指数函数典型例题分析

合集下载

11、指数函数[精选文档]

11、指数函数[精选文档]

y=ax (0<a<1)





数 定义域
R
性 值域
(0, ) 没有最值
质定 一性 览质

(0,1 ) 没有奇偶性 在R上是增函数 在R上是减函数
表 单调性 若x>0, 则y>1 若x>0, 则0<y<1
若x<0, 则0<y<1 若x<0, 则y>1
记忆口诀:
左右无限上冲天, 永与横轴不沾边. 大 1 增,小 1 减, 图象恒过(0,1)点.
且值域是[1,+∞),单调递减区间是(-∞,0], 单调递增区间是[0,+∞).
跟踪练习
3.关于 x 的方程 (1 )x m2 2m 1有正根,求实 2
数 m 的取值范围。
例题分析
题型四 与指数函数有关的定义域与值域问题 例 4、求下列函数的定义域与值域:
(1)y=2
1 x4
;(2)y=23-|x|.
……
即经过x年后的剩留量是 y 0.84x
问题探究
y 2x y 10 x
y 0.84x
思考:(1)它们是否构成函数?
(2)这三个解析式有什么共同特征?
分析: 对于这三个关系式,每给自变量x的一个 值,y都有唯一确定的值和它对应。
三个解析式都具有 y a x 的形式,其中自变量x是 指数,底数a是一个大于0且不等于1的变量。
知识引入
问题1 背景:斗地主
1炸: 2元
21
2炸:4元
22
2 3炸:8元
3
……
……
X炸: y 2x
问题2 背景:传谣
y 10 x
问题2 一种放射性物质不断衰减为其它物质,每经过 一年剩留量约为原来的84%,则这种物质经过x年后的剩 留量是多少?

指数函数经典例题(问题详细讲解)

指数函数经典例题(问题详细讲解)

指数函数1.指数函数の定义:函数)1(≠>=aaay x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质:在同一坐标系中分别作出函数y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101の图象.我们观察y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101图象特征,就可以得到)1(≠>=aaay x且の图象和性质。

a>1 0<a<1图象00性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在 R上是增函数(4)在R上是减函数指数函数是高中数学中の一个基本初等函数,有关指数函数の图象与性质の题目类型较多,同时也是学习后续数学容の基础和高考考查の重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1 已知函数2()f x x bx c=-+满足(1)(1)f x f x+=-,且(0)3f=,则()xf b与()x f c の大小关系是_____.分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x の取值围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题例3 求函数y = 解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.∴函数の值域是[)01,.评注:利用指数函数の单调性求值域时,要注意定义域对它の影响. 4.最值问题例4 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a の值是_______.分析:令x t a =可将问题转化成二次函数の最值问题,需注意换元后t の取值围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤,∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭, 解得13a =或15a =-(舍去),∴a の值是3或13.评注:利用指数函数の单调性求最值时注意一些方法の运用,比如:换元法,整体代入等. 5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程の解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例6 为了得到函数935x y =⨯+の图象,可以把函数3x y =の图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象の平移规律进解:∵293535x x y +=⨯+=+,∴把函数3x y =の图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+の图象,故选(C ). 评注:用函数图象解决问题是中学数学の重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数の图象,并掌握图象の变化规律,比如:平移、伸缩、对称等. 习题1、比较下列各组数の大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较 与 ;(4)若 ,且 ,比较a 与b ; (5)若 ,且 ,比较a 与b . 解:(1)由 ,故 ,此时函数 为减函数.由 ,故 . (2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而 ,这与已知 矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数の单调性、奇偶性、图象来求解.2,曲线 分别是指数函数 , 和 の图象,则 与1の大小关系是 ( ). (分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令 ,对应の函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型の数形结合の题目,第(1)题是由数到形の转化,第(2)题则是由图到数の翻译,它の主要目の是提高学生识图,用图の意识.3,求下列函数の定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x の定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x の值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1の定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1の值域为{y |y>1}.4,已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x の最大值和最小值解:设t=3x ,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。

指数函数经典例题(问题详解)[整理]

指数函数经典例题(问题详解)[整理]

