第八章 浸渍与石墨化 《炭素材料》教学课件
合集下载
工程材料第八章PPT

原理:大量人工晶核→结晶均匀→截面上组织均匀 →性能均匀→断面敏感性小
应用:
孕育铸铁用来制造力学性能要求高,截面尺寸
变化较大的大型铸件,如:箱体,重型机床的床身、
液压件、齿轮和导轨《工,程缸材料体第八等章》。PPT课件
25
《工程材料第八章》PPT课件
26
《工程材料第八章》PPT课件
27
2. 球墨铸铁 球墨铸铁的石墨呈球状。 具有很高的强度,良好的塑性和韧性。综合机 械性能接近于钢,铸造性能好,成本较低,生产 方便,得到广泛应用。
可锻铸铁应用: 制造形状复杂、承受冲击和振动载荷的零件, 如汽车拖拉机的后桥外壳、管接头、低压阀门 等。
与球墨铸铁比,可锻铸铁成本低、质量稳定、 铁水处理简单、容易组织流水生产。尤其对于 薄壁件,若采用球墨铸铁易生成白口,需要进 行高温退火,采用可锻铸铁更为适宜。
《工程材料第八章》PPT课件
39
5. 特殊性能铸铁 铸铁中加入合金元素,得到具有特殊性能的合 金铸铁。 (1) 耐磨铸铁 激冷铸铁 白高口磷铸铁耐磨。采用激冷的办法使铸件表面获 得白磷高口的 铬铸质 耐铁量 磨。分 铸数 铁提、高奥到-贝0.4球%墨~铸0铁.6%,生成磷共 晶,用加呈金入断属Cr续型、网铸M状造o、形铸W 态件分、的布C耐u在磨等珠表合光面金体,元基其素体它,上部提。位高磷采基共用 砂晶体型硬强。度调 高 和整 , 韧铁 改 性水 善 ,化珠铸学光铁成体的分灰耐(口磨高铸性碳铁能、的等低 耐 得硅 磨 到) 性 更, 。 大保 提证 高。 白口层的深度。表面为白口铸铁,心部为灰口铸 铁组织,有一定的强度。 应用:制造轧辊、车轮等。
(3)石墨有良好的润滑作用,并能储存 润滑油,使铸件有很好的耐磨性能。
(4)石墨对振动的传递起削弱作用,使铸 铁有很好的抗振性能。
材料学中浸渍法的课件.ppt

严重受传质控制的催化发应,宜采用蛋壳型分布 反应由动力学因素控制时,采用均匀性分布 连串反应,以中间产物为目的产物,采用蛋壳型
分布 催化剂使用过程中若经常受到冲击、磨损而导致
活性组分消耗,宜采用蛋白或蛋黄型
浸渍过程影响因素
反应物中含有使催化剂中毒的物质,载体可以 吸附毒物,采用蛋黄或蛋白型较适宜。例如, 对于Pd-Pt/Al2O3催化剂,若把活性高而耐毒性 较差的Pd放在内层,把活性比Pd差、但耐毒 性好的Pt放在外层负载,得到的汽车尾气处理 催化剂既有高活性又有长的寿命。
压下进行,还可以采用有机溶剂调节浸润角, 利用采用甲醇溶液在聚四氟乙烯上负载钯
浸渍过程影响因素
载体表面性质 载体表面性质影响其对活性组分的吸附能力 氧化物对金属络离子的吸附决定于以下参数:
氧化物的等电点 浸渍液的pH值 金属络离子的性质
浸渍过程影响因素
氧化物载体在水溶液中其表面能极化带电,粒 子所带电荷性质决定于所在溶液的pH值,以SOH代表表面吸附位
浸渍液的选择 与载体、溶液本身的性质有关;与载体的细孔
结构、大小、形状及孔径有关;与溶液的粘度、 浓度等有关 水溶液浸渍氧化物载体,毛细管力足够大,浸 渍能顺利进行
浸渍法
浸渍液的选择 活性炭-水的浸润角为60~86o,需要对活性炭
进行排气处理,才能有效浸渍 对于疏水性载体时,cosθ<0,浸渍操作可在加
体; 可以选择具有合适比表面、孔径、强度、
导热率性能的载体; 被负载组分分布在载体表面,利用率高、
成本低; 生产方法比较简单易行,生产能力高
浸渍法
缺点: 焙烧时产生的废气造成环境污染 干燥过程会造成活性组分迁移
浸渍法
分布 催化剂使用过程中若经常受到冲击、磨损而导致
活性组分消耗,宜采用蛋白或蛋黄型
浸渍过程影响因素
反应物中含有使催化剂中毒的物质,载体可以 吸附毒物,采用蛋黄或蛋白型较适宜。例如, 对于Pd-Pt/Al2O3催化剂,若把活性高而耐毒性 较差的Pd放在内层,把活性比Pd差、但耐毒 性好的Pt放在外层负载,得到的汽车尾气处理 催化剂既有高活性又有长的寿命。
压下进行,还可以采用有机溶剂调节浸润角, 利用采用甲醇溶液在聚四氟乙烯上负载钯
浸渍过程影响因素
载体表面性质 载体表面性质影响其对活性组分的吸附能力 氧化物对金属络离子的吸附决定于以下参数:
氧化物的等电点 浸渍液的pH值 金属络离子的性质
浸渍过程影响因素
氧化物载体在水溶液中其表面能极化带电,粒 子所带电荷性质决定于所在溶液的pH值,以SOH代表表面吸附位
浸渍液的选择 与载体、溶液本身的性质有关;与载体的细孔
结构、大小、形状及孔径有关;与溶液的粘度、 浓度等有关 水溶液浸渍氧化物载体,毛细管力足够大,浸 渍能顺利进行
浸渍法
浸渍液的选择 活性炭-水的浸润角为60~86o,需要对活性炭
进行排气处理,才能有效浸渍 对于疏水性载体时,cosθ<0,浸渍操作可在加
体; 可以选择具有合适比表面、孔径、强度、
导热率性能的载体; 被负载组分分布在载体表面,利用率高、
成本低; 生产方法比较简单易行,生产能力高
浸渍法
缺点: 焙烧时产生的废气造成环境污染 干燥过程会造成活性组分迁移
浸渍法
第五章-炭素材料的配料工艺-《炭素材料》教学课件

