变压器原理及接线组别教程文件
变压器的连接组别(附各种判别方法)

变压器的连接组别变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”。
变压器联结组别用时钟表示法表示规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为“ÈAX”,简记为“ÈA”,低压绕组电势从a指向x,简记为“Èa”。
时钟表示法:把高压绕组线电势作为时钟的长针,永远指向“12”点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点。
确定三相变压器联结组别的步骤是:①根据三相变压器绕组联结方式(Y或y、D或d)画出高、低压绕组接线图(绕组按A、B、C相序自左向右排列);②在接线图上标出相电势和线电势的假定正方向③画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图(画相量图时应注意三相量按顺相序画);④根据高、低压绕组线电势相位差,确定联结组别的标号。
Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。
对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。
标准组别的应用Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中;YNy0组别的三相电力变压器用于原边需接地的系统中;Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。
三相变压器的联接组与标号(详细的原理阐述)

第5章三相变压器的联结组与不对称短路原理简述1.极性测定的依据高、低压线圈之间的相电压相位决定于两个线圈的标号及其绕向,如图5-1示。
若高、低压线圈的标号和绕向都相同(或都相反,图略),则高、低压侧的相电压同相,这时我们说两点同极性。
若只有标号(或绕向,图略)反了,如图5-2,则相电压的相位相反,这时我们说两点不同极性。
2.三相绕组的联接方法把三个单相绕组联成三相绕组将有好几种联法,其中最基本的形式有星形(或形)接法和三角形(D或形)接法两种,此外,还有曲折接法(或接法)。
它们的绕组联接图和电压相量图如图5-3所示。
形联接方法的副方每相绕组有一中间抽头,将绕组分成为相等的两半,和、和、和分别套在不同的铁芯柱上,把一个铁芯柱上的上半个绕组与另一铁芯柱上的下半个绕组反向串联,组成新的一相绕组后,再接成星形联接,其相量图每相相量连接线成曲折形,顾名思意称为曲折形(或形)接法。
从电压相量图可见,相电压只有原来绕组的,就是说在相同的电压下绕组匝数增加到倍,增加了用铜量和损耗。
但形联接的变压器能防止冲击波影响,运行在多雷雨地区可减少变压器雷击损耗。
还常使用于某些整流变压器中以防止中性点位移,使三相电压接近平衡来提高整流效率。
因此形接法近年来渐渐增多,国家标准GB1094-85中也被列为常用联结组之一。
图5-3 三相绕组联接的基本形式(1)形联接法(2)△形联接法(3)形联接法图 5-4 △联接和联接的左行接法在图5-4中画出了三角形接法和曲折形接法的另一种联接次序。
我们把图5-3称右行接法,图5-4就称左行接法。
由于联接次序不同,它们的线电压相位关系就不相同,这一点在下面的联结组别中应注意区别。
一般情况下三角形联接和曲折形联接只采用右行联接,以后不加说明的三角形联接和曲折形联接都是指右行联接。
3.三相变压器的联结组三相变压器高、低压侧线电压之间的相位关系,不但与标号和绕向有关,还与三相线圈的联接方式有关。
根据电机学理论,习惯上用“时钟法”来表示高、低压两侧间线电压的相位关系。
三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
变压器的基本工作原理和结构PPT课件

次端电压。 对三相变压器,铭牌上的额定电压指线电压 额定电流(IN)——指变压器在额定容量下,允许长期通
过的电流,三相变压器指的是线电流值。单位用A或kA。 额定频率〔HZ)—电力变压器的额定频率是50Hz 效率、温升
图3.1.8 壳式变压器的结构示意图
※ 芯式变压器绕组和铁芯的装配示意图
绕组同芯套装在变压器铁心柱上,低 压绕组在内层,高压绕组套装在低压 绕组外层,以便于绝缘。
图3.1.9 芯式变压器的铁芯和绕组的装配示意图
● 绕组的根本型式——同心式
※ 同芯式——铁芯式变压 器常用。高压绕组和低压 绕组均做成圆筒形,然后 同芯地套在铁芯柱上 ,为
平安气道——〔防爆筒〕如果是严重事故,变压器油大量 汽化,油气冲破平安气道管口的密封玻璃,冲出变压器油 箱,防止油箱爆裂。
吸湿器—— 〔呼吸器〕内装硅胶〔活性氧休铝〕,用以吸 收进入储油柜中空气的水分
净油器——过滤油中杂质,改善变压器油的性能
3.1.3 变压器的型号与额定值
一、变压器型号
型号——可反映出变压器的结构、额定容量、电压等级、冷却方 式等内容
变压器运行时产生热量,使变 压器油膨胀,储油柜中变压器 油上升,温度低时下降。
储油柜使变压器油与空气接触 面较少, 减缓了变压器油的氧
当变压器出现故障时,产生的 热量使变压器油汽化,气体继 电器动作,发出报警信号或切 断图电源。
气 体 继 电 器
化过程及吸收空气中的水分的 如果事故严重,变压器油大量
〔一〕电力变压器
配电变压器
升压变压器
降压变压器
电力变压器的类别——用途分
(二) 特种变压器
三相变压器接线组别.ppt

