初中竞赛重要数学公式归纳总结

合集下载

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结数学竞赛是考验学生逻辑思维、推理能力和数学知识应用的重要考试。

在竞赛中,掌握一些常用的数学公式是非常关键的。

下面将总结初中数学竞赛中常用的公式,帮助竞赛学习者更好地备战。

1. 代数公式(1)二次方程的解:对于一元二次方程ax^2 + bx + c = 0,有以下公式:\[ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \]其中,Δ = b^2 - 4ac,称为判别式。

(2)平方差公式:对于任意实数a和b,有以下公式:\[ (a+b)(a-b)=a^2-b^2 \](3)两点间距离公式:对于平面上任意两点A(x1, y1)和B(x2, y2),它们之间的距离d可以用以下公式表示:\[ d=\sqrt{(x2-x1)^2+(y2-y1)^2} \]2. 几何公式(1)周长和面积公式:- 矩形的周长C和面积S分别为:C = 2(l + w),S = lw,其中l和w分别表示矩形的长度和宽度。

- 正方形的周长C和面积S分别为:C = 4s,S = s^2,其中s表示正方形的边长。

- 圆的周长C和面积S分别为:C = 2πr,S = πr^2,其中r表示圆的半径。

- 三角形的周长C和面积S可以根据不同类型的三角形使用不同公式计算(如直角三角形的勾股定理)。

(2)三角函数公式:- 正弦定理:在任意三角形ABC中,有以下公式:\[ \frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)} \]其中,a、b、c分别为三角形BC、AC和AB的边长,A、B、C分别为三角形对应的角度。

- 余弦定理:在任意三角形ABC中,有以下公式:\[ c^2 = a^2 + b^2 - 2ab\cos(C) \]- 正弦、余弦和正切的关系:对于任意角θ,有以下公式:\[ \sin(\theta) = \frac{opposite}{hypotenuse},\cos(\theta) =\frac{adjacent}{hypotenuse},\tan(\theta) = \frac{opposite}{adjacent} \]其中,opposite表示对边的长度,adjacent表示邻边的长度,hypotenuse表示斜边的长度。

初中数学竞赛重要定理公式(统计篇)

初中数学竞赛重要定理公式(统计篇)

初中数学竞赛重要定理公式(统计篇)
1. 事件概率
- 定义:对某一事件发生的可能性大小的描述。

- 公式:$P(A)=\dfrac{m}{n}$,其中 $A$ 为事件,$m$ 为
$A$ 发生的可能性数,$n$ 为随机试验的总次数。

2. 条件概率
- 定义:事件 $B$ 在已知事件 $A$ 发生的条件下发生的可能性。

- 公式:$P(B|A)=\dfrac{P(A \cap B)}{P(A)}$,其中 $A \cap
B$ 表示事件 $A$ 和事件 $B$ 同时发生的概率。

3. 全概率公式
- 定义:若 $B_1,B_2,...,B_n$ 互不相容,且 $B_1 \cup B_2
\cup ... \cup B_n$ 为必然事件,$A$ 为任意一事件,则有:
$P(A)=\sum_{i=1}^nP(B_i) \cdot P(A|B_i)$
4. 贝叶斯公式
- 定义:反向求解条件概率的公式。

- 公式:$P(B_i|A)=\dfrac{P(B_i) \cdot
P(A|B_i)}{\sum_{j=1}^nP(B_j) \cdot P(A|B_j)}$
5. 排列组合
- 排列:从 $n$ 个不同的元素中,取出 $m$ 个元素,按一定顺序进行排列的个数。

公式:$A_n^m=n \cdot (n-1) \cdot ... \cdot (n-m+1)$
- 组合:从 $n$ 个不同的元素中,取出 $m$ 个元素,不考虑顺序的组合数。