小颗粒(粉料)的作用是填充颗粒间的空隙,在一定范围内增加小颗粒粉料的用量, 可以提高产品的密度和机械强度,减少气孔,产品加工后表面比较光洁。粉料一般 在配料中占40~70%。但粉料用量过多会走向反面,特别是在焙烧和石墨化热处理 中会产生大量裂纹废品,并且粉料增多导致粘结剂用量增大,反而会降低制品机械 强度和提高制品气孔率。
5.4.2 实际配方中颗粒粒级配比及大颗粒尺寸的确定
1)各种粒级在配方中的作用
炭和石墨制品的配料除选择原料配比外,还要确定粒度组成,即用不同尺寸的大颗粒、 中颗粒和小颗粒(细粉)配合起来使用,目的是使制品能有较高的堆积密度和较小的 气孔率。一般,大颗粒和细粉占较大的比例,而中间颗粒占较少比例。
大颗粒在坯体结构中起骨架作用,适当增加大颗粒的尺寸和提高大颗粒的使用比例, 可以提高产品的抗氧化性能和抗热震性能,减少压型和焙烧工序的裂纹废品;但另 一方面会提高产品的气孔率,降低制品密度和机械强度,加工后产品表面粗糙。
(1)产品配方的粒度组成 成品配方的粒度组成较粗,即粉 料用量较少,大颗粒用量较多,且 大颗粒尺寸较大时,粘结剂用量相 对减少。反之,粒度组成较细的配 方,粘结剂用量必须适当增加,所 以小规格制品要比大规格制品的粘 结剂用量多一些。 (2)物料颗粒性质 粘结剂用量和固体原料的颗粒表面性质有关,无烟 煤表面光滑,气孔较少,对粘结剂吸附性较差,所 以,采用无烟煤为主要原料的炭块、电极糊等制品 的粘结剂用量要少一些,石油焦、沥青焦等为多孔 结构,比表面积大,对粘结剂吸附性能大,所以用 石油焦或沥青焦为原料的制品在一般情况下粘结剂 用量要相对多些。
2)粘结剂用量对生 制品及焙烧制品性能的 影响
每一种使用不同原料、 不同颗粒组成的配方的制 品有一个最佳的粘结剂比 例。粘结剂用量过多或过 少都会影响产品的物理化 学性能。首先表现在成型 工序,当粘结剂用量过少 时,糊料的塑性差,挤压 或模压成型时需提高成型 压力,而且产生裂纹废品 的可能性增加。粘结剂用 量较多时,糊料塑性好, 成型压力较低,成型的成 品率也高一些。但过多的 粘结剂会使生制品挤出或 脱模后容易变形。
《煤化工工艺学》――煤炭素制品PPT课件

③ 成型 为了制得不同形状、尺寸、密度和物理机械 性能的制品,必须将混合料进行成型。成型方法有模压、 挤压、振动成型、等静压成型等。
-18- 21.07.2020
④ 焙烧 焙烧是将生坯在隔绝空气和用焦粉和黄砂的 保护下,加热到1300℃左右的热处理过程。其目的是 粘结剂炭化,使粘结剂和骨料更好的牢固结合,使制品 获得新的物理和机械性能。
大的比热和体积密度,所以具有很好的抗热震性,能在
高温下经受温度的剧烈变化而不遭破坏。例如石墨的
抗热震系数为2399,而陶瓷只有20.11。
-
21.07.2020
炭素材料的优异的热性质使它在火箭的喷嘴、燃
烧室以及鼻锥上发挥独特的作用。
⑵ 良好的导热和导电性
石墨的导热性是各种非金属中最好的,介于铝和软钢之
剂。骨料主要是石油焦、沥青焦、炭黑、天然石墨、
无烟煤等。粘结剂主要有煤焦油、煤沥青及合成树脂
等。
大部分骨料需预先经过煅烧,以排除水分、挥发分、
提高原料密度、强度、导电性和抗氧化性。
-17- 21.07.2020
② 配料和捏和 根据不同产品的要求确定各种骨料的 种类、粒度、数量,并选择合适的粘结剂。生产核石墨、 火箭喷咀、超高功率电极必须用灰分低、强度高、易 石墨化的针状焦、石油焦、沥青焦。对纯度要求不高 的产品,可以选用冶金焦、无烟煤为骨料。捏和的目的 是把不同组分、不同粒度的原料捏和成宏观上均一的 可塑性混合物。
炭素材料是指从无定形炭到石墨结晶的一系列过渡态
炭。主要炭素制品有:冶金用的电极和耐高温材料;电热
和电化学用的电极;机电用的电刷;化工和机械工业用的
不透性石墨和耐磨材料;原子能和宇航用的高纯石墨材料;
-18- 21.07.2020
④ 焙烧 焙烧是将生坯在隔绝空气和用焦粉和黄砂的 保护下,加热到1300℃左右的热处理过程。其目的是 粘结剂炭化,使粘结剂和骨料更好的牢固结合,使制品 获得新的物理和机械性能。
大的比热和体积密度,所以具有很好的抗热震性,能在
高温下经受温度的剧烈变化而不遭破坏。例如石墨的
抗热震系数为2399,而陶瓷只有20.11。
-
21.07.2020
炭素材料的优异的热性质使它在火箭的喷嘴、燃
烧室以及鼻锥上发挥独特的作用。
⑵ 良好的导热和导电性
石墨的导热性是各种非金属中最好的,介于铝和软钢之
剂。骨料主要是石油焦、沥青焦、炭黑、天然石墨、
无烟煤等。粘结剂主要有煤焦油、煤沥青及合成树脂
等。
大部分骨料需预先经过煅烧,以排除水分、挥发分、
提高原料密度、强度、导电性和抗氧化性。
-17- 21.07.2020
② 配料和捏和 根据不同产品的要求确定各种骨料的 种类、粒度、数量,并选择合适的粘结剂。生产核石墨、 火箭喷咀、超高功率电极必须用灰分低、强度高、易 石墨化的针状焦、石油焦、沥青焦。对纯度要求不高 的产品,可以选用冶金焦、无烟煤为骨料。捏和的目的 是把不同组分、不同粒度的原料捏和成宏观上均一的 可塑性混合物。
炭素材料是指从无定形炭到石墨结晶的一系列过渡态
炭。主要炭素制品有:冶金用的电极和耐高温材料;电热
和电化学用的电极;机电用的电刷;化工和机械工业用的
不透性石墨和耐磨材料;原子能和宇航用的高纯石墨材料;
炭素材料的制备原料课件PPT

