初中数学竞赛常用公式

合集下载

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结数学竞赛是考验学生逻辑思维、推理能力和数学知识应用的重要考试。

在竞赛中,掌握一些常用的数学公式是非常关键的。

下面将总结初中数学竞赛中常用的公式,帮助竞赛学习者更好地备战。

1. 代数公式(1)二次方程的解:对于一元二次方程ax^2 + bx + c = 0,有以下公式:\[ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \]其中,Δ = b^2 - 4ac,称为判别式。

(2)平方差公式:对于任意实数a和b,有以下公式:\[ (a+b)(a-b)=a^2-b^2 \](3)两点间距离公式:对于平面上任意两点A(x1, y1)和B(x2, y2),它们之间的距离d可以用以下公式表示:\[ d=\sqrt{(x2-x1)^2+(y2-y1)^2} \]2. 几何公式(1)周长和面积公式:- 矩形的周长C和面积S分别为:C = 2(l + w),S = lw,其中l和w分别表示矩形的长度和宽度。

- 正方形的周长C和面积S分别为:C = 4s,S = s^2,其中s表示正方形的边长。

- 圆的周长C和面积S分别为:C = 2πr,S = πr^2,其中r表示圆的半径。

- 三角形的周长C和面积S可以根据不同类型的三角形使用不同公式计算(如直角三角形的勾股定理)。

(2)三角函数公式:- 正弦定理:在任意三角形ABC中,有以下公式:\[ \frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)} \]其中,a、b、c分别为三角形BC、AC和AB的边长,A、B、C分别为三角形对应的角度。

- 余弦定理:在任意三角形ABC中,有以下公式:\[ c^2 = a^2 + b^2 - 2ab\cos(C) \]- 正弦、余弦和正切的关系:对于任意角θ,有以下公式:\[ \sin(\theta) = \frac{opposite}{hypotenuse},\cos(\theta) =\frac{adjacent}{hypotenuse},\tan(\theta) = \frac{opposite}{adjacent} \]其中,opposite表示对边的长度,adjacent表示邻边的长度,hypotenuse表示斜边的长度。

初中数学竞赛重要定理公式(统计篇)

初中数学竞赛重要定理公式(统计篇)

初中数学竞赛重要定理公式(统计篇)
1. 事件概率
- 定义:对某一事件发生的可能性大小的描述。

- 公式:$P(A)=\dfrac{m}{n}$,其中 $A$ 为事件,$m$ 为
$A$ 发生的可能性数,$n$ 为随机试验的总次数。

2. 条件概率
- 定义:事件 $B$ 在已知事件 $A$ 发生的条件下发生的可能性。

- 公式:$P(B|A)=\dfrac{P(A \cap B)}{P(A)}$,其中 $A \cap
B$ 表示事件 $A$ 和事件 $B$ 同时发生的概率。

3. 全概率公式
- 定义:若 $B_1,B_2,...,B_n$ 互不相容,且 $B_1 \cup B_2
\cup ... \cup B_n$ 为必然事件,$A$ 为任意一事件,则有:
$P(A)=\sum_{i=1}^nP(B_i) \cdot P(A|B_i)$
4. 贝叶斯公式
- 定义:反向求解条件概率的公式。

- 公式:$P(B_i|A)=\dfrac{P(B_i) \cdot
P(A|B_i)}{\sum_{j=1}^nP(B_j) \cdot P(A|B_j)}$
5. 排列组合
- 排列:从 $n$ 个不同的元素中,取出 $m$ 个元素,按一定顺序进行排列的个数。

公式:$A_n^m=n \cdot (n-1) \cdot ... \cdot (n-m+1)$
- 组合:从 $n$ 个不同的元素中,取出 $m$ 个元素,不考虑顺序的组合数。

公式:$C_n^m=\dfrac{A_n^m}{m!}=\dfrac{n!}{m!(n-m)!}$。

初中数学竞赛25个定理

初中数学竞赛25个定理

初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。

2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。

4. 相似三角形的性质:对应角相等,对应边成比例。

5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。

6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。

7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。

8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。

初三数学竞赛常用公式

初三数学竞赛常用公式

初中数学引申常用公式1.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 2 弧长计算公式:L=n兀R/1803. 扇形面积公式:S扇形=n兀R^2/360=LR/24.内公切线长= d-(R-r) 外公切线长= d-(R+r)某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

初中数学竞赛重要定理及结论(完整版)

