人教版-数学-七年级上册--2.2 整式的加减 教学活动 教案
2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版

1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。
人教版七年级数学上册2.2整式的加减去括号教学设计

总而言之,本章节的教学设计旨在让学生在掌握整式的加减去括号知识的基础上,提高解决问题的能力,培养良好的学习习惯和团队合作精神,同时激发学生对数学的兴趣和热爱。在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在数学学习中获得成就感。
1.学生对整式概念的理解程度,注意引导学生从具体实例中抽象出整式的定义,使学生在理解的基础上进行学习。
2.学生在去括号和整式加减运算过程中可能出现的错误,如符号错误、运算顺序混乱等,教师应适时纠正,帮助学生巩固运算规则。
3.针对学生个体差异,设计不同难度的练习题,使每个学生都能在原有基础上得到提高,激发学生的学习兴趣和自信心。
学生在小组内部分工合作,共同探讨问题解决方法。讨论过程中,教师巡视各小组,给予提示和指导,鼓励学生积极参与,充分发表自己的见解。
(四)课堂练习
在课堂练习环节,教师针对整式的加减去括号知识点,设计不同难度的练习题。从基本的去括号题目开始,逐步增加难度,让学生在课堂上即时巩固所学知识。
教师选取部分学生的作业进行点评,及时纠正错误,强调运算规则和符号变化。同时,鼓励学生之间相互检查,提高学生发现和解决问题的能力。
(五)总结归纳
在总结归纳环节,教师引导学生回顾本节课所学的整式加减去括号知识。首先,让学生用自己的话总结整式的定义、性质以及加减去括号法则。接着,教师对学生的总结进行点评和补充,确保学生对知识点的全面掌握。
最后,教师强调整式的加减去括号在实际问题中的应用,如购物、行程安排等,让学生认识到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。同时,鼓励学生在课后继续探索整式的相关知识,为下一节课的学习打下基础。
人教版-数学-七年级上册-2.2 整式的加减 合并同类项教案

《七年级第二章整式的加减》教案2.2整式的加减(合并同类项)【教学课型】:新课◆课程目标导航【教学目标】:1.知识与技能:理解合并同类项的概念,掌握合并同类项的法则。
2.过程与方法:经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
渗透分类和类比的思想方法。
3.情感态度与价值观:在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
【教学重点】:重点:正确合并同类项。
【教学难点】:难点:找出同类项并正确的合并。
【教学方法】:分层次教学,讲授、练习相结合。
◆教学过程设计一、复习引入:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。
他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。
问:①他们两次共买了多少本软面抄和多少支水笔?②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?(知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动的投入程度和积极性,激发学生的求知欲。
)二、讲授新课:1.合并同类项的定义:(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所的结果都为(21x +25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。
(板书:合并同类项。
)2.例题:例1:找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并合并同类项。
解原式= ()()()22835245335245322222222+-=-++-++=-++-+xy y x xy y x xy xy y x y x根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
人教版数学七年级上册2.2.2整式的加减去括号法则优秀教学案例

(二)问题导向
1.引导学生提出问题,激发学生的思考。例如,可以让学生思考:为什么在整式加减中需要去括号?去括号后如何进行计算?