1、石油焦
1、煤焦油
炭 素
2、沥青焦
2、炭黑 3、天然石墨 4、蒽油
材
料
3、冶金焦
的
制
4、无烟煤
备
原
5、煤沥青
料 6、其他辅助原料
2021/3/10
1
2.1 石油焦
❖ 石油焦是石油炼制过程中的副产品。石油经过常压或减压蒸馏,分别得 到汽油、煤油、柴油和蜡油,剩下的残余物称为渣油。将渣油进行焦化 便得到石油焦。因而石油焦的性质主要取决于渣油的种类。
微晶的生长。因此,用含沥青质和树脂质较高的渣油焦化所制的石油焦较难石
2021墨/3/化10。
3
2)石油焦的分类
❖ ●根据石油焦结构和外观,石油焦产品可分为针状焦、海绵 焦、弹丸焦和粉焦4种。
❖ ●根据硫含量的不同,可分为高硫焦和低硫焦。
❖ ●石油焦按照硫含量、挥发分和灰分等指标的不同,分为3个 牌号,每个牌号又按质量分为A、B两种。
❖ 软化点是煤沥青最重要的物理性 质之一,软化点在75℃以下的称 为软沥青,软化点在75~90℃之 间的称为中温沥青,软化点在 90℃以上的称为高温沥青。沥青 软化点高,则挥发分含量少,焙
烧后残炭量大,制品机械强度高,
但沥青熔化、混捏和成型都需要 高一些的温度。
2021/3/10
14
❖ 2)粘度 ❖ 沥青粘度随温度而变化,加热到较高温度后,粘度急剧降低。粘度既取决于
2021提/3/1高0 炭和石墨制品的质量。
19
2.5.5 煤沥青对铝用炭素阳极质量的影响
❖ 煤沥青不仅是阳极材料的重要组成部分,而且其浸润性、流动性、可塑性、渗 透性、结焦性和稳定性,尤其是金属微量元素(灰分)的含量及适宜的使用条件对 炭阳极质量影响很大。但是,由于煤沥青组成和特性的复杂和可变性,所以很 难严格区分单一沥青组分或特性对炭阳极质量的决定影响。
1、煤焦油
炭 素
2、沥青焦
2、炭黑 3、天然石墨 4、蒽油
材
料
3、冶金焦
的
制
4、无烟煤
备
原
5、煤沥青
料 6、其他辅助原料
2021/3/10
1
2.1 石油焦
❖ 石油焦是石油炼制过程中的副产品。石油经过常压或减压蒸馏,分别得 到汽油、煤油、柴油和蜡油,剩下的残余物称为渣油。将渣油进行焦化 便得到石油焦。因而石油焦的性质主要取决于渣油的种类。
微晶的生长。因此,用含沥青质和树脂质较高的渣油焦化所制的石油焦较难石
2021墨/3/化10。
3
2)石油焦的分类
❖ ●根据石油焦结构和外观,石油焦产品可分为针状焦、海绵 焦、弹丸焦和粉焦4种。
❖ ●根据硫含量的不同,可分为高硫焦和低硫焦。
❖ ●石油焦按照硫含量、挥发分和灰分等指标的不同,分为3个 牌号,每个牌号又按质量分为A、B两种。
❖ 软化点是煤沥青最重要的物理性 质之一,软化点在75℃以下的称 为软沥青,软化点在75~90℃之 间的称为中温沥青,软化点在 90℃以上的称为高温沥青。沥青 软化点高,则挥发分含量少,焙
烧后残炭量大,制品机械强度高,
但沥青熔化、混捏和成型都需要 高一些的温度。
2021/3/10
14
❖ 2)粘度 ❖ 沥青粘度随温度而变化,加热到较高温度后,粘度急剧降低。粘度既取决于
2021提/3/1高0 炭和石墨制品的质量。
19
2.5.5 煤沥青对铝用炭素阳极质量的影响
❖ 煤沥青不仅是阳极材料的重要组成部分,而且其浸润性、流动性、可塑性、渗 透性、结焦性和稳定性,尤其是金属微量元素(灰分)的含量及适宜的使用条件对 炭阳极质量影响很大。但是,由于煤沥青组成和特性的复杂和可变性,所以很 难严格区分单一沥青组分或特性对炭阳极质量的决定影响。
第八章_浸渍与石墨化-新型碳素材料

石墨化炉在运行中,炉阻、电流、电压都在不断地变化,功率也在不断地改变,因此, 实际计算应用下式:
Q Pt
式中
P
——平均功率,J/s。
8.4.2 石墨化炉简介 目前,工业石墨化炉都是电热炉。按加热方式区分,可以分为外加热法、内 加热法和间接加热法;按运行方式区分,可以分为间歇式生产与连续生产两 种。
预热的目的: 1)驱除微孔中吸附的气体。 2)排除孔隙中吸附的水分。 3)制品本身的温度与浸渍 剂温度相匹配。
8.4 关于浸渍介质
炭素制品浸渍介质多用煤沥青。浸渍后的沥青返回到沥青贮罐内,一 般在一个月之内更换一次。 沥青更换的原因:浸渍沥青在浸渍过程中,要经过加热、压缩空气搅 拌等,则沥青将发生氧化缩合,轻馏分跑掉,沥青分子增大,沥青软化 点增高,游离碳含量增加。这样便会使沥青浸润能力减弱,以至影响浸 渍效果。 ●对浸渍煤沥青的技术要求 煤沥青技术指标如下: 1)灰分:不大于0.3%。 2)水分:不大于0.2%。 3)挥发分:60~70%。 4)软化点:55~75℃(水银法)。 5)游离碳:18~25%。 煤沥青软化点不符合要求时,用蒽油调节,葱油的质量指标如下:水分 不大于0.5%;苯不溶物不大于0.5%;比重1.1~1.15g/cm3。
1—炉头内墙石墨块砌体;2—导电电极;3—炉头填充石墨粉空间; 4—炉头炭块砌体;5—耐火砖砌体;6—混凝土基础;7—炉侧槽钢支柱; 8—炉侧保温活动墙板;9—炉头拉筋;10—吊挂活动母线排支承板;11—水槽
(2)内串石墨化炉