三相绕组的联结法
国产电力变压器常用Yyn、Yd和YNd三 种联结,前面的 大写字母表示高压绕组的 联结法,后面的小写字母表示低压绕组的 联结法,N(或n)表示有中点引出的情况。
变压器并列运行时,为了正确地使用三相 变压器,必须知道高、低压绕组线电压之 间的相位关系。下面说明高、低压绕组相 电压的相位关系.
若绕组相反,则高压绕组的上端与低压绕组 的下端为同名端,如图所示。
为了确定相电压的相位关系,高压和低压绕 组相电压向量的正反向统一规定为从绕组 的首端指向尾端。高压和低压绕组的相电 压既可能是同相位,亦可能是反相位,取 决于绕组的同名端是否同在首端和尾端。 若高压和低压绕组的首端同为同名端,相 电压Ua和UA应为同相,如图所示;若高压 和低压绕组的首端为非同名端,则UA和Ua 为反相,如图所示。
高低压绕组线电压的相位关系
三相绕组采用不同的联结时,高压侧的线 电压与低压侧的线电压之间(例如UAB与 Uab之间)可以形成不同的相位。为了表明 高低压线电压之间的相位关系,通常采用 “时钟表示法”,即把高低压绕组两个线 电压三角形的重心0和o重合,把高压侧线 电压三角形的一条中线(例如OA)作为时 钟的长针,指向钟面的12;再把低压侧线 电压三角形中对应的中线(例如oa)作为 短针,它所指的钟点就是该联结组的组号。
图三相变压器组及其磁路
• 接线组别
三相变压器的连接组别
连接组别:反映三相变压器连接方式及一、二次线电动势(或 线电压)的相位关系。
三相变压器的连接组别不仅与绕组的绕向和首末端标志有 关,而且还与三相绕组的连接方式有关。
三角形联结
• 把一相的末端和另一相的首端连接起来,
顺序连接成一闭合电路。两种接法:
三相心式变压器的磁路
变压器原理及接线组别详解演示文稿

ax与BY同相
by与CZ同相
cz与AX同相
C
∴ Y, d3
1/4/2022 2第0三2十2/二1页/,4共32页。
《电机学》 第三章 变压器
EC
E A
X
C
AX-CZ-BY
10
绕组接法表示
10
①Y,y 或 YN,y 或 Y,yn ②Y,d 或 YN,d
③D,y 或 D,yn
④D,d
高压绕组接法大写,低压绕组接法小写,字母N、n是 星形接法的中点引出标志。
1/4/2022 2第0十2页2/,1共/342页。
《电机学》 第三章 变压器
11
联结组别:反映三相变压器连接方式及一、二次线电动 势(或线电压)的相位关系。
三相变压器的连接组别不仅与绕组的绕向和首末端标志 有关,而且还与三相绕组的连接方式有关。
理论和实践证明,无论采用怎样的连接方式,一、二次 侧线电动势(电压)的相位差总是30º的整数倍。
1/4/2022 2第0十2六2页/,1共/324页。
(二)联结组
11
1、高低压绕组中电势的相位
变压器的同一相高、低压绕组都是绕在同一铁芯柱上, 并被同一主磁通链绕,当主磁通交变时,在高、低压 绕组中感应的电势之间存在一定的极性关系。
1/4/2022 2第0十2一2页/,1/共432页。
同名端决于绕组的绕制方向
《电机学》 第三章 变压器
12
2、同名端
若高压绕组三相标志不变,低压绕组三相标志依次后移,可以 得到Yy4、Yy8连接组别。若异名端在对应端,可得到Yy6、Yy10 和Yy2连接组别。
※我国标准规定生产: Yyn0、YNy0、Yy0
1/4/2022 2第0二2十2/一1页/,4共32页。
三相变压器极性及连接组别课件