2.鼓励学生通过讨论、交流等方式解决问题,培养学生的逻辑思维能力和创新能力。
3.教师引导学生总结去括号法则的规律,加深学生对知识的理解。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习状况,激发学生的学习动力。
3.教师对学生的学习情况进行总结评价,关注学生的知识掌握程度和能力发展水平,为学生提供有针对性的指导。
4.鼓励学生积极参与课堂讨论,对学生的观点和问题给予充分的肯定和鼓励,培养学生的自信心。
(五)作业小结
1.布置具有针对性和实用性的作业,让学生在实践中运用去括号法则,巩固所学知识。
2.要求学生在完成作业后进行自我检查,培养学生的自我管理能力。
3.教师及时批改作业,给予学生反馈,帮助学生纠正错误,提高学生的学习效果。
4.对作业中出现的问题进行总结,为学生提供有针对性的辅导和指导。
(二)过程与方法
1.通过生活实例引入去括号法则,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.采用小组合作、讨论交流的教学方法,引导学生主动探究去括号法则的内涵,培养学生的合作精神和团队意识。
3.运用归纳总结的方法,让学生自主发现去括号法则的规律,提高学生的自主学习能力。
4.设计具有针对性和实用性的练习题,让学生在实践中运用去括号法则,培养学生的解决问题的能力。
在教学设计中,我充分考虑了学生的年龄特点和认知水平,以生动有趣的生活实例引入课题,激发学生的学习兴趣。通过引导学生观察、分析实例,让学生体会数学与生活的紧密联系,从而激发学生的学习兴趣。在教学过程中,我注重启发学生思考,培养学生的逻辑思维能力和创新能力。同时,我采用了小组合作、讨论交流的教学方法,让学生在合作中发现问题、解决问题,培养学生的合作精神和团队意识。
人教版七年级数学上册整式的加减《整式的加减(第2课时)》示范教学设计

2.2整式的加减(第2课时)教学目标1.类比有理数的去括号规律,归纳概括得出整式的去括号规律,体会“数式通性”.2.掌握整式的去括号规律.教学重点准确运用去括号规律进行整式的化简.教学难点括号前面是“-”号时如何去括号.教学过程新课导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段、非冻土地段的行驶速度分别是100 km/h和120 km/h.列车通过冻土地段比通过非冻土地段多用0.5 h,如果通过冻土地段需要u h,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少千米?【师生活动】学生独立列出问题中要求的两个表达式:100u+120(u-0.5),①100u-120(u-0.5).②【设计意图】列出两个含有括号的式子,在教师的指导下,引入对整式的去括号规律的研究.【问题】利用分配律计算:(1)12×1263⎛⎫⎪⎝⎭+;(2)-12×1143⎛⎫⎪⎝⎭-.【答案】解:(1)原式=12×16+12×23=2+8=10;(2)原式=-12×14+(-12)×13⎛⎫⎪⎝⎭-=-3+4=1.【师生活动】学生独立解答.【设计意图】通过数的运算,引导学生进行类比,为学习整式如何去括号做铺垫.新知探究一、探究学习【问题】如何对前面的①②两式去括号呢?100u+120(u-0.5),①100u-120(u-0.5).②【师生活动】学生仿照数的运算,对①②进行去括号运算.【设计意图】通过对整式去括号,让学生意识到,数的运算中去括号的方法,在整式的运算中依然成立.二、新知精讲【思考】整式的去括号法则是什么?【师生活动】学生通过对整式去括号得到的结果进行总结,找到去括号前后的符号变化规律.【设计意图】通过自己总结,让学生熟练掌握去括号时符号变化的规律.【新知】去括号时符号变化的规律如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【师生活动】让学生完成填空内容.【设计意图】进一步巩固学生对去括号时符号的变化特点的认识.【问题】你能利用分配律为下面的式子去括号吗?(1)+(x-3);(2)-(x-3).【师生活动】学生独立解决,完成去括号.【设计意图】巩固对去括号时符号变化的规律的认识.三、典例精讲【例1】化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b);(3)6x2-3y2-2(3y2-2x2);(4)3b-2c-[-4a+(c+3b)]+c.【答案】解:(1)原式=8a+2b+5a-b=13a+b;(2)原式=5a-3b-(3a2-6b)=5a-3b-3a2+6b=-3a2+5a+3b;(3)原式=6x2-3y2-6y2+4x2=(6x2+4x2)+(-3y2-6y2)=10x2-9y2;(4)原式=3b-2c-(-4a+c+3b)+c=3b-2c+4a-c-3b+c=4a-2c.【师生活动】学生独立完成,然后互相纠错、评价.【设计意图】通过做题,熟练掌握整式去括号时符号变化的规律,同时意识到去括号有助于将式子化简.【例2】两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?【答案】解:顺水航速=船速+水速=(50+a) km/h,逆水航速=船速-水速=(50-a) km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【师生活动】学生尝试独立解答,派出学生代表回答.【设计意图】该题涉及列式表示数量关系、去括号和合并同类项,为后面研究整式的加减做铺垫.课堂小结板书设计一、去括号的依据二、去括号时符号变化的规律课后任务完成教材第67页练习1~2题.。