这是一种不用电阻料的内热式加热炉。电流通过产品产生的“焦耳热”,几乎大部分加 热了产品,所以产品温度比较均匀。这种炉子的工艺特点要求电流密度高,比艾奇逊炉 高15~25倍。由于产品自身加热快,高温时间短,所以电损小,热损少,工艺本身不用 电阻料,简化了工艺操作。炉芯温度可达2700℃以上,石墨化程度高。能量利用率达到 49%。这种炉子只能石墨化大规格产品,并且要用针状焦生产超高功率石墨电极。
Q Pt
式中
P
——平均功率,J/s。
8.4.2 石墨化炉简介 目前,工业石墨化炉都是电热炉。按加热方式区分,可以分为外加热法、内 加热法和间接加热法;按运行方式区分,可以分为间歇式生产与连续生产两 种。
预热的目的: 1)驱除微孔中吸附的气体。 2)排除孔隙中吸附的水分。 3)制品本身的温度与浸渍 剂温度相匹配。
8.4 关于浸渍介质
炭素制品浸渍介质多用煤沥青。浸渍后的沥青返回到沥青贮罐内,一 般在一个月之内更换一次。 沥青更换的原因:浸渍沥青在浸渍过程中,要经过加热、压缩空气搅 拌等,则沥青将发生氧化缩合,轻馏分跑掉,沥青分子增大,沥青软化 点增高,游离碳含量增加。这样便会使沥青浸润能力减弱,以至影响浸 渍效果。 ●对浸渍煤沥青的技术要求 煤沥青技术指标如下: 1)灰分:不大于0.3%。 2)水分:不大于0.2%。 3)挥发分:60~70%。 4)软化点:55~75℃(水银法)。 5)游离碳:18~25%。 煤沥青软化点不符合要求时,用蒽油调节,葱油的质量指标如下:水分 不大于0.5%;苯不溶物不大于0.5%;比重1.1~1.15g/cm3。
1—炉头内墙石墨块砌体;2—导电电极;3—炉头填充石墨粉空间; 4—炉头炭块砌体;5—耐火砖砌体;6—混凝土基础;7—炉侧槽钢支柱; 8—炉侧保温活动墙板;9—炉头拉筋;10—吊挂活动母线排支承板;11—水槽
(2)内串石墨化炉
这是一种不用电阻料的内热式加热炉。电流通过产品产生的“焦耳热”,几乎大部分加 热了产品,所以产品温度比较均匀。这种炉子的工艺特点要求电流密度高,比艾奇逊炉 高15~25倍。由于产品自身加热快,高温时间短,所以电损小,热损少,工艺本身不用 电阻料,简化了工艺操作。炉芯温度可达2700℃以上,石墨化程度高。能量利用率达到 49%。这种炉子只能石墨化大规格产品,并且要用针状焦生产超高功率石墨电极。
碳材料概述课件

12
四、新型碳材料
C60的发现
❖1985年,英国Sussex大学的H.W.Kroto和美国Rice大学的Smalley及Curl等人发 表文章,宣布笼形分子C60的发现(一种由60个碳原子组成的稳定原子簇)。 此后又发现了C50、C70、C240乃至C540等,它们都具有空心的球形结构,属于笼 形碳原子簇分子。由于C60的结构类似建筑师Buckminster Fuller设计的圆顶建筑, 因而称为富勒烯(Fullerence)。从化学和材料科学的角度来看,富勒烯具有重要 的学术意义和应用前景。
石墨垫圈,,电视机显像管的涂层等; 3)用于原子能工业和国防工业:作为中子减速剂用于原子反应堆; 4)作铸造、翻砂、压模及高温冶金材料; 5)石墨可作铅笔芯、颜料、抛光剂; 6)作耐磨润滑材料,耐烧蚀材料。
利用了石墨具有导电性、润滑性和熔点高
碳材料概述
7
二、金刚石与石墨
金刚石合成已有40多年的历史。其合成方法大致可分为两类: 石墨转化法(静态超高压高温法+动态法)和气相合成法
是目前所发现的最薄的二维材料,石墨烯是构建其它维数碳材料(如零维富勒
烯、一维CNTs、三维石墨)的基本单元。
Graphene can be
0D: fullerenes (wrapped up) 1D: nanotubes (rolled into)
3D: graphite (stacked into)
❖碳元素是一种平凡而神奇的元素,以多种形式广泛存在于大气 和地壳中,在地壳中的含量为0.027%,能形成多种单质和千万种 化合物。碳—地球上一切生物有机体的骨架元素。
❖碳12是国际单位制中定义摩尔的尺度,以12g碳12中含有的原
子数为1 mol。碳14由于具有较长的半衰期,被广泛用來测定古
碳材料科学ppt课件

碳纳米管和石墨烯有可能将碳元素的独特性 发挥到极工业:轴承、密封元件、制动元件等; ➢ 电子工业:电极、电波屏蔽、电子元件等; ➢ 电器工业:电刷,集电体、触点等; ➢ 航空航天:结构材料,绝热、耐烧蚀材料等; ➢ 核能工业:反射材料,屏蔽材料等; ➢ 冶金工业:电极,发热元件,坩锅、模具等; ➢ 化学工业:化工设备,过滤器等; ➢ 体育器材:球杆,球拍,自行车等; ➢ …………
第四部分 炭的表面化学(4学时)
第五部分 石墨层间化合物(2学时)
第六部分 炭科学研究的新进展(4-6学时)
一、金刚石薄膜
二、富勒烯与纳米洋葱
三、纳米碳管 四、碳包覆纳米金属晶
考试:2学时
10
考核:
1、出勤计入成绩(权重10%); 2、平时作业/报告成绩(权重20 %); 2、期末试卷考试(权重70% )。
32
第二代 炭材料
★ 烧结炭材料 利用炭的物理性质(导电、耐热、耐腐 蚀、耐摩擦等),用于炭砖、炼钢、炼 铝等(电极、电刷、各种机械、化工用 炭、原子反应堆用炭等)
33
第三代 炭材料
以炭纤维(CF)为代表的新型炭材料(结构 和功能材料)纷纷出现,是炭材料的大发展 时期,也是炭科学形成的时期
34
材料
6