极性的检测方法
通过测量绕组间的电 压来判断极性。
在实际应用中,可以 通过观察接线端子的 标记或使用相位表进 行测量。
使用专门的极性测试 仪器进行测量。
02
三相变压器连接组别介绍
连接组别的定义
连接组别
指三相变压器一、二次绕组的连 接方式,用来表示原、副边的电 压关系。
连接组别的确定
根据一、二次绕组的绕向和首尾 端相连接方式来确定。
连接组别混淆
不同的连接组别对应不同的接线方式 ,混淆可能导致设备性能下降或安全 问题。
缺乏理论知识
部分技术人员对三相变压器极性及连 接组别的理论知识掌握不足,导致在 实际操作中出现问题。
缺乏实践经验
新进技术人员可能由于缺乏实践经验 ,在操作三相变压器时无法准确判断 和解决问题。
问题分析与解决方案
分析
问题分析与解决方案
分析
理论知识不足主要是由于缺乏系统学习和培训所致。
解决方案
建议定期组织技术培训,加强对三相变压器极性及连接组别相关理论的学习。
问题分析与解决方案
分析
实践经验的缺乏是新进技术人员普遍 存在的问题。
解决方案
鼓励新进技术人员多参与实际操作, 积累实践经验,同时资深技术人员应 给予指导和帮助。
实验结果分析与结论
根据测量数据,分析各相绕组的极性及 连接组别。
将实验结果与理论进行对比,验证理论 根据实验结果,总结三相变压器极性及
知识的正确性。
连接组别的判断方法。
05
三相变压器极性及连接组 别的常见问题与解决方案
常见问题汇总
极性判断错误
在三相变压器中,极性的正确判断是 关键,错误的极性判断可能导致设备 无法正常工作。
变压器(高中物理教学课件)完整版