七年级数学上册(人教版)2.2整式的加减(第1课时)合并同类项优秀教学案例

4.动态情境展示,直观感受同类项和合并同类项的意义:利用多媒体技术,我展示了与整式加减相关的动态场景,让学生直观地感受同类项和合并同类项的意义。这种教学方式有助于学生更好地理解和掌握知识。
在导入环节,我会注重创设生动有趣的情境,激发学生的学习兴趣。通过生活情境的展示,让学生感受到数学与生活的紧密联系,引出本节课的主题。同时,我会设计一些简单的数学问题,让学生尝试解决,从而引出同类项和合并同类项的概念。
(二)讲授新知
1.同类项的定义:通过具体的例子,解释同类项的概念,让学生明白同类项的定义及特点。
五、案例亮点
1.生活情境导入,激发学生学习兴趣:通过展示与整式加减相关的生活场景,激发学生的学习兴趣,引导学生主动参与学习活动。这种情境导入的方式能够让学生感受到数学与生活的紧密联系,提高他们的学习积极性。
2.小组合作学习,培养团队合作精神:在教学过程中,我将学生合理分组,让他们在小组合作中完成任务。这样的教学方式不仅能够提高学生的学习效果,还能够培养他们的团队合作精神和沟通能力。
在实际教学中,我发现很多学生在解决整式加减问题时,往往因为对同类项辨识不清而导致错误。针对这一问题,我设计了本节课的教学案例,旨在通过生动有趣的教学活动,让学生深刻理解同类项的概念,熟练掌握合并同类项的方法,提高他们的数学运算能力。
为了达到这个目标,我采用了情境教学法、小组合作学习和任务驱动法等多种教学方法。在教学过程中,我注重引导学生主动探究、积极讨论,培养他们的独立思考能力和团队合作精神。同时,我还设计了一系列具有针对性的练习题,让学生在实践中巩固所学知识,提高解决问题的能力。
人教版数学七年级上册整式的加减——去括号教案

§2.2《整式的加减》——去括号一、教学目标1.知识技能:掌握去括号的方法,充分注意变号法则的应用。
2.数学思考:利用运算律探究去括号法则的过程,发展抽象思维能力;通过计算带有括号的有理数的运算,发现去括号时的符号变化的规律,发展学生归纳的数学思想方法。
3.解决问题:经历计算并视察带有括号的有理数的运算过程,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生视察、分析、归纳能力。
4. 情感态度:通过共同探究活动,培养学生主动计算,视察、分析和归纳的意识,严谨治学的学习态度。
二、教学重难点1.能运用运算律探究去括号法则.(重点)2.会利用去括号法则将整式化简.(难点)三、学法指点1.教法:发现尝试法,充分体现学生的主体作用。
2.思路:设置新旧知识冲突,提出问题——解决问题——形成技能3.学法:计算视察归纳——去括号法则——练习巩固。
引导学生由数到式,由特殊到一般,突破难点。
四、教学过程设计(一)引入(创设情境引发冲突)用PPT 演示:1.合并同类项的法则是什么?2.计算:3ab-a2-ab+2a2设计意图:回忆旧知,为学习新知做好准备,承上启下。
(二)探究新知你能利用乘法分配律把括号去掉吗?⎪⎭⎫ ⎝⎛+⨯326112 ⎪⎭⎫ ⎝⎛-⨯-314112 带号乘带号写同号得正异号得负请你类比上面的方法将下列各式的括号去掉:(1)2(x+8)=2x+16(2)-2(x+8)=-2x-16(3)2(x-8)=2x-16(4)-2(x-8)=-2x+16视察讨论:去括号前后,括号内各项的符号有什么变化?归纳并板书去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与本来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与本来的符号相反.设计意图:引导学生视察四个式子的异同。
根据计算结果,引导学生视察分析,并总结得出结论,从而训练学生的视察思维能力和综合归纳能力。
人教版七年级数学上册2.2整式的加减(教案)

在上完这节整式的加减课程后,我思考了许多关于教学过程中的得与失。首先,我发现同学们在理解整式的概念上并没有太大困难,他们很快就能区分单项式和多项式,以及识别同类项。然而,在教学难点部分,比如合并同类项和去括号法则,学生们的掌握程度就不尽如人意了。
我意识到,在讲解合并同类项时,应该多举一些具体的例子,让学生通过实际操作来感受这个过程。同时,对于去括号法则,我可以通过设计一些有趣的小游戏,让学生在轻松愉快的氛围中掌握这个难点。
(3)整式的加减法则:详细讲解合并同类项、去括号等整式加减的运算方法,确保学生熟练掌握。
举例:如2x^2+3xy-4+5x^2-2xy+1=7x^2+xy-3。
(4)运用整式加减解决实际问题:教授如何将实际问题转化为整式加减问题,并运用所学知识求解。
举例:如购物找零问题,可表示为:购买物品总价=单价×数量+其他费用。
此外,我还发现课堂总结环节的重要性。通过回顾本节课所学内容,学生能够巩固知识点,形成体系。但在实际操作中,我发现总结的过程有些仓促,没有给学生们足够的时间消化吸收。因此,我决定在以后的课程中,适当延长总结环节,让学生充分理解和内化所学知识。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的加减的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式的加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学活动
教学内容
课本第73页至第74页.