Ordered Mesoporous Carbons from the Carbonization of as-synthesized Silica/Sucrose/Triblock copolymer Nanocomposites
碳的六方有序孔道
7
锂离子二次电池电极材料
电流
正极
隔膜
电子 负极
炭 纤 维
针
状
高导热材料,发泡炭、高级粘
第四部分 炭的表面化学(4学时)
第五部分 石墨层间化合物(2学时)
第六部分 炭科学研究的新进展(4-6学时)
一、金刚石薄膜
二、富勒烯与纳米洋葱
三、纳米碳管 四、碳包覆纳米金属晶
考试:2学时
10
考核:
1、出勤计入成绩(权重10%); 2、平时作业/报告成绩(权重20 %); 2、期末试卷考试(权重70% )。
32
第二代 炭材料
★ 烧结炭材料 利用炭的物理性质(导电、耐热、耐腐 蚀、耐摩擦等),用于炭砖、炼钢、炼 铝等(电极、电刷、各种机械、化工用 炭、原子反应堆用炭等)
33
第三代 炭材料
以炭纤维(CF)为代表的新型炭材料(结构 和功能材料)纷纷出现,是炭材料的大发展 时期,也是炭科学形成的时期
34
材料
6
Ordered Mesoporous Carbons from the Carbonization of as-synthesized Silica/Sucrose/Triblock copolymer Nanocomposites
碳的六方有序孔道
7
锂离子二次电池电极材料
电流
正极
隔膜
电子 负极
炭 纤 维
针
状
高导热材料,发泡炭、高级粘
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨化炉在运行中,炉阻、电流、电压都在不断地变化,功率也在不断地改变,因此, 实际计算应用下式:
Q Pt
式中
P
——平均功率,J/s。
8.4.2 石墨化炉简介 目前,工业石墨化炉都是电热炉。按加热方式区分,可以分为外加热法、内 加热法和间接加热法;按运行方式区分,可以分为间歇式生产与连续生产两 种。
8.5.2 石墨化工艺
1)石墨化与焙烧的区别
石墨化制品与焙烧制品的主要差 项 目
电阻率,10-6·m
焙烧品
石墨化品
别在于碳原子和碳原子之间的晶
格在排列顺序和程度上存在着差 异。焙烧品的碳原子排列属于 “乱层结构”,而石墨化品属于 “石墨结构”,内部微观结构不 同。它们在宏观表现的理化性质 也不同。从表上可以看出,焙烧 品经石墨化后,电阻率降低到 1/3:1/4,真密度提高约10%,导 热性提高10倍,膨胀系数约降低 1/2,氧化开始温度提高,杂质气
8.5 石墨化
8.5.1 石墨化的定义及其作用 石墨化是把焙烧制品置于石墨化炉内保护介质中加热到高温,使六角碳原 子平面网格从二维空间的无序重叠转变为三维空间的有序重叠,且具有石墨 结构的高温热处理过程。 石墨化的目的: 1)提高产品的热、电传导性。
2)提高产品的耐热冲击性和化学稳定性。
3)提高产品的润滑性、抗磨性。 4)排除杂质,提高产品强度。
2)温度 温度决定着石墨化程度。不同的碳材料,开始石墨化温度不同。石油焦一般 在1700℃就开始进入石墨化,而沥青焦则要在2000℃左右才能进入石墨化的转 化阶段。制品的石墨化程度和温度的关系如表所示。
在该温度下停留时间 min 68
63
温度,℃ 2000
2250
电阻率 · cm 0.00352
预热的目的: 1)驱除微孔中吸附的气体。 2)排除孔隙中吸附的水分。 3)制品本身的温度与浸渍 剂温度相匹配。
8.4 关于浸渍介质
炭素制品浸渍介质多用煤沥青。浸渍后的沥青返回到沥青贮罐内,一 般在一个月之内更换一次。 沥青更换的原因:浸渍沥青在浸渍过程中,要经过加热、压缩空气搅 拌等,则沥青将发生氧化缩合,轻馏分跑掉,沥青分子增大,沥青软化 点增高,游离碳含量增加。这样便会使沥青浸润能力减弱,以至影响浸 渍效果。 ●对浸渍煤沥青的技术要求 煤沥青技术指标如下: 1)灰分:不大于0.3%。 2)水分:不大于0.2%。 3)挥发分:60~70%。 4)软化点:55~75℃(水银法)。 5)游离碳:18~25%。 煤沥青软化点不符合要求时,用蒽油调节,葱油的质量指标如下:水分 不大于0.5%;苯不溶物不大于0.5%;比重1.1~1.15g/cm3。
1—石墨块砌体; 2—炉墙; 3—装入产品(立 装); 4—导电电极;5— 隔墙
(4)间接加热的石墨化炉
间接加热的石墨化炉中,待石墨化炭制 品不与电源直接接触,加热到石墨化温 度所需的热量是通过感应途径从另一个 发热体传递过来的。最简单的间接加热 石墨化炉如图所示。这是一种用焦粒作 电阻的发热体的管式炉。待石墨化产品 可连续通过一根埋在焦粒中的石墨管而 实现石墨化。炉体尺寸为1m见方,石 墨管的内径只有50mm,长为2m。通 电后,石墨管的中心部位温度可达到 2500℃。这种炉子只能生产小规格产 品,待石墨化产品要借助外力推动并以 一定速度连续通过石墨管。
(1)艾奇逊石墨化炉
(2)内串石墨化炉 (3)“∏ ”形石墨化炉 (4)间接加热的石墨化炉
(1)艾奇逊石墨化炉 以产品与少量的电阻料(焦粒) 共同组成导电的“炉芯”,炉芯 周围有很厚的保温料。其炉体结 构如图所示。