初中数学竞赛重要定理及结论(完整版)
两个有公共边的三角形 ABD 和 ABC , ABC 与 DC 交于点 M ,则三角形 ABC 的面积与 三角形 ABD 的面积之比等于 CM 与 DM 的比。(定理描述对下图所示四种图形都成立)
C
C
C
C
A
B
M
D B
D
M
A
D
D
A
B
M
A
M
B
【重心】定义:重心是三角形三边中线的交点,
重心的性质:
(1)设 G 为△ ABC 的重心,连结 AG 并延长交 BC 于 D,则 D 为 BC 的中点,则 AG: GD 2 :1;
2
2
2
(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,
若 A 平分线交△ ABC 外接圆于点 K,I 为线段 AK 上的点且满足 KI=KB,则 I 为△ ABC 的
内心;
(4)设 I 为△ ABC 的内心,BC a, AC b, AB c, A 平分线交 BC 于 D,交△ ABC 外接
a H ( cos A
xA

b cosB
xB

c cosC
xC
,
a cos A
yA

b cosB
yB

c cosC
yC
)
abc
abc
cos A cosB cosC
cos A cosB cosC
垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍; (2)垂心 H 关于△ ABC 的三边的对称点,均在△ ABC 的外接圆上; (3)△ ABC 的垂心为 H,则△ ABC,△ ABH,△ BCH,△ ACH 的外接圆是等圆; ( 4 ) 设 O , H 分 别 为 △ ABC 的 外 心 和 垂 心 , 则 BAO HAC,CBO ABH,BCO HCA. 【内 心 】三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;

初中竞赛数学公式定理

初中竞赛数学公式定理

初中竞赛数学公式定理好嘞,以下是为您生成的文章:在咱们初中的竞赛数学世界里呀,那公式定理就像是一把把神奇的钥匙,能帮咱们打开一道道难题的大门。

先来说说勾股定理吧。

这可是个超级经典的定理!直角三角形两直角边的平方和等于斜边的平方。

记得有一次,我在课堂上给学生们讲这个定理,有个调皮的小家伙居然说:“老师,这勾股定理不就是告诉咱们直角三角形的三条边在玩‘比大小’的游戏嘛!”大家哄堂大笑,不过这倒也让大家一下就记住了勾股定理的本质。

还有完全平方公式,(a+b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。

这俩公式在解题的时候可太有用啦!有一回,一道竞赛题要求计算一个复杂式子的值,好多同学都抓耳挠腮的。

我就提醒他们:“你们想想完全平方公式呀!”结果呢,有个聪明的同学马上反应过来,巧妙地变形,一下子就把答案给算出来了,那叫一个得意!再说说韦达定理。

在一元二次方程 ax² + bx + c = 0 中,两根 x₁,x₂有 x₁ + x₂ = -b/a ,x₁x₂ = c/a 。

我曾经遇到过一个学生,他总是记不住韦达定理。

我就给他举了个例子,说假如你有两个口袋,一个口袋里有 x₁个糖果,另一个口袋里有 x₂个糖果,那么把两个口袋里的糖果加起来就相当于 -b/a ,两个口袋里糖果相乘就相当于 c/a 。

嘿,这招还真管用,他后来再也没忘过。

还有三角函数的那些定理,像正弦定理、余弦定理。

正弦定理a/sinA = b/sinB = c/sinC ,余弦定理 a² = b² + c² - 2bc cosA 。

有一次在做一道几何题的时候,怎么都找不到解题的突破口,后来我灵机一动,想到了余弦定理,一下子就把角度和边长的关系给搞清楚了,那感觉就像是在黑暗中突然找到了明灯。

平方差公式 (a + b)(a - b) = a² - b²,也是个不能忽视的好宝贝。

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结初中数学竞赛中常用的一些重要公式主要包括代数、几何和概率三个方面。