教学目标
1.知识与技能
会用代数式表示简单的问题中的数量关系,能用合并同类项,去括号等法则验证所探索的规律.
2.过程与方法
经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,培养学生观察、分析、推理的能力.
3.情感态度与价值观
培养学生不怕困难、勇于探索的学习态度,合作交流的意识和能力,感受符号运算的作用.
重、难点与关键
1.重点:探索数量关系、运用符号表示规律,并通过运算验证规律.
2.难点:会用代数式表示问题中的数量关系.
3.关键:鼓励学生在探索规律的过程中从多角度进行考虑,用语言、表格、•符号多种形式表示规律.
教具准备
一盒火柴棍、月历、投影仪.
教学过程
一、活动1
1.如右图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中含有2,3或4个三角形,分别需要多少根火柴棒?如果图形中含有n个三角形,需要多少根火柴棍?
教师可以用屏幕分别排出由1个、2个、3个、4个……三角形排成的图形,也可以让学生亲自动手摆一摆,算一算.鼓励每个同学尽可能独立思考,并与同伴进行交流,教师关注学生在探索数量关系活动中的参与态度、思维水平和抽象能力:关注学生与他人进行合作
与交流的意识.
分析:
规律:(1)每增加一个三角形,火柴棍根数增加2.
(2)火柴棍根数是一组连续奇数.
(3)奇数可用整式2n+1(或2n-1)表示.
(4)用数值验证,当n=1时,2n+1=3,当n=2时,2n+1=5,当n=3时,2n+1=7;当n=4•时,2n+1=9……所以如果图形中含有n个三角形,需要(2n+1)根火柴棍.(“2n-1”不符合)思路点拨:鼓励学生从多角度思考,也可以分析表格中火柴棍根数与三角形个数之间的关系,如3=2×1+1,5=2×2+1,7=2×3+1,9=2×4+1,从而得排n•个三角形需要火柴棍根数为2n+1.
2.如下图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,……拼一拼,想一想,按照这样的方法拼成的第n 个正方形比第(n-1)个正方形多几个正方形?
(第1个正方形)(第2个正方形)(第3个正方形)教师鼓励学生亲自拼一拼,想一想,在探索规律的过程中从多个角度进行考虑,•并与同伴进行交流.教师关注学生在活动中的参与态度,能否积极地从事数量关系的探索过程,不要以教师的演示代替学生的实际活动.
分析:思路(1)设小正方形的边长为1,那么第1个正方形的边长为2,•小正方形的个数22=(1+1)2,第2个正方形的边长为3,小正方形的个数为32=(2+1)2,第3个正方形的边长为4,小正方形的个数为(3+1)2,……第(n-1)个正方形的边长为n-1+1=n,•小正方形的个数为n2,第n个正方形的边长为n+1,所以小正方形的个数为(n+1)2,因此,第n•个正方形比第(n-1)个正方形多
个小正方形.验证:当n=2时,(n+1)2-n2=32-22=5,这表明第2个正方形比第1个正方形多5个小正方形,同样,可验证第3个正方形比第2个正方形多(3+1)2-32=16-9=7(个).
思路(2),根据上面分析可知,第一个正方形共需22个小正方形,•第二个正方形需32个小正方形,第二个正方形比第一个正方形多32-22=5,同样,可算出第3个正方形比第2个正方形多7个小正方形,第4个正方形比第3个正方形多9个小正方形,…,5,7,9,…仍是一组连续奇数,这些奇数与序号之间的关系是:5=2×2+1,7=2×3=1,9=2×4+1,•猜想第n个正方形比第(n-1)个正方形(2n+1)个小正方形.•这个规律也可以从图形上直接发现,如下图所示阴影部分就是后一个图形比前一个图形多的小正方形.