艾奇逊石墨化炉产量大,石墨 化产品规格不限,是我国用得 最多的一种炉型。不过,工艺 上有不可克服的弱点,如热效 率不高,操作环境,环保治理 难以改善。
ቤተ መጻሕፍቲ ባይዱ
3)压力 加压石墨化有明显的促进作用。研究者把石油焦等碳化物在1~10GPa的压 力下加热时发现,在1400~1500℃的低温下就开始石墨化。相反,减压石墨 化时,对石墨化有抑制作用。实践证明,如果石墨化在真空条件下进行,则 它将达不到一般大气压下能够达到的石墨化程度,如图所示。
石油焦制品层间距与大气压和温度的关系 ●—大气压;○—低气压;—真空
8.5.3石墨化工艺的影响因素
影响石墨化的主要因素是原料、温度、压力和催化剂等。
1)原料 在石墨化制品生产中,选择易石墨化的原料是先决条件,在同样热处理温度下, 易石墨化碳更容易成长为石墨晶体(见表)。因此,高功率、超高功率电极都采用易 石墨化的针状焦故原料。
石墨类型 定向石墨 针状焦石 墨 所用焦炭 定向焦 针状焦 热 处 理 X-光数据
1—导电电极;2—炉体外墙;3—焦 粒电阻料;4—炉管;5—冷却水管
课程总结
炭 素 材 料 基 本 知 识
炭素材料定义及其三大常用基础晶型态物质 炭的基本形成过程和存在的形式 炭素材料(制品)的特性和基本类型 铝电解阴极炭块的种类及性能要求 高炉炭块的性能要求 石墨制品的特性及常用原料 炭素材料在国民经济发展中的重要意义
炭 素 材 料 的 制 备 原 料
主要原料的种类 石油焦的来源及分类 煤的形成以及无烟煤与普通煤的区别 煤沥青的形成及其在炭素材料制备中 的作用 煤沥青性能表征方法
石 油 焦 煅 烧 工 艺 及 设 备
原料煅烧的目的 煅烧过程中原料的物化性质的变化 煅烧设备的分类 回转窑煅烧中窑内的温度分布 回转窑煅烧的关键工艺控制 回转窑煅烧炭素原料的优点和缺点
1—炉头内墙石墨块砌体;2—导电电极;3—炉头填充石墨粉空间; 4—炉头炭块砌体;5—耐火砖砌体;6—混凝土基础;7—炉侧槽钢支柱; 8—炉侧保温活动墙板;9—炉头拉筋;10—吊挂活动母线排支承板;11—水槽
(2)内串石墨化炉
这是一种不用电阻料的内热式加热炉。电流通过产品产生的“焦耳热”,几乎大部分加 热了产品,所以产品温度比较均匀。这种炉子的工艺特点要求电流密度高,比艾奇逊炉 高15~25倍。由于产品自身加热快,高温时间短,所以电损小,热损少,工艺本身不用 电阻料,简化了工艺操作。炉芯温度可达2700℃以上,石墨化程度高。能量利用率达到 49%。这种炉子只能石墨化大规格产品,并且要用针状焦生产超高功率石墨电极。
温度,℃
3000 2800
时间,min
30 60
C,A
6.714 6.781
Lc,A
1400 590
热解石墨
3100
18
6.712
∞
假如我们选择的原料质量不好,特别是含硫最高,那么在石墨化过程中,这些元素 的原子就会不同程度地浸入碳原子的点阵,并在碳原子点阵中占据位臵,造成石墨 晶格缺陷,使制品石墨化程度降低。
8.3 炭素制品的浸渍
将焙烧出来的半成品装入铁筐内,随铁筐一起放入预热箱,在260~320℃的 温度下预热并保温4h以上。预热后的产品迅速连同铁筐一起装入浸渍罐内 (此前浸渍罐应预热到100℃以上)。关闭罐盖开始抽真空,真空度要求 86659.3Pa以上,抽真空时间不少于45分钟。然后向罐内加入160~180℃的煤 沥青,再加压。加压结束后抽出浸渍剂,并加水冷却制品。
4)催化剂 在一定的条件下,添加一 定数量的催化剂,可以促进 石墨化的进行,如硼、铁、 硅、钛、镍、镁及其某些化 合物等。
催化剂的添加有其最佳加 入量。过多地添加必将适得
其反。目前在炼钢用的石墨
电极中常添加铁粉或铁的氧 化物作添加剂。
8.6 石墨化炉
8.6.1 石墨化炉的加热原理 石墨化炉是采用制品和电阻料做“内热源”的电阻炉。然而电阻料的电 阻率是制品的99倍。因此,实际上全部焦耳热是由电阻料发出的,而电极 制品的加热是通过电阻料颗粒的热传导和热辐射来进行的,所以,在石墨 化炉中电极制品本身的加热是间接式的。因而,石墨化炉的发热主要是电 阻料的发热。根据焦尔-楞次定律:电流通过导体时所产生的热量与通过的 电流的平方成正比,也与导体电阻大小以及通电时间成正比。其计算公式 如下: Q=I2Rt 式中Q——电流通过导体所产生的热量,J; I——电流,A; R——导体的电阻,Ω; t——通电时间,s。
0.00235
相邻晶层距离 Å 3.4233
3.3989
2530
2780
67
60
0.00130
0.00105
3.3743
3.3674
3000
68
0.00085
3.3644
石墨化程度和高温下的停留时间也有一定的关系。但效果远没有提高温度明显。
在实际生产过程中,保温操作是为了使炉内温度达到均匀,致使产品质量均匀。
1—炉尾电极; 2—导电石墨块; 3—炉头电极; 4—中间隔墙; 5—耐火砖墙; 6—红砖墙
(3)“∏ ”形石墨化炉 “∏”形石墨化炉实际上是将两台艾奇逊石墨化炉合并后串联的一种新炉型, 如图所示。这种炉子由于导电电极都在炉子的一侧,所以省去了一般石墨化 炉两侧必需的移动母线排,因此节约电能。它的缺点是中间炉墙容易损坏, 且全炉产品质量不均等。
