变压器接线组别详细介绍
变压器联结组别含义

变压器联结组别含义变压器联结组别含义是指变压器的不同接线方式。
变压器联结组别主要分为三种:Y型联结、△型联结和Y/△型联结。
首先来讲讲Y型联结。
Y型联结是将三相电源线连接到三个独立的变压器绕组端子上,在这种情况下,每个变压器绕组都与相邻的变压器绕组串联,且每个相都连接到中性点,中性点上可以接地。
这种联结方式常用于需要中性点的场合。
在进行电力负载时,Y型联结使得负载电流能够均匀分布,并且能够有效降低相间电压的峰值,从而实现较好的电力负载平衡。
其次是△型联结。
在△型联结中,三相电源线被连接到变压器的三个端子上,通过三个相相连的连接而形成一个封闭环路。
这样的联结方式可在任何负载情况下实现三相平衡,且能够实现较好的电力负载和相邻变压器之间的电压平衡。
在△型联结中,负载电流既能够沿着相线流动,也能从其中一个相线流到另外一个相线,因此,它最适合用于高电压负载。
最后是Y/△型联结。
Y/△型联结实际上是Y型联结和△型联结的结合。
在一个三相电源线连接到变压器的一个端子上的情况下,此种联接方式的变压器绕组中包含了两种不同的绕组:一个是Y型绕组,另一个是△型绕组。
电力负载时,正常工作时使用△型联结,负载不足时使用Y型联结。
总之,变压器联结组别是指变压器绕组的连接方式。
不同的变压器联结组别对应着不同的电力负载情况,能够实现较好的电力负载平衡,同时,还能够获得多相电流的优点。
实际应用中,需要根据电压、电流和功率等因素选择不同的联结方式,尤其是在高电压负载情况下,需要选定合适的联结方式以保证稳定的电力负载。
行业资料变压器连接组别

行业资料变压器连接组别在电力系统的运行过程中,变压器起着至关重要的作用。
作为电能转换的关键设备,变压器的连接组别对其性能和运行稳定性都有着重要影响。
本文将介绍变压器连接组别的相关知识,包括连接组别的定义、分类和应用。
一、连接组别的定义变压器连接组别是指变压器的主、副绕组之间的连接方式,它决定了变压器的电压变比。
常见的连接组别有Y/Y、D/Y、Y/D等。
每种连接组别都有其特定的应用场景和优缺点。
二、连接组别的分类根据主、副绕组的连接方式,变压器的连接组别可以分为星型连接(Y)和三角形连接(D)。
1. 星型连接(Y)星型连接是指主绕组和副绕组都连接在一个公共节点上,形成一个闭合的星形回路。
星型连接的特点是输出电压较低,电流较大,适用于配电系统和低压电源供应。
2. 三角形连接(D)三角形连接是指主绕组和副绕组都连接在相邻的节点上,形成一个闭合的三角形回路。
三角形连接的特点是输出电压较高,电流较小,适用于输电系统和高压电源供应。
三、连接组别的应用不同的连接组别适用于不同的电力系统和工程需求。
根据具体的工程要求和性能指标,选择合适的连接组别能够更好地满足需求。
1. Y/Y连接组别Y/Y连接组别是指主、副绕组均采用星型连接。
它适用于低压电网和低压负荷供电,能够提供较低的输出电压和较大的输出电流,适合分配给大量低压用户。
2. D/Y连接组别D/Y连接组别是指主绕组采用三角形连接,副绕组采用星型连接。
它适用于向低压负荷供电,能够提供较高的输出电压和较小的输出电流,适合用于长距离输电。
3. Y/D连接组别Y/D连接组别是指主绕组采用星型连接,副绕组采用三角形连接。
它适用于电力系统中的系统中性点连接,可使系统具备双重耐压性能,提高系统的安全性和可靠性。
四、连接组别的选择与设计在设计和选择连接组别时,需要考虑多方面因素,包括系统的电压需求、负荷类型、故障保护和经济性等。
一般来说,Y/Y连接组别适用于配电系统,D/Y连接组别适用于输电系统,Y/D连接组别适用于系统中性点连接。
变压器的接线组别