公式:$C_n^m=\dfrac{A_n^m}{m!}=\dfrac{n!}{m!(n-m)!}$。

初中数学竞赛25个定理

初中数学竞赛25个定理

初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。

2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。

4. 相似三角形的性质:对应角相等,对应边成比例。

5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。

6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。

7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。

8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。

初中数学奥赛中的常见知识点整理

初中数学奥赛中的常见知识点整理

初中数学奥赛中的常见知识点整理数学奥林匹克竞赛是一项用于培养学生数学思维、推理和问题解决能力的比赛,对参赛者的数学基础和解题能力有一定的要求。

在初中阶段,有一些常见的数学知识点是参加数学奥赛时必须熟练掌握的。

本文将整理出初中数学奥赛中常见的知识点,并进行简要介绍。

一. 平面几何1. 三角形和四边形的性质- 三角形内角和为180度- 等腰三角形的两个底角相等- 等边三角形的三个内角均为60度- 相邻补角和相对顶角互补2. 相似三角形- 对应角相等,对应边成比例- 两个等腰三角形相似,则它们全等3. 圆和圆的性质- 圆的周长为2πr,面积为πr²- 弦长关系:两个弦等长则弦上的圆心角相等,弧长相等则圆心角相等- 切线和切点:切线垂直于半径,切点是切线和圆的交点4. 平行线和全等三角形- 平行线的性质:同位角相等,内错角相加为180度- 直角三角形全等的条件:斜边和斜边对应的一个直角边相等二. 三角函数1. 弧度和角度- 弧长L = rθ,其中r是半径,θ是弧度- 弧度与角度的关系:弧度 = 角度× π / 1802. 正弦、余弦和正切- 正弦:sinθ = 对边 / 斜边- 余弦:cosθ = 邻边 / 斜边- 正切:tanθ = 对边 / 邻边3. 三角函数的周期性和特殊值- 正弦和余弦的周期为2π- 正弦和余弦的值域为[-1, 1]- 正切在θ为90度的整数倍时无定义三. 数列和等差数列1. 数列和- 等差数列的和:Sn = (a₁ + an) × n / 2,其中a₁为首项,an为末项,n为项数2. 等差数列的通项公式- 通项公式:an = a₁ + (n - 1) × d,其中d为公差四. 平面坐标系1. 平面直角坐标系- 原点和坐标轴- 坐标和距离公式- 点的对称性2. 坐标系中直线的性质- 斜率的意义和计算方法- 直线的方程和求交点的方法五. 可数与无限1. 自然数与整数- 自然数的性质与特点- 整数的性质与特点2. 有理数与无理数- 有理数和无理数的定义- 无理数的表示方式和性质六. 概率与统计1. 事件与概率- 事件的定义和表示- 概率的定义和计算方法2. 统计与频率- 数据的收集和整理- 频率和统计量的计算以上是初中数学奥赛中常见的知识点整理,涵盖了平面几何、三角函数、数列和等差数列、平面坐标系、可数与无限以及概率与统计等方面。

初中数学竞赛重要定理及结论(完整版)

初中数学竞赛重要定理及结论(完整版)
两个有公共边的三角形 ABD 和 ABC , ABC 与 DC 交于点 M ,则三角形 ABC 的面积与 三角形 ABD 的面积之比等于 CM 与 DM 的比。(定理描述对下图所示四种图形都成立)
C
C
C
C
A
B
M
D B
D
M
A
D
D
A
B
M
A
M
B
【重心】定义:重心是三角形三边中线的交点,
重心的性质:
(1)设 G 为△ ABC 的重心,连结 AG 并延长交 BC 于 D,则 D 为 BC 的中点,则 AG: GD 2 :1;
2
2
2
(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,
若 A 平分线交△ ABC 外接圆于点 K,I 为线段 AK 上的点且满足 KI=KB,则 I 为△ ABC 的
内心;
(4)设 I 为△ ABC 的内心,BC a, AC b, AB c, A 平分线交 BC 于 D,交△ ABC 外接
a H ( cos A
xA

b cosB
xB

c cosC
xC
,
a cos A
yA

b cosB
yB

c cosC
yC
)
abc
abc
cos A cosB cosC
cos A cosB cosC
垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍; (2)垂心 H 关于△ ABC 的三边的对称点,均在△ ABC 的外接圆上; (3)△ ABC 的垂心为 H,则△ ABC,△ ABH,△ BCH,△ ACH 的外接圆是等圆; ( 4 ) 设 O , H 分 别 为 △ ABC 的 外 心 和 垂 心 , 则 BAO HAC,CBO ABH,BCO HCA. 【内 心 】三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;