我们观察y=,y=,y=,y=图象特征,就可以得到x 2x ⎪⎭⎫ ⎝⎛21x 10x⎪⎭⎫⎝⎛101の图象和性质。

)10(≠>a a 且a>10<a<1图象与の大小关系是_____.()x f b ()x f c 分析:先求の值再比较大小,要注意の取值是否在同一单调区间b c 且x x b c 且内. 解:∵,(1)(1)f x f x +=- ∴函数の对称轴是.()f x 1x = 故,又,∴.2b =(0)3f =3c = ∴函数在上递减,在上递增.()f x (]1-且∞[)1+且∞ 若,则,∴;0x ≥321x x≥≥(3)(2)x x f f ≥ 若,则,∴.0x <321x x <<(3)(2)x x f f > 综上可得,即.(3)(2)x x f f ≥()()x x f c f b ≥ 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例2 已知,则x の取值范围是___________.2321(25)(25)x x a a a a -++>++ 分析:利用指数函数の单调性求解,注意底数の取值范围. 解:∵,2225(1)441a a a ++=++>≥ ∴函数在上是增函数,2(25)x y a a =++()-+且∞∞ ∴,解得.∴x の取值范围是.31x x >-14x >14⎛⎫+ ⎪⎝⎭且∞ 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论.3.求定义域及值域问题 例3 求函数の定义域和值域.216x y -=- 解:由题意可得,即,2160x --≥261x -≤ ∴,故. ∴函数の定义域是.20x -≤2x ≤()f x (]2-且∞ 令,则,26x t -=1y t =- 又∵,∴. ∴,即.2x ≤20x -≤2061x -<≤01t <≤ ∴,即.011t -<≤01y <≤ ∴函数の值域是.[)01且 评注:利用指数函数の单调性求值域时,要注意定义域对它の影响. 4.最值问题 例4 函数在区间上有最大值14,则a の值221(01)x x y a a a a =+->≠且[11]-且是_______. 分析:令可将问题转化成二次函数の最值问题,需注意换元后の取x t a =t 值范围. 解:令,则,函数可化为,其对称轴为x t a =0t >221x x y a a =+-2(1)2y t =+-.1t =- ∴当时,∵,1a >[]11x ∈-且 ∴,即.1xa a a ≤≤1t a a≤≤ ∴当时,.t a =2max (1)214y a =+-= 解得或(舍去);3a =5a =- 当时,∵,01a <<[]11x ∈-且 ∴,即,1xa a a ≤≤1a t a≤≤ ∴ 时,,1t a =2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 解得或(舍去),∴a の值是3或.13a =15a =-13 评注:利用指数函数の单调性求最值时注意一些方法の运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程.223380x x +--= 解:原方程可化为,令,上述方程可化为29(3)80390x x ⨯-⨯-=3(0)x t t =>,解得或(舍去),∴,∴,经检验原方程の298090t t --=9t =19t =-39x =2x =解是.2x = 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题 例6 为了得到函数の图象,可以把函数の图象( ).935x y =⨯+3x y = A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度 D .向右平移2个单位长度,再向下平移5个单位长度 分析:注意先将函数转化为,再利用图象の平移规律935x y =⨯+235x t +=+进行判断. 解:∵,∴把函数の图象向左平移2个单位长度,293535x x y +=⨯+=+3x y =再向上平移5个单位长度,可得到函数の图象,故选(C ).935x y =⨯+ 评注:用函数图象解决问题是中学数学の重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数の图象,并掌握图象の变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数の大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较 与; (4)若 ,且 ,比较a 与b ; (5)若 ,且 ,比较a 与b . 解:(1)由,故 ,此时函数为减函数.由,故 . (2)由,故.又,故.从而. (3)由 ,因,故 .又 ,故 .从而 . (4)应有.因若 ,则 .又,故,这样.又因,故 .从而 ,这与已知 矛盾. (5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知矛盾. 小结:比较通常借助相应函数の单调性、奇偶性、图象来求解.2,曲线分别是指数函数 ,和与1の大小关系是( 分析:首先可以根据指数函数单调性,在轴右侧令 ,由小到大依次为 ,故应选 .、设,求函数の最大值和最小值. 分析:注意到,设,利用闭区间上二次函数の值域の求法,可求得函数の最值. 解:设,由知, ,函数成为,轴,故函数最小值为,因端点较对称轴远,故函数の最大值为已知函数(且 (1)求)若,求の取值范围.),当即时,有最小值为),解得 当时,; 当时,2若函数是奇函数,求.解:为奇函数, 即, 则,11即x=0时,y max=2已知,求函数解:由得,即,解之得于是,即,故所求函数の值域为在〔1,+∞)上是减函数。