变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
三相变压器接线组别

Y型接线组别的优缺点
优点
结构简单、维护方便、成本低廉 、运行稳定。
缺点
不能承受较大的不平衡负载,当 一相断路时,其它两相电压会升 高,需要配置相应的保护措施。
03
Δ型接线组别
Δ型接线组别的特点
三个线圈呈三角形连接,每个线圈的首尾相接。 三个线圈的匝数相等,相位差为120度。
输入输出电压比为3:1或1:3。
其他特殊接线组别
其他特殊接线组别包括各种不同的接线方式,如三相-三相变压器 接线、三相-单相变压器接线等。这些特殊接线组别通常用于特定 的应用场合,以满足不同的需求。
特殊接线组别的优点在于其能够实现特定的功能,如电压变换、 相位变换等。
然而,特殊接线组别也存在一些缺点,例如其结构复杂、维护困 难等。因此,在实际应用中需要根据具体需求进行选择。
02
Y型接线组别
Y型接线组别的特点
三个线圈的尾端连接 在一起,首端引出作 为电源或负载的接线 端。
输出电压与输入电压 同相位。
三个线圈的匝数相等, 相位差为120度。
Y型接线组别的应用场景
适用于高压输电线路的三相变压 器。
适用于需要三相平衡供电的工业 和商业场所。
适用于需要降低谐波干扰的场合。
Δ型接线组别的应用场景
适用于高压输电线路的三相变压器。
适用于需要平衡三相负载的电力系统。
适用于需要高电压或大电流的工业应 用。
Δ型接线组别的优缺点
优点
结构简单,制造方便,运行稳定,能 够承受较大的短路电流。
缺点
不能实现电气隔离,需要额外的隔离 变压器或光耦等设备来实现电气隔离 。
04
其他接线组别
三相变压器接线 组别
目录
变压器接线组别

大容量1800kVA,并规定Yyn0接线变压器中性线电流不应超过低压侧额定电流的25%;Dyn11接线中,一次绕组的零序电流可以在绕组内环流,反过来可削弱二次绕组的零序磁通,不致使零序磁通造成配变的过热,因此中性线电流几乎可达相线电流值(一般能达到相线电流的80%),规程规定Dyn11接线变压器中性线电流不应超过低压侧额定电流的40%,所以Dyn11接线能使配变容量尽可能得到充分利用,同时也降低了损耗,同容量的配变负载损耗Dyn11接线比Yyn0接线可减少20% 对于供电质量来说,对于Yyn0接线的配变,由于二次零序磁通未被去磁,零序阻抗大,因此零序电压也较大;而Dyn11接线中由于一次零序磁通的去磁,使铁芯中合成零序磁通很小。据实测数据发现,同容量的配变Yyn0接线零序阻抗比Dyn11接线大8~10倍.这样在同样的零序电流下,零序电压前者比后者大8~10倍,从而造成Yyn0接线配变中性点产生较大偏移,相电压不对称程度严重. 当低压母线处发生单相短路时,由于Dyn11接线配变零序阻抗小,因此Dyn11接线要比Yyn0接线单相短路大得多,这样低压总开关过流保护的灵敏度也高得多,对于高压侧,由于Dyn11接线低压单相短路电流对高压侧的穿越电流也大,当高压侧过流继电保护兼作低压单相接地保护时,其灵敏度也比Yyn0接线大. 尽管Dyn11接线有许多优点,但是两种接线组别的配变在农村低压电力技术规程(DL/T 499—2001)中规定都是允许的,两种接线组别的配变优缺点及适用范围 见下表1。 表1 Yyn0和Dyn11接线组别的配变优缺点及适用范围 来源组和二次绕组组合接线形式的一种表示方法; 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 (一)变压器接线组别 变压器的极性标注采用减极性标注。减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。 变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。同容量的配变空载损耗Dyn11接线比Yyn0接线可减少10%。 负载运行中,若二次侧负载不对称,各项均有零序电流,其值为中线电流的1/3,零序电流在配变铁芯中产生零序磁通,Yyn0接线的配变高压侧没有零序电流与之去磁,零序磁通在变压器铁芯柱中无通路,只能通过空气隙、箱壁、夹紧螺栓形成回路,产生附加损耗,鉴于此,大容量变压器不宜采用Yyn0接线,最
浅析配电变压器的联结组别

