2πr。
3. 同圆弧:如果两个弧在同一个圆上,则这两个弧叫做同圆弧,且它们的弧长相等。
4. 弧的夹角公式:夹在同一弧上的圆心角相等。
5. 锐角和钝角:圆心角小于180°则为锐角,大于180°则为钝角。
三、弦的性质1. 弦分割圆:弦AB分割圆为两个弧,即AB和AB',且它们的圆心角相等。
2. 弦的性质:等长的弦对应的圆心角相等;同一个圆上,离圆心较远的弧所对圆心角较小,离圆心较近的弧所对圆心角较大。
3. 弧与弦的关系:在同一个圆上,对任意弦来说,在此弦上的弧所对的圆心角所对的弧长大于不在此弦上的弧所对的圆心角所对的弧长。
四、切线的性质1. 切线的定义:切线是与圆只有一个交点的线。
2. 切线与半径的关系:过圆外一点做圆的切线,切点与圆心连线是切线的垂线。
3. 切线与弦的关系:圆的切线与弦的切点处的切线相等。
五、定理的应用1. 弦切角定理:圆上的切线和半径所夹的角是直角。
2. 弧切角定理:圆上的切线和此切点处的弧所夹的角是半弧对应的圆心角。
3. 切线定理:两条相交的切线所夹的角等于对角所对的圆心角的一半。
六、九年级圆章节例题练习1. 已知圆的半径为8cm,求其周长和面积。
初中数学圆的知识点总结

初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。
就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。
心的间隔小于半径的点的集合。
圆的外部可以看作是到圆心的间隔大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的局部叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心一样,半径不相等的两个圆叫同心圆。
可以重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,可以互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。
不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。
九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。
初中数学圆知识点总结

初中数学圆知识点总结一、圆的基本概念1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):圆上任意两点间的最长线段,等于半径的两倍。
5. 弦(c):圆上任意两点间的线段。
6. 弧(a):圆上两点间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径两端的两个点和圆上的所有点组成。
10. 切线(t):与圆只有一个交点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的线段。
3. 圆的任意两点间的弧可以是优弧或劣弧。
4. 圆周角定理:圆周上同弧所对的圆周角等于该弧所对的圆心角的一半。
5. 圆内接四边形的对角互补。
6. 切线与半径相交,切线垂直于经过切点的半径。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(S):S = πr²3. 扇形面积:S = (θ/360)πr²,其中θ是扇形的圆心角,单位是度。
4. 弓形面积:S = (θ/360)πr² - (θ/360)α²,其中α是弓形的弦长。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外切、相交。
3. 圆的切线问题:求切线长度、切点坐标。
4. 圆的弦长问题:根据已知条件求弦长。
5. 圆的面积问题:根据已知条件求圆的面积。
6. 圆的周长问题:根据已知条件求圆的周长。
五、圆的几何构造1. 给定半径画圆。
2. 给定直径画圆。
3. 两平行弦之间的等距弦。
4. 三点确定一个圆。
六、圆的方程1. 标准圆方程:(x - a)² + (y - b)² = r²,其中(a, b)是圆心坐标,r是半径。
2. 一般圆方程:Ax + By + C = 0,可以通过圆心和半径转换得到。
九年级数学下册《圆》知识点整理

九年级数学下册《圆》知识点整理第十章圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系.三种位置及判定与性质:初中数学复习提纲2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系初中数学复习提纲1.五种位置关系及判定与性质:2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段初中数学复习提纲1.相交弦定理2.切割线定理五、与和正多边形.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(解Rt△oAm可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式.圆周长公式2.圆面积公式3.扇形面积公式初中数学复习提纲4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。
圆的综合知识点总结(初中数学)

圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》全章要点1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交⇔d<r;直线L和圆相切⇔d=r;直线L和⊙O相离⇔d>r及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d与r1和r2之间的关系:外离⇔d>r1+r2;外切⇔d=r1+r2;相交⇔│r2-r1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S扇形=2360n R π及其运用这两个公式进行计算. 13.圆锥的侧面积和全面积的计算.教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用.12.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力.24.1 圆第一课时 教学内容1.圆的有关概念. 2.垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其它们的应用. 重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.从以上圆的形成过程,我们可以得出:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.(1)图上各点到定点(圆心O )的距离都等于定长(半径r );(2)到定点的距离等于定长的点都在同一个圆上. 圆的新定义:圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形.同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC ,AB ;②经过圆心的弦叫做直径,如图24-1线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作»AC ”,读作“圆弧»AC ”或“弧AC ”.大于半圆的弧(如图所示¼ABC 叫做优弧,•小于半圆的弧(如图所示)»AC 或»BC 叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB,垂足为M .(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,»»AC BC =,»»AD BD =,即直径CD 平分弦AB ,并且平分»AB 及¼ADB .24.1 圆(第2课时)教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.24.1 圆(第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.探索新知1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.归纳小结本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理及其推导解决一些具体问题.24.2 与圆有关的位置关系(第1课时)教学内容1.设⊙O 的半径为r ,点P 到圆心的距离OP=d ,则有:点P 在圆外⇔d>r ;点P 在圆上⇔d=r ;点P 在圆内⇔d<r .2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.重难点、关键1.重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.2.难点:讲授反证法的证明思路.3.关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆.探索新知由上面的画图以及所学知识,我们可知:设⊙O 的半径为r ,点P 到圆心的距离为OP=d 则有:点P 在圆外⇒d>r ;点P 在圆上⇒d=r ;点P 在圆内⇒d<r如果d>r ⇒点P 在圆外;如果d=r ⇒点P 在圆上;如果d<r ⇒点P 在圆内.过同一直线上的三点不能作圆.24.2 与圆有关的位置关系(第2课时)教学内容1.直线和圆相交、割线;直线和圆相切、圆的切线、切l(a)(b)相离(c)点;•直线和圆没有公共点、直线和圆相离等概念.2.设⊙O 的半径为r ,直线L 到圆心O 的距离为d 直线L 和⊙O 相交⇔d<r ;直线和⊙O 相切⇔d=r ;直线L 和⊙O 相离⇔d>r .3.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.4.切线的性质定理:圆的切线垂直于过切点的半径.重难点、关键1.重点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目.2.难点与关键:•由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价.探索新知直线和圆有三种位置关系:相交、相切和相离.如图(a ),直线L 和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线.如图(b ),直线和圆有一个公共点,这条直线和圆相切,•这条直线叫做圆的切线,这个点叫做切点.如图(c ),直线和圆没有公共点,这时我们说这条直线和圆相离.直线L 和⊙O 相交⇔d<r ,如图(a )所示;直线L 和⊙O 相切⇔d=r ,如图(b )所示;直线L 和⊙O 相离⇔d>r ,如图(c )所示.因为d=r ⇒直线L 和⊙O 相切,这里的d 是圆心O 到直线L 的距离,即垂直,并由d=r 就可得到L 经过半径r的外端,即半径OA的A点,因此,很明显的,•我们可以得到切线的判定定理:根据上面的判定定理,如果你要证明一条直线是⊙O的切线,应分为两步:(1)说明这个点是圆上的点,(2)•过这点的半径垂直于直线.