初中数学竞赛25个定理

初中数学竞赛25个定理

初中数学竞赛25个定理在初中数学竞赛中,各种数学定理都是竞赛的基础,熟练掌握各种数学定理可以在竞赛中脱颖而出。

下面将介绍初中数学竞赛中常见的25个定理,希望对竞赛备战有所帮助。

1. 二元一次方程的解法对于形如ax+by=c的二元一次方程,当a、b不为零时,可以利用消元法、代入法等方式求解。

2. 勾股定理直角三角形的两条直角边的平方和等于斜边的平方,即a2+b2=c2。

3. 同底数幂的乘法法则同底数幂相乘,底数不变,指数相加,即 $a^m \\cdot a^n=a^{m+n}$。

4. 相反数的性质两个数的和为0时,互为相反数,即a+(−a)=0。

5. 解三角形内角和三角形内角和等于180°,即 $\\angle A+\\angle B+\\angle C=180°$。

6. 二次根式性质非负实数组的二次根式恒大于等于0,即 $\\sqrt{a} \\geq 0$。

7. 顺序角对应性质顺序角对应,即 $\\angle A | \\angle B$ 且 $\\angle B=\\angle A+k \\cdot 180°$。

8. 同底数幂的除法法则同底数幂相除,底数不变,指数相减,即 $\\dfrac{a^m}{a^n}=a^{m-n}$。

9. 三角形中角平分线性质三角形中角平分线将一个角平分为两个角,且两个角相等。

10. 解一元二次方程一元二次方程一般形式为ax2+bx+c=0,可以利用求根公式求解。

11. 垂直平分线性质垂直平分线将一条线段垂直平分成两段相等的线段。

12. 多边形内角和n边形内角和等于 $(n-2) \\cdot 180°$,其中n表示多边形的边数。

13. 二次函数的顶点坐标二次函数y=ax2+bx+c的顶点坐标为 $\\left(-\\dfrac{b}{2a}, -\\dfrac{\\Delta}{4a} \\right)$。

14. 欧拉公式对于任何凸多面体,顶点数、棱数和面数之差为2。

初中数学竞赛知识点归纳(定理)

初中数学竞赛知识点归纳(定理)

1.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC初中竞赛需要,重要3.梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1初中竞赛需要,重要4.梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R 三点共线。

不用掌握6.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线不用掌握7.、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.初中竞赛需要,重要8.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M不用掌握9.塞瓦定理的逆定理:(略)初中竞赛需要,重要10.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。

不用掌握12.西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13.西摩松定理的逆定理:(略)初中竞赛的常用定理14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15.圆的外切四边形的两组对边的和相等16.弦切角定理弦切角等于它所夹的弧对的圆周角 第一角元形式的梅涅劳斯定理 且因为AF=BF 所以AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