高中数学第四章指数函数与对数函数经典大题例题(带答案)

高中数学第四章指数函数与对数函数经典大题例题(带答案)

高中数学第四章指数函数与对数函数经典大题例题单选题1、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A2、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1 又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0, 故选:D3、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D.4、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x2+2=f(x),则f(x)为偶函数,当x⩾0时,f(x)=3x+x2+2,又y=3x,y=x2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x−1)>f(3−x),即|2x−1|>|3−x|,解得x<−2或x>43,所以f(2x−1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.5、已知函f(x)=log2(√1+4x2+2x)+3,且f(m)=−5,则f(−m)=()A.−1B.−5C.11D.13答案:C分析:令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,则先判断函数g(−x)+g(x)=0,进而可得f(−x)+f(x)=6,即f(m)+f(−m)=6,结合已知条件即可求f(−m)的值.令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,因为g(x)+g(−x)=log2(√1+4x2+2x)+log2(√1+4x2−2x)=log2(1+4x2−4x2)=0,所以f(−x)+f(x)=g(−x)+3+g(x)+3=6,则f(m)+f(−m)=6,又因为f(m)=−5,则f(−m)=11,故选:C.6、设2a=5b=m,且1a +1b=2,则m=()A.√10B.10C.20D.100 答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m2,1b=log m5,进而结合对数的运算公式,即可求解.由2a=5b=m,可得a=log2m,b=log5m,由换底公式得1a =log m2,1b=log m5,所以1a +1b=log m2+log m5=log m10=2,又因为m>0,可得m=√10.故选:A.7、化简√a3b2√ab23(a14b12)4⋅√a3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a3b2√ab23(a 14b12)4⋅√ba=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B8、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x−x2>0,得0<x<2,令t=2x−x2,则y=log2t,t=2x−x2在(0,1)上递增,在(1,2)上递减,因为y=log2t在定义域内为增函数,所以y=log2(2x−x2)的单调递减区间为(1,2),故选:A多选题9、已知函数f(x)=|lgx|,则()A.f(x)是偶函数B.f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.10、已知函数f(x)={x2,x∈(−∞,0), lnx,x∈(0,1),−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有2个零点,则实数m可以是()A.−1B.0C.1D.2答案:ABC分析:转化为函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象,根据图象可得解.因为函数g(x)=f(x)−m恰有2个零点,所以函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象如图:由图可知,m=1或m≤0,结合选项,因此m可以为-1,0,1.故选:ABC.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、已知函数f(x)=1−2x1+2x,g(x)=lg(√x2+1−x),则()A.函数f(x)为偶函数B.函数g(x)为奇函数C.函数F(x)=f(x)+g(x)在区间[−1,1]上的最大值与最小值之和为0D.设F(x)=f(x)+g(x),则F(2a)+F(−1−a)<0的解集为(1,+∞)答案:BCD分析:根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案对于A:f(x)=1−2x1+2x ,定义域为R,f(−x)=1−2−x1+2−x=−1−2x1+2x=−f(x),则f(x)为奇函数,故A错误;对于B:g(x)=lg(√x2+1−x),定义域为R,g(−x)=lg(√(−x)2+1−(−x))=−lg(√x2+1−x)=−g(x),则g(x)为奇函数,故B正确;对于C :F (x )=f (x )+g (x ),f (x ),g (x )都为奇函数, 则F (x )=f (x )+g (x )为奇函数,F (x )=f (x )+g (x )在区间[−1,1]上的最大值与最小值互为相反数, 必有F (x )在区间[−1,1]上的最大值与最小值之和为0,故C 正确; 对于D :f (x )=1−2x 1+2x =−(2x +1−22x +1)=22x +1−1,则f (x )在R 上为减函数,g (x )=lg(√x 2+1−x)=√x 2+1+x,则g (x )在R 上为减函数,则F (x )=f (x )+g (x )在R 上为减函数, 若F (2a )+F (−1−a )<0即F (2a )<F (1+a ), 则必有2a >1+a ,解得a >1,即F (2a )+F (−1−a )<0的解集为(1,+∞),故D 正确; 故选:BCD12、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.13、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD 填空题14、已知0<a <1,化简:√a 43−2a +a 23=______. 答案:a 13−a 23分析:根据指数幂的基本运算结合指数函数的性质即可求解. 解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|,因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23.所以答案是:a 13−a 23. 15、计算:27−13−(−17)−2+25634−3−1+(√2−1)0=_______.答案:16分析:根据指数幂的运算性质直接求解即可.27−13−(−17)−2+25634−3−1+(√2−1)0=(33)−13−(−7)2+(44)34−13+1=13−49+64−13+1=16. 所以答案是:16.16、若f (x )=1+a3x +1(x ∈R )是奇函数,则实数a =___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.解答题17、已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[−3,1]上是减函数,求a的取值范围.答案:(1)a=0,[ln3,+∞);(2)a∈(−5,−4]解析:(1)根据偶函数的定义,求出a=0,得f(x)=ln(2x2+3),验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2)u(x)=2x2+ax+3,g(u)=lnu,由条件可得,u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,根据二次函数的单调性,得出参数a的不等式,即可求解.解:(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(−x),所以ln(2x2+ax+3)=ln(2x2−ax+3),故a=0,此时,f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t⩾3,所以lnt⩾ln3,故f(x)的值域为[ln3,+∞).(2)设u(x)=2x2+ax+3,g(u)=lnu.因为f(x)在[−3,1]上是减函数,所以u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,故{−a4⩾1,u(x)min =u(1)=5+a >0,解得−5<a ≤−4,即a ∈(−5,−4].小提示:本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.18、定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M >0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界,已知函数f(x)=14x+a 2x+1.(1)当a =-1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由; (2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 答案:(1)(1,+∞),函数f(x)在(-∞,0)上不是有界函数,理由见解析; (2)[-5,1].分析:(1)应用换元法及二次函数的性质求y =t 2-t +1在(1,+∞)上的值域,即知f(x)的值域,进而判断f(x)是否为有界函数.(2)将问题转化为−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,求a 的取值范围.(1)当a =-1时,y =f(x)=(12)2x −(12)x +1 (x <0),令t =(12)x ,x <0,∴t >1,y =t 2-t +1=(t −12)2+34,∴y >1,即函数f(x)在(-∞,0)上的值域为(1,+∞), ∴不存在常数M >0,使得|f(x)|≤M 成立. ∴函数f(x)在(-∞,0)上不是有界函数. (2)由题意知,|f(x)|≤3对x ∈[0,+∞)恒成立,即-3≤f(x)≤3对x ∈[0,+∞)恒成立, 令t =(12)x ,x ≥0,则t ∈(0,1].∴−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,即[−(t +4t)]max ≤a ≤(2t−t)min .设h (t )=−(t +4t ),p (t )=2t −t ,t ∈(0,1],∵h(t)在(0,1]上递增,p(t)在(0,1]上递减,∴h(t)在(0,1]上的最大值为h(1)=-5,p(t)在(0,1]上的最小值为p(1)=1. ∴实数a的取值范围为[-5,1].。