有切线的性质定理24.2 与圆有关的位置关系(第3课时)教学内容1.切线长的概念.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角. 3.三角形的内切圆及三角形内心的概念.重难点、关键1.重点:切线长定理及其运用.2.•难点与关键:切线长定理的导出及其证明和运用切线长定理解决一些实际问题.探索新知从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.24.2 与圆有关的位置关系(第4课时)教学内容1.两个圆相离(外离、内含),两个圆相切(外切、内(a)(b)(d)(f)切),•两个圆相交等概念.2.设两圆的半径分别为r1、r2,圆心距(两圆圆心的距离)为d,则有两圆的位置关系,d与r1和r2之间的关系.外离⇔d>r1+r2外切⇔d=r1+r2相交⇔│r1-r2│<d<r1+r2内切⇔d=│r1-r2│内含⇔0≤d<│r1-r2│(其中d=0,两圆同心)重难点、关键1.重点:两个圆的五种位置关系中的等价条件及它们的运用.2.难点与关键:探索两个圆之间的五种关系的等价条件及应用它们解题.探索新知(1)图(a)中,两个圆没有公共点,那么就说这两个圆相离;(2)图(b)中,两个圆只有一个公共点,那么就说这两个圆相切.(3)图(c)中,两个圆有两个公共点,那么就说两个圆相交.(4)图(d)中,两个圆只有一个公共点,•那么就说这两个圆相切.•为了区分(e)和(d)图,把(b)图叫做外切,把(d)图叫做内切.(5)图(e)中,两个圆没有公共点,那么就说这两个圆相离,•为了区分图(e)和图(e),把图(a)叫做外离,把图(e)叫做内含.图(f)是(e)甲的一种特殊情况──圆心相同,我们把它称为同心圆.归纳小结本节课应掌握:1.圆和圆位置关系的概念:两个圆相离(外离、内含),相切(外切、•内切),相交.2.设两圆的半径为r1,r2,圆心距为d(r1<r2)则有:外离⇔d>r1+r2;外切⇔d=r1+r2;相交⇔r2-r1<d<r1+r2;内切⇔d=r2-r1;内含⇔0≤d<r2-r1(当d=0时,两圆同心)24.3 正多边形和圆教学内容1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系.3.正多边形的画法.重难点、关键1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.探索新知一个正多边形的外接圆的圆心叫做这个多边形的中心. 外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的一边的距离叫做正多边形的边心距.24.4 弧长和扇形面积(第1课时)教学内容1.n °的圆心角所对的弧长L=180n R π2.扇形的概念;3.圆心角为n °的扇形面积是S扇形=2360n R π;4.应用以上内容解决一些具体题目.重难点、关键1.重点:n °的圆心角所对的弧长L=180n R π,扇形面积S扇=2360n R π及其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.教具、学具准备小黑板、圆规、直尺、量角器、纸板.探索新知设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧.1°的圆心角所对的弧长是_______.2°的圆心角所对的弧长是______.4°的圆心角所对的弧长是_______. ……n °的圆心角所对的弧长是_______.在半径为R 的圆中, n °的圆心角所对的弧长为360n R πn °的圆心角所对的弧长为360n R π结合圆心面积S=πR 2的公式,设圆的半径为R ,1°的圆心角所对的扇形面积S 扇形=_______.设圆的半径为R ,2°的圆心角所对的扇形面积S 扇形=_______.设圆的半径为R ,5°的圆心角所对的扇形面积S 扇形=_______.……设圆半径为R ,n °的圆心角所对的扇形面积S 扇形=_______. 在半径为R的圆中,圆心角n °的扇形24.4 弧长和扇形面积(第2课时)教学内容1.圆锥母线的概念.2.圆锥侧面积的计算方法.3.计算圆锥全面积的计算方法. 4.应用它们解决实际问题.重难点、关键1.重点:圆锥侧面积和全面积的计算公式. 2.难点:探索两个公式的由来.3.关键:你通过剪母线变成面的过程.探索新知把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L ,•底面圆的半径为r ,•如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,•因此圆锥的侧面积为________,圆锥的全面积为________.很显然,扇形的半径就是圆锥的母线,•扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=2360n l π,其中n 可由2πr=2180n l π求得:n=360r l,•∴扇形面积S=2360360r l l π=πrL ;全面积是由侧面积和底面圆的面积组成的,所以全面积=πrL+r 2.分析:(1)由S扇形=2360n R π求出R ,再代入L=180n R π求得.(2)若将此扇形卷成一个圆锥,•扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,•圆锥母线为腰的等腰三角形.《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。