下面将对这些公式进行归纳总结。

一、代数公式:1.两数和、差与积的关系:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b)=a^2-b^22.平方差:a^2-b^2=(a+b)(a-b)3.二次方程求根公式:对于ax^2 + bx + c = 0,其解为:x = (-b ± √(b^2 - 4ac)) / 2a4.四则运算:a^m*a^n=a^(m+n)a^m/a^n=a^(m-n)(a^m)^n=a^(m*n)(ab)^n = a^n * b^n(a/b)^n=a^n/b^n5.无理数:√a * √b = √(ab)√a/√b=√(a/b)√a+√b≠√(a+b)6.配方法:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^27.因式分解:a^2-b^2=(a+b)(a-b)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)a^2 + 2ab + b^2 = (a+b)^2a^2 - 2ab + b^2 = (a-b)^28.绝对值:a*b,=,a,*二、几何公式:1.面积公式:矩形的面积:S=长×宽三角形的面积:S=(底边×高)/2圆的面积:S=πr^22.周长公式:矩形的周长:P=2(长+宽)圆的周长:P=2πr3.直角三角形勾股定理:对于直角三角形ABC,设边长分别为a、b、c,则有:a^2+b^2=c^24.圆内切四边形面积公式:设四边形的边长分别为a、b、c、d,其半周长为s,则其面积S可以用公式表示为:S=√((s-a)(s-b)(s-c)(s-d))5.圆内接四边形面积公式:设四边形的边长分别为a、b、c、d,其半周长为s,则其面积S可以用公式表示为:S = √((s-a)(s-b)(s-c)(s-d) - abcd cos^2((A+C)/2))6.等腰三角形的高公式:设等腰三角形的底边为a,高为h,则其面积S可以用公示表示为:S = (1/2)ah7.同位角与同旁内角对应关系:同位角相等,同旁内角和为180°三、概率公式:1.事件的概率:事件A发生的概率P(A)=A的可能性数/总的可能性数2.互斥事件概率:两个互斥事件A、B均发生的概率P(A∩B)=03.独立事件概率:两个独立事件A、B发生的概率P(A∩B)=P(A)*P(B)4.包含关系的事件概率:一个事件A包含另一个事件B的概率P(B)=P(A∩B)/P(A)以上就是初中数学竞赛常用的一些重要公式的归纳总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛常用公式Last revision on 21 December 2020初中数学常用公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS):有三边对应相等的两个三角形全等26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等27 定理1:在角的平分线上的点到这个角的两边的距离相等28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角)31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1:三个角都相等的三角形是等边三角形36 推论 2:有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1:关于某条直线对称的两个图形是全等形43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理:如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48定理:四边形的内角和等于360° 49四边形的外角和等于360°50多边形内角和定理:n边形的内角的和等于(n-2)×180° 51推论:任意多边的外角和等于360°52平行四边形性质定理1:平行四边形的对角相等53平行四边形性质定理2:平行四边形的对边相等54推论:夹在两条平行线间的平行线段相等55平行四边形性质定理3:平行四边形的对角线互相平分56平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58平行四边形判定定理3:对角线互相平分的四边形是平行四边形59平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60矩形性质定理1:矩形的四个角都是直角 61矩形性质定理2:矩形的对角线相等62矩形判定定理1:有三个角是直角的四边形是矩形63矩形判定定理2:对角线相等的平行四边形是矩形64菱形性质定理1:菱形的四条边都相等65菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1:四边都相等的四边形是菱形68菱形判定定理2:对角线互相垂直的平行四边形是菱形69正方形性质定理1:正方形的四个角都是直角,四条边都相等70正方形性质定理:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1:关于中心对称的两个图形是全等的72定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理:等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 比例的基本性质:如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例85 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边86 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例87 定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似88 相似三角形判定定理1:两角对应相等,两三角形相似(ASA)89 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似90 判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)91 判定定理3:三边对应成比例,两三角形相似(SSS)92 定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似93 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比94 性质定理2:相似三角形周长的比等于相似比95 性质定理3:相似三角形面积的比等于相似比的平方96 任意锐角的正弦值等于它的余角的余弦值,sinA=cos(90-A)任意锐角的余弦值等于它的余角的正弦值,cosA=sin(90-A)97任意锐角的正切值等于它的余角的余切值,tanA=cot(90-A)任意锐角的余切值等于它的余角的正切值 cotA=tan(90-A)98圆是定点的距离等于定长的点的集合99圆的内部可以看作是圆心的距离小于半径的点的集合100圆的外部可以看作是圆心的距离大于半径的点的集合101同圆或等圆的半径相等102到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆103和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线104到已知角的两边距离相等的点的轨迹,是这个角的平分线105到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线106定理:不在同一直线上的三点确定一个圆。

107垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧108推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧109推论2:圆的两条平行弦所夹的弧相等 110圆是以圆心为对称中心的中心对称图形111定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等112推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等113定理:一条弧所对的圆周角等于它所对的圆心角的一半114推论1 :同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等115推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径116推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形117定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角118 ①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r119切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线120切线的性质定理:圆的切线垂直于经过切点的半径121推论1:经过圆心且垂直于切线的直线必经过切点122推论2:经过切点且垂直于切线的直线必经过圆心123切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角124圆的外切四边形的两组对边的和相等125弦切角定理:弦切角等于它所夹的弧对的圆周角126推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等127相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等128推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项129切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项130推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等131如果两个圆相切,那么切点一定在连心线上132 ①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)133定理:相交两圆的连心线垂直平分两圆的公共弦134定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形135定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆136正n边形的每个内角都等于(n-2)×180°/n137弧长计算公式:L=n兀R/180 138扇形面积公式:S扇形=n兀R2/360=LR/2。

相关文档
最新文档