初中数学竞赛公式及定理精简版

初中数学竞赛公式及定理精简版

一般定理及公式1、多边形内角和定理、多边形内角和定理 n n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)³180° )³180°2、推论、推论 任意多边的外角和等于360° 360° 提供以交流互动的形式学习数学相3、等腰梯形性质定理、等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等4、等腰梯形的两条对角线相等、等腰梯形的两条对角线相等5、等腰梯形判定定理、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形在同一底上的两个角相等的梯形是等腰梯形6、梯形中位线定理、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半并且等于两底和的一半 L= L=(a+b a+b))÷2 S=L³h 7、比例的基本性质、比例的基本性质 如果a:b=c:d,a:b=c:d,那么那么ad=bc ad=bc 数如果ad=bc,ad=bc,那么那么a:b=c:d8、合比性质、合比性质 如果a /b=c b=c//d,d,那么(a±b)/b=(c±d)/那么(a±b)/b=(c±d)/那么(a±b)/b=(c±d)/d d9、等比性质、等比性质 如果a /b=c b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a1010、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值1111、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值1212、相交弦定理、相交弦定理、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等圆内的两条相交弦,被交点分成的两条线段长的积相等1313、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项1414、切割线定理:、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项长的比例中项1515、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等1616、如果两个圆相切,那么切点一定在连心线上、如果两个圆相切,那么切点一定在连心线上、如果两个圆相切,那么切点一定在连心线上1717、①两圆外离、①两圆外离、①两圆外离 d d d>>R+r R+r ②两圆外切②两圆外切②两圆外切 d=R+r d=R+r d=R+r 数③两圆相交③两圆相交 R-r R-r R-r<<d <R+r(R R+r(R>>r) ④两圆内切④两圆内切④两圆内切 d=R-r(R d=R-r(R d=R-r(R>>r) r) ⑤两圆内含⑤两圆内含d <R-r(R R-r(R>>r)1818、相交两圆的连心线垂直平分两圆的公共弦、相交两圆的连心线垂直平分两圆的公共弦、相交两圆的连心线垂直平分两圆的公共弦1919、定理、定理、定理 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形个全等的直角三角形2020、正三角形面积√3a/、正三角形面积√3a/、正三角形面积√3a/4 4 4 ,,a 表示边长表示边长2121、弧长计算公式:、弧长计算公式:、弧长计算公式:L=n L=n πR /180 180 4 a3 ~0 @/ M/ q. B4 p7 O2222、扇形面积公式:、扇形面积公式:、扇形面积公式:S S 扇形扇形=n =n πR 2/360=LR 360=LR//2 2 数学论坛2323、内公切线长、内公切线长、内公切线长= d-(R-r) = d-(R-r) = d-(R-r) 外公切线长外公切线长外公切线长= d-(R+r) = d-(R+r)三角函数定理及公式两角和公式sin(A+B)=sin A sin(A+B)=sin A²²cos B+cos A cos B+cos A²²sin B sin(A-B)=sin A sin B sin(A-B)=sin A²²cos B-sin B cos B-sin B²²cos A cos(A+B)=cos A cos(A+B)=cos A²²cos B-sin A cos B-sin A²²sin B cos(A-B)=cos A sin B cos(A-B)=cos A²²cos B+sin A cos B+sin A²²sin B tan(A+B)=(tan A+tan B)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A ²tan B) cot(A+B)=(cot A cot(A+B)=(cot A²²cotB-1)/(cot B+cot A) cot(A-B)=(cot A cotB-1)/(cot B+cot A) cot(A-B)=(cot A²²cot B+1)/(cot B-cot A)倍角公式倍角公式tan 2A=2tan 2A=2²²tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2²²cotAcos 2a=cos 2a-sin 2a=2cos 2a=cos 2a-sin 2a=2²²cos 2a-1=1-2cos 2a-1=1-2²²sin 2a半角公式半角公式sin(A/2)=√((1sin(A/2)=√((1-cos A)/2) sin(A/2)=--cos A)/2) sin(A/2)=--cos A)/2) sin(A/2)=-√((1√((1√((1-cos A)/2) -cos A)/2)cos(A/2)=√((1+cos(A/2)=√((1+cos A)/2) cos(A/2)=-cos A)/2) cos(A/2)=-cos A)/2) cos(A/2)=-√((1+√((1+√((1+cos A)/2) cos A)/2)tan(A/2)=√(((1tan(A/2)=√(((1-cos A)/(1+cos A)) tan(A/2)=--cos A)/(1+cos A)) tan(A/2)=--cos A)/(1+cos A)) tan(A/2)=-√((1√((1√((1-cos A)/(1+cos A)) -cos A)/(1+cos A)) cot cot(A/2)=√((1+cos (A/2)=√((1+cos (A/2)=√((1+cos A)/((1-cos A)/((1-cos A)) cot(A/2)=-A)) cot(A/2)=-A)) cot(A/2)=-√((1+cos √((1+cos √((1+cos A)/((1-cos A))和差化积和差化积2sin A 2sin A²²cos B=sin(A+B)+sin(A-B) 2cos A cos B=sin(A+B)+sin(A-B) 2cos A²²sin B=sin(A+B)-sin(A-B)2cos A 2cos A²²cos B=cos(A+B)-sin(A-B) -2sin A cos B=cos(A+B)-sin(A-B) -2sin A²²sin B=cos(A+B)-cos(A-B)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)²²sin((A-B)/2)tan A+tan B=sin(A+B)/cos A tan A+tan B=sin(A+B)/cos A²²cos B tan A-tan B=sin(A-B)/cos A cos B tan A-tan B=sin(A-B)/cos A²²cos Bcot A+cot B cot A+cot B²²sin(A+B)/sin A sin(A+B)/sin A²²sin B -cot A+cot B sin B -cot A+cot B²²sin(A+B)/sin A sin(A+B)/sin A²²sin B某些数列前n 项和项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 -1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n313+23+33+43+53+63+…n3=n2(n+1)2/4 =n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中竞赛重要数学公式归纳总结初中的数学难度逐渐提升,很多同学都是从这时候在数学上落到来后面。