浅析配电变压器的联结组别配电变压器是电力系统中非常重要的一个器材,它的主要作用是将高电压的电能变换成低电压的电能,以满足各个用电设备的需求。
而其中的联结组别也是变压器中非常重要的一个概念,它决定了变压器的使用方式和性能。
本文将从浅析配电变压器联结组别的角度出发,详细介绍联结组别的概念、分类以及应用。
一、联结组别的概念所谓联结组别,就是指配电变压器的各个相之间的联结方式。
根据不同的联结方式,变压器可以分为三种不同的组别,分别是Y/Y、Y/△和△/Y。
其中,Y/Y指的是三相入线组和三相出线组均为星形联结;Y/△指的是三相入线组为星形联结,而三相出线组为三角形联结;△/Y则是三相入线组为三角形联结,而三相出线组为星形联结。
二、联结组别的分类根据不同的应用场景和需求,联结组别可以进一步细分为几个不同的分类。
其中,比较常见的有以下几种:1. 负荷传递型联结组别这种联结组别是指在负载端需要接很多负载的情况下,需要采用的联结方式。
由于这种方式可以使得各个负载基本相等,因此可以保证负荷传递的均衡性。
在这种情况下,一般采用Y/△的联结组别,因为三角形联结可以承受比星形更大的负载。
2. 各种应付联结组别这种联结组别是指在应付各种电力系统的特殊情况时需要采用的联结方式。
比如,在变压器出现故障需要维修时,可以采用△/Y的联结组别,因为这种方式可以使得其中两相处于对称的状态,从而减小了对系统的影响。
3. 阻性或容性耦合型联结组别这种联结组别是指在需要考虑变压器的耦合效应时需要采用的联结方式。
在这种方式下,一般采用Y/Y的联结组别,因为星形联结可以减小变压器的漏磁电感,从而减弱了耦合效应。
三、联结组别的应用联结组别的不同应用方式,在实际的电力系统中也体现得非常明显。
比如,在配电系统中,一般采用Y/Y的联结组别,因为这种方式可以满足各个用电设备的电压需求,并且比较方便实施。
在高压输电系统中,一般采用Y/△的联结组别,因为这种方式可以提高电压的传输距离和负载能力。
35kv变压器联结组别

35kv变压器联结组别35kV变压器联结组别是指在35kV电力系统中,变压器的连接方式和组合形式。
根据变压器的连接方式和组合形式的不同,可以实现不同的电力系统配置和运行模式。
下面将详细介绍35kV变压器联结组别的相关内容。
35kV变压器联结组别主要分为三大类,分别是单単连接、Y/Y连接和Δ/Y连接。
1.单単连接:单単连接是指35kV变压器的高压绕组和低压绕组都采用単相绕组的连接方式。
这种连接方式适用于供电侧和负荷侧均为单相负载的情况。
在供电侧为负荷不平衡的情况下,可以实现自动平衡负荷的效果。
2. Y/Y连接:Y/Y连接是指35kV变压器的高压绕组和低压绕组都采用星形连接方式的连接方式。
这种连接方式适用于供电侧和负荷侧为三相负荷的情况。
在电力系统中,三相负荷是非常常见的,因此Y/Y连接在实际应用中较为普遍。
3. Δ/Y连接:Δ/Y连接是指35kV变压器的高压绕组采用三角形连接方式,低压绕组采用星形连接方式的连接方式。
这种连接方式适用于供电侧为三相负荷,负荷侧为单相负荷的情况。
在一些特殊情况下,需要将三相负荷转换为单相负荷供电,这时可以采用Δ/Y连接方式。
除了以上三种基本的35kV变压器联结组别,还有一些特殊的组合形式,如Y/Δ连接、単単连接、单単连接+Y/Y连接等。
Y/Δ连接是指35kV变压器的高压绕组采用星形连接方式,低压绕组采用三角形连接方式的连接方式。
这种连接方式适用于供电侧为三相负荷,负荷侧为单相负荷的情况。
単単连接是指35kV变压器的高压绕组和低压绕组都采用単相绕组的连接方式,并且供电侧和负荷侧都为单相负荷的情况。
单単连接+Y/Y连接是指35kV变压器采用了单単连接和Y/Y连接两种方式的组合。
这种组合方式适用于供电侧既有单相负荷,又有三相负荷的情况。
在35kV电力系统中,变压器的联结组别选择应根据实际的用电需求和负荷情况进行综合考虑。
各种联结组别都有各自的特点和适用范围,要根据电力系统的特点以及供电负荷的需求来选择合适的联结组别。
变压器的接线组别表示