待我们学习了整式乘法后,就知道(n+1)2-n2=2n+1.
二、活动2
一种笔记本售价为2.3元/本,如果买100本以上(不含100本),如果买100本以上(不含100本),售价为2.2元/本,列式表示买n本笔记本所需钱数(注意对n的大小要有所考虑),请同学们讨论下面的问题:
(1)按照这种售价规定,会不会出现多买比少买反而付钱少的情况?
(2)如果需要100本笔记本,怎样购买能省钱?
(3)了解实际生活中类似问题,并举出几个具体例子.
教师提出问题后,学生分四人小组进行讨论,并派代表在班组交流.
思路点拨:当n≤100时,n本笔记本所需钱数为2.3n元,当n>100时,n•本笔记本需要2.2n元.观察这两个整式,当n=100时,需花钱230元,而当n=101时,只需花钱2.2•×101=222.2(元),出现多买比少买反而付钱少的情况,所以如果需要100本笔记本,•应该购买101本能省钱.教师鼓励学生继续探索,至少需要多少本时,可以按上面方式购买.(按售价规定,购买97本时就比购买101本时多花钱了)
三、活动3
教师组织学生按四人小组,进行探究,鼓励每个学生尽可能独立思考,并与同伴进行交流.
思路点拨:对于问题(1)、(2)学生易得出结论.
(1)中浅色方框中的9个数字之和为99,99=9×11.
(2)中,浅色方框中9个数字之和为144,144=9×16.
(3)教师可让学生再找几个方框试试,看自己的规律是否还成立.教师引导学生,如果用a 表示中间的数,那么其余的8个数应如何用a 表示?学生经过观察,可得:
这9个数字之和=a-8+a-7+a-6+a-1+a+a+1+a+6+a+7+a+8=9a .
(4)这个结论对于任何一个月的月历都成立,因为此浅色方框无论移至月历中的哪个位置,方框中的9个数字都可以用上述方法表示.
(5)交叉两数的和相等.若设方框中第一行第一个数为a ,则第二个数为a+1,第二行第一个数为a+7,第二个数为a+8,而a+(a+8)=2a+8,(a+1)+(a+7)=2a+8,所以a+(•a+8)=(a+1)+(a+7).
(6)我们仍可以用字母a 表示方框中的数.如
a+7a+6a+1
a
a+(a+7)=2a+7,(a+6)+(a+1)=2a+7,因此有a+(a+7)=(a+1)+(a+6).
教学时,也可以先开放,让学生发现月历中数与数之间的关系,•再讨论浅色方框中数字和与该方框正中间的关系课本.也可以鼓励学生发展多种关系,用代数式表示自己的发现.例如方框中第一行两数之和比第二行两数之和小14;第二列两数之和比第一行两数之和大2;第一行的第二个数字与第二行的第一个数字的乘积比第一行第一个数与第二行第二个数字的乘积大6等.
四、作业布置
1.课本第61页习题2.1第11题.
2.选用课时作业设计.
课时作业设计
1
.探索规律并填空:
11111111(1)1;;;122232334341__________.(1)n n =-=-=-⨯⨯⨯=+
(2)计算:
1111 12233420062007 ++++
⨯⨯⨯⨯
.
2.如下图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中间小三角形三边的中点,得到图(3).
(1)图(1)、图(2)、图(3)中分别有多少个三角形?
(2)按上面的方法继续下去,第n个图形中有多少个三角形?
答案:
1.(1)1
n
-
12006
(2)
12007 n+
2.(1)1 4 9 (2)4n-3
第1题:(2)
1111 12233420062007 ++++
⨯⨯⨯⨯
=1-1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1112006
1
2006200720072007
-=-=.
第2题:(2)观察变化情况,可知,第n个图形比第n-1个图形多4个小三角形,•三角形的个数依次是1,5,9,13,…,分析每个图形三角形个数与图形序号之间的关系;第(2)、(3)、(4)图形中三角形个数分别表示为:
5=1+4=1+4×(2-1),9=1+4×2=1+4×(3-1).
B=1+12=1+4×(4-1)而图(1)中1=1+4×(1-1)
所以第n个图形中有1+4(n-1)=4n-3(个)三角形。