所以想要学好初中的数学,基础知识与举一反三的能力一定要培养。

下面是小编为大家整理的关于初中竞赛重要数学公式归纳,希望对您有所帮助!初中数学竞赛圆的方程公式1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:(1)、当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);(3)、当D^2+E^2-4F<0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r_cosθ, y=b+r_sinθ, (其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0_x+b0_y=r^2在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0_x+b0_y=r^2初中数学竞赛重要定理公式代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4) (a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

当r(x)=0时,就是f(x)能被g(x)整除。

【余式定理】多项式f(x)除以x-a 所得的余数等于f(a)。

【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。

【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。

分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。

【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数.小于100的素数有如下25个:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.性质1 一个大于1的正整数n,它的大于1的最小因数一定是质数.性质2 如果n是合数,那么n的最小质因数一定满足a2≤n.性质 3 质数有无穷多个.性质4(算术基本定理)每一个大于 1 的自然数n,必能写成以下形式:这里的P1,P2,…,P r是质数,a1,a2,…,a r是自然数.如果不考虑P1,P2,…,P r的次序,那么这种形式是唯一的.性质5 任何大于3的素数都可以表示为6k±1【不定方程】定理1.二元一次不定方程a x+by=c,,(1)若其中(a,b)c,则原方程无整数解;;(2)若(a,b)=1,则原方程有整数解;;(3)若(a,b)|c,则可以在方程两边同时除以(a,b)从而使原方程的一次项系数互质,从而转化为(2)的情形.定理2:利用分解法求不定方程ax+by=cxy(abc≠0)整数解的基本思路:将ax+by=cxy转化为(x-a)(cy-b)=ab可分解.【高斯函数】设x∈R,用[x]或int(x)表示不超过x的最大整数,并用{χ}表示x的非负纯小数,则y=[x]称为高斯(Guass)函数,也叫取整函数。

任意一个实数都能写成整数与非负纯小数之和,即:x=[x]+{χ}(0≤{x}<1)性质1:[x]≤x<[x]+1,x-1<[x] ≤x[n+x]=n+[x],n为整数2:厄尔米特恒等式:对任x大于0,恒有[x]+[x+1/n]+[x+2/n]+… …+[x+(n-1)/n]=[nx]。

【同余】定义1 给定正整数m,若用m去除两个正整数a和b所得的余数相同,则称a 与b对于模m同余,或称a与b同余,模m,记为a≡b(mod m),此时也称b是a对模m的同余。

否则称a与b对于模m不同余,或称a与b不同余,模m,记为a?b (mod m)。

【完全平方数整除性】(1)平方数的个位数字只可能是0,1,4,5,6,9;(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;(3)奇数平方的十位数字是偶数;(4)十位数字是奇数的平方数的个位数一定是6;r a raa pppn??=2121(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。

因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;(6)平方数的约数的个数为奇数;(7)任何四个连续整数的乘积加1,必定是一个平方数。

(8)设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b都是整数的k次方幂。

一般地,设正整数a,b,c……之积是一个正整数的k次方幂(k≥2),若a,b,c……两两互素,则a,b,c……都是正整数的k次方幂。

【数的整除性】(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6 或8,则这个数能被2 整除。

(3)若一个整数的数字和能被3 整除,则这个整数能被3 整除。

(4)若一个整数的末尾两位数能被 4 整除,则这个数能被 4 整除。

(5)若一个整数的末位是0 或 5,则这个数能被5 整除。

(6)若一个整数能被2 和 3 整除,则这个数能被6 整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7 的倍数,则原数能被7 整除。

如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133 是否 7 的倍数的过程如下:13-3×2=7 ,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8 整除,则这个数能被8 整除。

(9)若一个整数的数字和能被9 整除,则这个整数能被9 整除。

(10)若一个整数的末位是0,则这个数能被10 整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11 整除,则这个数能被 11 整除。

初中数学竞赛公式的整理乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1_X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)13+23+33+43+53+63+…n3=n2(n+1)2/412+22+32+42+52+62 +72+82+…+n2=n(n+1)(2n+1)/61_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c_h斜棱柱侧面积S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2圆柱侧面积 S=c_h=2pi_h圆锥侧面积 S=1/2_c_l=pi_r_l弧长公式 l=a_r a是圆心角的弧度数r>0扇形公式 s=1/2_l_r锥体体积公式 V=1/3_S_H圆锥体体积公式 V=1/3_pi_r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=pi_r2h初中竞赛重要数学公式归纳。

相关文档
最新文档