变压器的接线组别表示
变压器的接线组别是变压器一、二次侧绕组根据肯定的接线方式连接时,一次侧绕组的线电压与二次侧绕组线电压之间的相位关系。
通常采纳时钟表示法来区分不同的连接组别,即用一次侧绕组与二次侧绕组的线电压相量作为时钟盘面上的长针和短针,长针代表一次侧绕组(高压)并固定指向12点,短针代表二次侧绕组(低压),其所指的钟点就是接线组别名。
时钟等分为12个格,每格为30°,由长、短针相距的格数,可得出一、二次侧绕组线电压的相位关系.如长、短针均指向12点,就表示一、二次侧绕组相对应的电压相位相同,接线组别为12,即Yy0;如长针指向12点,短针指向11点,就表示一、二次侧绕组相对应的电压相位差30°,接线组别为11,即Yd11。
三相变压器的接线组别共有12种,即共有12个组别,分别用0~11表示,接线符号间用逗号或不加符号。
凡一次侧绕组与二次侧绕组接法不同时,如Y/△或△/Y,属于1、3、5、7、9、11奇数组,共6组;凡一次侧绕组与二次侧绕组的接法相同时,如Y/Y或△/△,属于0、2、4、6、8、10偶数组,也是6组。
绕组的接线方式主要有星形、三角形和曲折形三种,对高压绕组分别用大写字母Y、D、Z表示;对低压或中压绕组分别用小写字母y、d、z表示。
有中性线引出时加注字母N或n表示,而不用0表示,如YN、ZN和yn、zn。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器接线组别详细介绍 - 全文 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。
变压器就是一种利用电磁互感效应,变换电压,电流和阻抗的器件。
变压器接线组别
常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
下面是变压器接线组别的向量图及原、副边绕组的接线示意图。
六种单数组
六种双数组
变压器连接组别常识
在变压器行业常用的连接组别一般有Dyn11跟Yyn0,可能大家都知道这2中,但是要怎么来区别认识了,Dyn11联结的好处是有利于抑制高次谐波电流。
对Yyn0结线的三相变
压器,原边星形连接而无中线,故三次谐波电流不能流通。
原边激磁电流波形为正弦波时,则铁芯中磁通为平顶波,副边感应电势波形所含高次谐波分量大;激磁电流中以三次谐波为主的高次谐波电流在原边接成三角形条件下,可在原边形成环流,与原边接成星形相比,有利于抑制高次谐波电流。
在当前电网中接用电力电子元件、气体放电灯等日益广泛、其功率越来越大的情况下,会使得电流波形畸变。
即使三相负荷平衡,中性线中也流过以3次谐波为主的高次谐波电流。
配电变压器的原边(常为10KV侧)采用三角形结线就抑制了此类高次谐波电流,这样就能保证供电波形的质量。
第二,有利于单相接地短路故障的切除:原边(高压)接成三角形(D接),绕组内可通过零序循环电流(感应产生),因而可与低压绕组零序电流互相平衡、去磁,因此,副边(低压侧)零序阻抗很小;若原边(高压侧)星接(Y接),绕组不能流过零序电流,低压侧激磁时,其零序电流在变压器铁芯中产生零序磁通,但其磁路不能在铁芯内形成闭合,要走铁芯外面的空气,其磁阻很大,变压器的零序阻抗较大。
若发生单相短路,其短路电流值就会相对地减小,致使在很多情况下,其单相接地短路电流几乎不能使低压断路器快速动作或使熔断器迅速熔断。
通常,在相同的条件下,Dyn11结线的变压器配电系统的单相短路电流为Yyn0结线时的3倍以上。
因此,Dyn11结线有利于单相接地短路故障的切除。
第三,能充分利用变压器的设备能力:对于配电变压器,照明、空调、电炊、电热等餐厨家电220伏单相负荷往往占很大比重。
尽管在工程设计及安装时,尽可能将各个单相负荷均匀分布在三相上,而由于运行时的情况千变万化,有时可能出现三相严重不平衡现象。
三相负荷不平衡或每相功率因数相差较大、变压器处于不对称运行状态,副边中性线就有电流通过。
上述《规范》中第6.0.8条明确规定:“在TN和TT系统接地型式的低压电网中,当选用Yyn0结线组别的三相变压器时,其由单相不平衡负荷引起的中性线电流不得超过低压绕组额定电流的25%,且其一相的电流在满载时不得超过额定电流值。
”
这一规定十分明确地限制了Yyn0结线时接用单相负荷的容量,从而限制了Yyn0结线配电变压器的使用――此时,变压器设备能力不能充分利用。
而Dyn11结线方式的变压器,对中性线电流没有限制,可达变压器低压侧之线(相)电流,从而能充分利用变压器的容量、发挥其设备能力,尤其适宜以单相负荷为主而出现三相不平衡的配电变压器。