浸渍是提高与改善炭素制品物理和化学性能的重要措施,特别是对需要高强度和高密 度、低渗透的炭素制品来说,为了减少孔隙率和提高体积密度、机械强度和降低渗透 率都必须经过一次或多次浸渍作业来实现。
8.2. 炭素制品的孔径分析
经压型后的生制品孔度很低。但是生制品在焙烧后,由于煤沥青在焙烧过 程中一部分分解成气体逸出,另一部分焦化为沥青焦。生成沥青焦的体积 远远小于煤沥青原来占有的体积,虽然在焙烧过程中稍有收缩但仍在产品 内部形成许多不规则的并且孔径大小不等的微小气孔在石墨化制品的总孔 度一般达25-32%,炭素制品的总孔度一般为16~25%。
40~60
2.00~2.05 1.50~1.60 24.50~34.30 20~25 0.5
6~12
2.20~2.23 1.50~1.65 15.68~29.40 25~30 0.3
真密度,g/cm3 体积密度,g/cm3 抗压强度,Mpa 孔度,% 灰分,% 热导率,W/(m·k)
Q Pt
式中
P
——平均功率,J/s。
8.4.2 石墨化炉简介 目前,工业石墨化炉都是电热炉。按加热方式区分,可以分为外加热法、内 加热法和间接加热法;按运行方式区分,可以分为间歇式生产与连续生产两 种。
8.5.2 石墨化工艺
1)石墨化与焙烧的区别
石墨化制品与焙烧制品的主要差 项 目
电阻率,10-6·m
焙烧品
石墨化品
别在于碳原子和碳原子之间的晶
格在排列顺序和程度上存在着差 异。焙烧品的碳原子排列属于 “乱层结构”,而石墨化品属于 “石墨结构”,内部微观结构不 同。它们在宏观表现的理化性质 也不同。从表上可以看出,焙烧 品经石墨化后,电阻率降低到 1/3:1/4,真密度提高约10%,导 热性提高10倍,膨胀系数约降低 1/2,氧化开始温度提高,杂质气
8.5 石墨化
8.5.1 石墨化的定义及其作用 石墨化是把焙烧制品置于石墨化炉内保护介质中加热到高温,使六角碳原 子平面网格从二维空间的无序重叠转变为三维空间的有序重叠,且具有石墨 结构的高温热处理过程。 石墨化的目的: 1)提高产品的热、电传导性。
2)提高产品的耐热冲击性和化学稳定性。
3)提高产品的润滑性、抗磨性。 4)排除杂质,提高产品强度。
2)温度 温度决定着石墨化程度。不同的碳材料,开始石墨化温度不同。石油焦一般 在1700℃就开始进入石墨化,而沥青焦则要在2000℃左右才能进入石墨化的转 化阶段。制品的石墨化程度和温度的关系如表所示。
在该温度下停留时间 min 68
63
温度,℃ 2000
2250
电阻率 · cm 0.00352
预热的目的: 1)驱除微孔中吸附的气体。 2)排除孔隙中吸附的水分。 3)制品本身的温度与浸渍 剂温度相匹配。
8.4 关于浸渍介质
炭素制品浸渍介质多用煤沥青。浸渍后的沥青返回到沥青贮罐内,一 般在一个月之内更换一次。 沥青更换的原因:浸渍沥青在浸渍过程中,要经过加热、压缩空气搅 拌等,则沥青将发生氧化缩合,轻馏分跑掉,沥青分子增大,沥青软化 点增高,游离碳含量增加。这样便会使沥青浸润能力减弱,以至影响浸 渍效果。 ●对浸渍煤沥青的技术要求 煤沥青技术指标如下: 1)灰分:不大于0.3%。 2)水分:不大于0.2%。 3)挥发分:60~70%。 4)软化点:55~75℃(水银法)。 5)游离碳:18~25%。 煤沥青软化点不符合要求时,用蒽油调节,葱油的质量指标如下:水分 不大于0.5%;苯不溶物不大于0.5%;比重1.1~1.15g/cm3。
1—石墨块砌体; 2—炉墙; 3—装入产品(立 装); 4—导电电极;5— 隔墙
(4)间接加热的石墨化炉
间接加热的石墨化炉中,待石墨化炭制 品不与电源直接接触,加热到石墨化温 度所需的热量是通过感应途径从另一个 发热体传递过来的。最简单的间接加热 石墨化炉如图所示。这是一种用焦粒作 电阻的发热体的管式炉。待石墨化产品 可连续通过一根埋在焦粒中的石墨管而 实现石墨化。炉体尺寸为1m见方,石 墨管的内径只有50mm,长为2m。通 电后,石墨管的中心部位温度可达到 2500℃。这种炉子只能生产小规格产 品,待石墨化产品要借助外力推动并以 一定速度连续通过石墨管。
(1)艾奇逊石墨化炉
(2)内串石墨化炉 (3)“∏ ”形石墨化炉 (4)间接加热的石墨化炉
(1)艾奇逊石墨化炉 以产品与少量的电阻料(焦粒) 共同组成导电的“炉芯”,炉芯 周围有很厚的保温料。其炉体结 构如图所示。
艾奇逊石墨化炉产量大,石墨 化产品规格不限,是我国用得 最多的一种炉型。不过,工艺 上有不可克服的弱点,如热效 率不高,操作环境,环保治理 难以改善。
ቤተ መጻሕፍቲ ባይዱ
3)压力 加压石墨化有明显的促进作用。研究者把石油焦等碳化物在1~10GPa的压 力下加热时发现,在1400~1500℃的低温下就开始石墨化。相反,减压石墨 化时,对石墨化有抑制作用。实践证明,如果石墨化在真空条件下进行,则 它将达不到一般大气压下能够达到的石墨化程度,如图所示。
石油焦制品层间距与大气压和温度的关系 ●—大气压;○—低气压;—真空
8.5.3石墨化工艺的影响因素
影响石墨化的主要因素是原料、温度、压力和催化剂等。
1)原料 在石墨化制品生产中,选择易石墨化的原料是先决条件,在同样热处理温度下, 易石墨化碳更容易成长为石墨晶体(见表)。因此,高功率、超高功率电极都采用易 石墨化的针状焦故原料。