典型例题
例3.如图所示,P是电压互感器,Q是电流互感器,
如果两个互感器的变压比和变流比都是50,电压
表的示数为220V,电流表的示数为3A,则输电线
路中的电压和电流分别是( A )
A.11000V,150A
B.1100V,15A
C.4.4V,16.7A
D.4.4V,0.06A
典型例题
例4.如图所示为一理想变压器,其原、副线圈匝
五.变压器的等效电路
1.等效电阻法 理想变压器原、副线圈的匝数分别为n1、n2原、副线圈 的电压分别为U1、U2, 副线圈负载电阻为 R, 等效电路如图所示,
求 R等效。
法一:U1 U2
n1 n2
U2
n2 n1
U1
左图:P
U
2 2
R
n2 2U12 n12 R
右图:P'
U12 R等效
P
n2 2U12 n12 R
1.变压比:U1 n1 或者U1 U2
U 2 n2
n1 n2
2.功率关系:因没有能量损失
P1 P2 U1I1 U 2I2
3.变流比:由功率关系U1I1
U2I2
I1 I2
U2 U1
I1 I2
n2 n1
或者n1I1
n2I2
4.频率关系:原副线圈频率不变
f1 f2
二.理想变压器变压规律
注意: ①若n1<n2,则U1<U2,这种变压器叫升压变压器 ②若n1>n2,则U1>U2,这种变压器叫降压变压器 ③原副线圈电压比与匝数比成—— 正比 ④原副线圈电流比与匝数比成—— 反比 ⑤原线圈电压与副线圈电压成—— 正比 ⑥原线圈电流与副线圈电流成—— 正比 ⑦变压器电压、频率由输入端决定 ⑧变压器电流、功率由输出端决定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※我国标准规定生产: Yyn0、YNy0、Yy0
2020/4/27
《电机学》 第三章 变压器
4、 Yd1
22
Èa Èb Èc
30º
2020/4/27
《电机学》 第三章 变压器
5、 Yd5
23
B
2020/4/27
ay
A cx
150º
Èab
zb
《电机学》 第三章 变压器
C X、Y、Z
6、 Yd11
2020/4/27
《电机学》 第三章 变压器
7
或者有的记法
单相变压器 绕组名称
首端 末端
高压绕组 U1
U2
三相变压器
首端
末端
中性点
U1、V2、W1 U2、V2、W2
N
低压绕组 u1
u2
u1、v1、w1 u2、v2、w2
n
绕组标记
2020/4/27
《电机学》 第三章 变压器
两种三相绕组接线:星形联结、三角形联结
连接组I别 /I为 6(I,I6)
I,I表示初级、次级都是单相绕 组 0和6表示联结组号。 单相变压器的标准连接组I,I0
2020/4/27
《电机学》 第三章 变压器
16
(三)、三相变压器的连接组别
联结组别:反映三相变压器连接方式及一、二次线电 动势(或线电压)的相位关系。
三相变压器的连接组别不仅与绕组的绕向和首末端标 志有关,而且还与三相绕组的连接方式有关。
※ 单相变压器要点
1
1. 变压器基本工作原理 2. 变压器的额定值 3. 变压器磁路中的主、漏磁通 4. 铁心饱和时的励磁电流成分 5. 电势平衡、磁势平衡、功率平衡 6. 变压器的电抗参数(分析时和磁通对应) 7. 变压器的主要性能指标(电压变化率和效率) 8. 标幺值
2020/4/27
《电机学》 第三章 变压器
一、二次绕组的同极性端 异标志时,一、二次绕组 的电动势反相位。
《电机学》 第三章 变压器
3、时钟表示法
14
高压绕组线电势——长针,永远指向“12”点钟
低压绕组线电势——短针,根据高、低压绕组线电势 之间的相位指向不同的钟点。
2020/4/27
《电机学》 第三章 变压器
例如 单相变压器
15
连接组I/别 I1为 (2I,I0)
9
把一相的末端和另一相的首端连接起来,顺序连接成一闭
合电路。两种接Βιβλιοθήκη :AB CAB C
EA EB EC
EA EB EC
XY
Z
XY
Z
ZB
EABEA BX
EAB EB
Z
A
ECEB
AX-BY-CZ
AY
2020/4/27
YC
《电机学》 第三章 变压器
EC
EA
X
C
AX-CZ-BY
绕组接法表示
10
①Y,y 或 YN,y 或 Y,yn ②Y,d 或 YN,d ③D,y 或 D,yn ④D,d
注意abc 顺序错 过一个 铁心柱
2020/4/27
120º
《电机学》 第三章 变压器
21
Yy总结
Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、 Yy10、Yy2六种联结组别,标号为偶数。
若高压绕组三相标志不变,低压绕组三相标志依次后移, 可以得到Yy4、Yy8连接组别。若异名端在对应端,可得到 Yy6、Yy10和Yy2连接组别。
8
1、星形联结 把三相绕组的三个末端连在一起,而把它们的首端引出
三个末端连接在一起形成中性点,如果将中性点引出, 就形成了三相四线制了,表示为YN或yn。
B
EAB EB
EBC
EA
ZX Y
EC
A
ECA
C
顺时针方向:A超前B超前C各120º
2020/4/27
《电机学》 第三章 变压器
2、三角形联结
高压绕组接法大写,低压绕组接法小写,字母 N、n是星形接法的中点引出标志。
2020/4/27
《电机学》 第三章 变压器
(二)联结组
11
1、高低压绕组中电势的相位
变压器的同一相高、低压绕组都是绕在同一铁芯柱上, 并被同一主磁通链绕,当主磁通交变时,在高、低压 绕组中感应的电势之间存在一定的极性关系。
理论和实践证明,无论采用怎样的连接方式,一、二 次侧线电动势(电压)的相位差总是30º的整数倍。
2020/4/27
《电机学》 第三章 变压器
※ 确定三相变压器联结组别的步骤
17
①根据三相变压器绕组联结方式(Y或y、D或d)画出高、 低压绕组接线图;
②在接线图上标出相电势和线电势的假定正方向;
③画出高压绕组电势相量图,根据单相变压器判断同一 相的相电势方法,将A、a重合,再画出低压绕组的电 势相量图(画相量图时应注意三相量按顺相序画);
④根据高、低压绕组线电势相位差,确定联结组别的标 号。
2020/4/27
《电机学》 第三章 变压器
1、 Yy0
A
B
C
18
aA
c
b
ÉAB Éab
x、y、z
C
B
X、Y、Z
2020/4/27
《电机学》 第三章 变压器
2、 Yy6
19
180º
2020/4/27
《电机学》 第三章 变压器
3、 Yy4
20
24
2020/4/27
A ay
330º
Èab bz
cx
C
《电机学》 第三章 变压器
B X、Y、Z
25
Yd联结组别总结: Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、
Yd11、Yd3六种联结组别,标号为奇数。
若高压绕组三相标志不变,低压绕组三相标志依次后移,可 以得到Y,d3、Y,d7连接组别。若异名端在对应端,可得到Y, d5、Y,d9和Y,d11连接组别。
2020/4/27
《电机学》 第三章 变压器
2、心式磁路变压器
4
特点:三相磁路彼此有关联,磁路长度不等,当外 加三相对称电压时,三相磁通对称,三相磁通之和 等于零。
•••
ABC 0
在结构上省去中 间的芯柱
2020/4/27
《电机学》 第三章 变压器
心式应用
5
节省材料,体积小,效率高,维护方便。大、中、小 容量的变压器广泛用于电力系统中。
2020/4/27
同名端决于绕组的绕制方向
《电机学》 第三章 变压器
2、同名端
12
在任一瞬间,高压绕组的某一端的电位为正时,低压 绕组也有一端的电位为正,这两个绕组间同极性的一 端称为同名端,记作“˙”。
2020/4/27
《电机学》 第三章 变压器
2020/4/27
13
一、二次绕组的同极性端 同标志时,一、二次绕组 的电动势同相位。
3-8 三相变压器磁路、联结组、电动势波形
2
一、三相变压器磁路系统
1、组式磁路变压器 特点:三相磁路彼此无关联,各相的励磁电流在 数值上完全相等
A
A
B
B C
C
X
2020/4/27
Y
Z
《电机学》 第三章 变压器
组式应用
3
三相组式变压器优点是:对特大容量的变压器制造容 易,备用量小。但其铁芯用料多,占地面积大,只适 用于超高压、特大容量的场合。