职高求指数函数的定义域的例题及解析

职高求指数函数的定义域的例题及解析

职高求指数函数的定义域的例题及解析
【要点梳理】
1.函数的定义域是自变量x的取值集合,函数的值域是因变量y的取值集合,
2.已知函数解析式,求定义域,其主要依据是使函数的解析式有意义,主要形式有:
(1)分式函数,分母不为0;(2)偶次根式函数,被开方数非负数;(3)一次函数、二次函数的这定义域为R:(4)x”中的底数不等于0:(5)指数函数=“的定义域为R:(6)对数函数y=l吧:x的定义域为{x>0;(7)y=nxJ=csx 的定义装约为,
⑧,-的定义装的因+竖e,o= 的定义域均为{x≠知,kE习
3.求抽象函数的定义域:
(1)由y=fx)的定义域为D,求y=f几g(的定义,须解f(x)eD:
(2)由y=f几g(x]的定义域D,求v=fx)的定,.只须解g(x)在D上的值域就是函数y=fx)的定义域
(3)由y=f几gx的定义域D,术y=力的定义域
4.实际问题中的函数的定义域,除了使解析式本身有意义,还要使实际问题有意【例题精析】
考点一函数的定义域
函数的定义域及其求法是近几年高考考查的重点内容之一,这里主要帮助考生灵话掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题。