石墨类型 定向石墨 针状焦石 墨 所用焦炭 定向焦 针状焦 热 处 理 X-光数据
1—导电电极;2—炉体外墙;3—焦 粒电阻料;4—炉管;5—冷却水管
课程总结
炭 素 材 料 基 本 知 识
炭素材料定义及其三大常用基础晶型态物质 炭的基本形成过程和存在的形式 炭素材料(制品)的特性和基本类型 铝电解阴极炭块的种类及性能要求 高炉炭块的性能要求 石墨制品的特性及常用原料 炭素材料在国民经济发展中的重要意义
炭 素 材 料 的 制 备 原 料
主要原料的种类 石油焦的来源及分类 煤的形成以及无烟煤与普通煤的区别 煤沥青的形成及其在炭素材料制备中 的作用 煤沥青性能表征方法
石 油 焦 煅 烧 工 艺 及 设 备
原料煅烧的目的 煅烧过程中原料的物化性质的变化 煅烧设备的分类 回转窑煅烧中窑内的温度分布 回转窑煅烧的关键工艺控制 回转窑煅烧炭素原料的优点和缺点
1—炉头内墙石墨块砌体;2—导电电极;3—炉头填充石墨粉空间; 4—炉头炭块砌体;5—耐火砖砌体;6—混凝土基础;7—炉侧槽钢支柱; 8—炉侧保温活动墙板;9—炉头拉筋;10—吊挂活动母线排支承板;11—水槽
(2)内串石墨化炉
这是一种不用电阻料的内热式加热炉。电流通过产品产生的“焦耳热”,几乎大部分加 热了产品,所以产品温度比较均匀。这种炉子的工艺特点要求电流密度高,比艾奇逊炉 高15~25倍。由于产品自身加热快,高温时间短,所以电损小,热损少,工艺本身不用 电阻料,简化了工艺操作。炉芯温度可达2700℃以上,石墨化程度高。能量利用率达到 49%。这种炉子只能石墨化大规格产品,并且要用针状焦生产超高功率石墨电极。
温度,℃
3000 2800
时间,min
30 60
C,A
6.714 6.781
Lc,A
1400 590
热解石墨
3100
18
6.712
∞
假如我们选择的原料质量不好,特别是含硫最高,那么在石墨化过程中,这些元素 的原子就会不同程度地浸入碳原子的点阵,并在碳原子点阵中占据位臵,造成石墨 晶格缺陷,使制品石墨化程度降低。
8.3 炭素制品的浸渍
将焙烧出来的半成品装入铁筐内,随铁筐一起放入预热箱,在260~320℃的 温度下预热并保温4h以上。预热后的产品迅速连同铁筐一起装入浸渍罐内 (此前浸渍罐应预热到100℃以上)。关闭罐盖开始抽真空,真空度要求 86659.3Pa以上,抽真空时间不少于45分钟。然后向罐内加入160~180℃的煤 沥青,再加压。加压结束后抽出浸渍剂,并加水冷却制品。
4)催化剂 在一定的条件下,添加一 定数量的催化剂,可以促进 石墨化的进行,如硼、铁、 硅、钛、镍、镁及其某些化 合物等。
催化剂的添加有其最佳加 入量。过多地添加必将适得
其反。目前在炼钢用的石墨
电极中常添加铁粉或铁的氧 化物作添加剂。
8.6 石墨化炉
8.6.1 石墨化炉的加热原理 石墨化炉是采用制品和电阻料做“内热源”的电阻炉。然而电阻料的电 阻率是制品的99倍。因此,实际上全部焦耳热是由电阻料发出的,而电极 制品的加热是通过电阻料颗粒的热传导和热辐射来进行的,所以,在石墨 化炉中电极制品本身的加热是间接式的。因而,石墨化炉的发热主要是电 阻料的发热。根据焦尔-楞次定律:电流通过导体时所产生的热量与通过的 电流的平方成正比,也与导体电阻大小以及通电时间成正比。其计算公式 如下: Q=I2Rt 式中Q——电流通过导体所产生的热量,J; I——电流,A; R——导体的电阻,Ω; t——通电时间,s。
0.00235
相邻晶层距离 Å 3.4233
3.3989
2530
2780
67
60
0.00130
0.00105
3.3743
3.3674
3000
68
0.00085
3.3644
石墨化程度和高温下的停留时间也有一定的关系。但效果远没有提高温度明显。
在实际生产过程中,保温操作是为了使炉内温度达到均匀,致使产品质量均匀。
1—炉尾电极; 2—导电石墨块; 3—炉头电极; 4—中间隔墙; 5—耐火砖墙; 6—红砖墙
(3)“∏ ”形石墨化炉 “∏”形石墨化炉实际上是将两台艾奇逊石墨化炉合并后串联的一种新炉型, 如图所示。这种炉子由于导电电极都在炉子的一侧,所以省去了一般石墨化 炉两侧必需的移动母线排,因此节约电能。它的缺点是中间炉墙容易损坏, 且全炉产品质量不均等。
浸渍是提高与改善炭素制品物理和化学性能的重要措施,特别是对需要高强度和高密 度、低渗透的炭素制品来说,为了减少孔隙率和提高体积密度、机械强度和降低渗透 率都必须经过一次或多次浸渍作业来实现。
8.2. 炭素制品的孔径分析
经压型后的生制品孔度很低。但是生制品在焙烧后,由于煤沥青在焙烧过 程中一部分分解成气体逸出,另一部分焦化为沥青焦。生成沥青焦的体积 远远小于煤沥青原来占有的体积,虽然在焙烧过程中稍有收缩但仍在产品 内部形成许多不规则的并且孔径大小不等的微小气孔在石墨化制品的总孔 度一般达25-32%,炭素制品的总孔度一般为16~25%。
40~60
2.00~2.05 1.50~1.60 24.50~34.30 20~25 0.5
6~12
2.20~2.23 1.50~1.65 15.68~29.40 25~30 0.3
真密度,g/cm3 体积密度,g/cm3 抗压强度,Mpa 孔度,% 灰分,% 热导率,W/(m·k)