指数函数图像和性质及经典例题

指数函数图像和性质及经典例题

指数函数图像和性质及经典例题指数函数图像和性质及经典例题【基础知识回顾】⼀、指数公式部分有理指数幂的运算性质(1)r a ·sr r a a += ),,0(Q s r a ∈>;(2)rs s r a a=)(),,0(Q s r a ∈>;(3)s r ra a ab =)(),0,0(Q r b a ∈>>.正数的分数指数幂的意义)1,,,0(*>∈>=n N n m a a a n m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm⼆、指数函数1.指数函数的概念:⼀般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是⾃变量,函数的定义域为R .2.指数函数的图象和性质1.在同⼀坐标系中画出下列函数的图象:(1)x)31(y = (2)x)21(y = (3)x2y = (4)x3y = (5)x 5y =【指数函数性质应⽤经典例题】例1.设a 是实数,2()()21x f x a x R =-∈+,试证明:对于任意,()a f x 在R 上为增函数.证明:设121 2,,x x R x x ∈<,则12()()f x f x -1222()()2121x x a a =---++ 21222121x x =-++12122(22)(21)(21)x x x x -=++,由于指数函数2x y =在R 上是增函数,且12x x <,所以1222xx< 即12220xx -<,⼜由20x>,得1120x +>,2120x +>,∴12()()0f x f x -< 即12()()f x f x <,所以,对于任意,()a f x 在R 上为增函数.例2.已知函数2()1xx f x a x -=++(1)a >,求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)⽅程()0f x =没有负数根.证明:(1)设121x x -<<,则1212121222()()11xx x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++,∵121x x -<<,∴110x +>,210x +>,120x x -<,∴12123()0(1)(1)x x x x -<++;∵121x x -<<,且1a >,∴12x xa a <,∴120xx a a-<,∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数;(2)假设0x 是⽅程()0f x =的负数根,且01x ≠-,则000201x x a x -+=+,即00000023(1)31111x x x ax x x --+===-+++,①当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,⽽由1a >知01x a <,∴①式不成⽴;当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,⽽00x a >,∴①式不成⽴.综上所述,⽅程()0f x =没有负数根.针对性练习1. 已知函数f (x )=a x +b 的图象过点(1,3),且它的反函数f -1(x )的图象过(2,0)点,试确定f (x )的解析式.2. 已知,32121=+-x x 求3212323++++--x x x x 的值.3. 求函数y =3322++-x x 的定义域、值域和单调区间.4. 若函数y =a 2x +b +1(a >0且a ≠1,b 为实数)的图象恒过定点(1,2),求b 的值.5. 设0≤x ≤2,求函数y =1224221++?--a a xx 的最⼤值和最⼩值.针对性练习答案1解析:由已知f (1)=3,即a +b =3⼜反函数f -1(x )的图象过(2,0)点即f (x )的图象过(0,2)点.即f (0)=2 ∴1+b =2b =1代⼊①可得a =2 因此f (x )=2x +1 2解析:由,9)(22121=+-x x可得x +x -1=7∵27)(32121=+-x x∴23121212333---++?+xx x xx x =27∴2323-+x x=18,故原式=23解析:(1)定义域显然为(-∞,+∞). (2)u y x x x x f u3.4)1(423)(22=∴≤--=-+== 是u 的增函数,当x =1时,y max =f (1)=81,⽽y =3223++-x x >0.∴]81,0(,3304即值域为≤.(3) 当x ≤1 时,u =f (x )为增函数,u y 3=是u 的增函数,由x ↑→u ↑→y ↑∴即原函数单调增区间为(-∞,1];当x >1时,u =f (x )为减函数,u y 3=是u 的增函数,由x ↑→u ↓→y ↓∴即原函数单调减区间为[1,+∞).4解析:∵x =-2b时,y =a 0+1=2∴y =a 2x +b +1的图象恒过定点(-2b,2) ∴-2b=1,即b =-2 5解析:设2x =t ,∵0≤x ≤2,∴1≤t ≤4 原式化为:y = 21(t -a )2+1 当a ≤1时,y min =942,2322max 2+-=+-a a y a a ;当1<a ≤25时,y min =1,y max =2322+-a a ;当a ≥4时,y min =232,9422max 2+-=+-a a y a a .。

指数函数及其图像与性质的应用

指数函数及其图像与性质的应用
指数函数及其性质的
应用
学目标
1.巩固指数函数的图像与性质; 2.掌握指数函数的图像与性质的综合运用.
识梳理
一、指数函数的图像与性质
a (0,1)
y
a (1, )
y
图像
1 f(x)=ax O x
1 O
f(x)=ax x
定义域 值域 过定点 图像分布 x 0 时,
( , ) (0, )
O 1
x
1 O
2
x
A.
B.
C.
D.
题醉了
一、典型例题 1、指数函数图像的应用 【课堂练习】 函数 f(x)=2x -x 2 的图像大致是( A )
y y y y
O
x
O
x
O
x
O
x
A.
B.
C.
D.
题醉了
一、典型例题 1、指数函数图像的应用 说明 函数 f(x)=2x 与 g(x)=x 2 的图像大致是
3 2 1 –2 –1 O 3 y 2 1 –2 –1 O 1 2 x 1 2 x y 3 2 1 –1 O 3 y 2 1 –1 O 1 2 x 1 2 3x y
题醉了
一、典型例题 1、指数函数图像的应用 例题 2 函数 f(x)=ln|x-1| 的图像大致是(
y y y
B )
y
-1 O
x
O
1
x
2 3 1 B. f( ) f( ) f( ) 3 2 3 3 2 1 D. f( ) f( ) f( ) 2 3 3
题醉了
一、典型例题 1、指数函数图像的应用 【课堂练习】 若直线 y=2a 与函数 f(x)=|ax -1|+1(a>0,且 a 1) 的图 像有两个公共点,则 a 的取值范围是

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a>0,且a≠1)的图象恒过定点 例4.若函数 P,试求点P的坐标.
点评: 一般较复杂函数的图象可由基本 初等函数的图象经过平移、对称变换得到 ,注意转化思想的应用.
点评: 本题在下结论时,容易取a>1和 例5. 如果 (其中a>0,a≠1),求x 0<a<1时x取值的交集或并集,这都是错 的取值范围. 误的.事实上a>1和0<a<1是两类不同的 情形,所以最后要分开下结论.
2) 单调性和最值
例3.若函数f(x)= ,则该函数在(-∞,+∞)上是( )
A.单调递减无最小值 B.单调递减有最小值 C.单调递增无最大值 D.单调递增有最大值
Hale Waihona Puke 点评: 求函数f( )的单调区间、值城、最值时,常用换元法,设
=t,转化为讨论常见函数的性质,有时结合常见函数的图象来解决.
3) 函数的图象
3. 建立指数函数模型解决实际应 用问题

例6. 医学上为研究传染病传播中病毒 细胞的发展规律及其预防,将病毒细胞 注入一只小白鼠体内进行实验,经检测, 病毒细胞的增长数与天数的关系记录如 下表. 已知该种病毒细胞在小白鼠体内的 个数超过108的时候小白鼠将死亡.但注 射某种药物,将可杀死其体内该病毒细 胞的98%.
指数函数典型例题分析
指数函数是中学数学中基本初等函数之一, 是学习函数、不等式等内容的重要工具.

指数函数的性质是指数函数 的核心内容,也是学习其他数学知 识的基础内容.本文就指数函数的 典型例题进行分析
2
1. 利用指数函数的单调性比较大小
例1.比较下列各题中两个值的大小:
分析:构造指数函数,利用其单调性和值域 比较大小.
3

(1).单调法:比较同底数幂大小,构造 指数函数,利用指数函数的单调性比较 大小.要注意:明确所给的两个值是哪 个指数函数的两个函数值;明确指数函 数的底数与1的大小关系;最后根据指数 函数图象和性质来判断.

(2).中间量法:比较不同底数幕的大小, 常借助于中间值1进行比较.利用口诀“同 大异小”,判断指数幂和1的大小.
(1)为了使小白鼠在实验过程中不死亡, 第一次最迟应在何时注射该种药物?(精 确到天)
已知:lg2=0.3010

(2)第二次最迟应在何时注射该种药物 才能维持小白鼠的生命?(精确到天)

点评: 本题反映的解题技巧是 “两边取对数”,这对实施指数运 算是很有效的.
18
2.研究指数函数的性质

1) 定义域和单调区间
的定义域和单调区间.
例2.求函数
分析:使函数的解析式有意义的自变量的取值 范围是函数的定义域;函数f(x)是复合函数,分 解为y=f(u), u=g(x),通过讨论y= f(u)和 u=g(x)的单调性,来讨论函数f(x)的单调性.

成的,可通过逐层讨论它的单调性,利用“同增异减 ”得出结果.
相关文档
最新文档