配方法求二次函数的顶点坐标与对称轴的学案_opt
2.2.2二次函数的性质与图像教案学生版

2.2.2 二次函数的性质与图象【学习要求】1.掌握二次函数的概念及性质;2.会求抛物线的对称轴与顶点坐标;3.会用配方法将二次函数y =ax 2+bx +c 变形为y =a(x -h)2+k 的形式,从而会求二次函数的最值.【学法指导】通过探究多个具体的二次函数的图象,感知二次项系数对张口方向和张口大小的影响;通过探究具体的二次函数的图象和性质,归纳出二次函数的图象和性质;在探究二次函数的性质过程中培养分类讨论及数形结合的思想方法. 填一填:知识要点、记下疑难点1.函数y =ax 2(a ≠0)的图象是一条以原点 为顶点, y 轴为对称轴的抛物线.2.一元二次函数的定义:函数y =ax 2+bx +c(a ≠0)叫做二次函数,其图象是一条抛物线,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下. |a|越小图象开口就越大 , |a|越大图象开口就越小 . 抛物线的顶点坐标是(-b 2a,4ac -b 24a ),抛物线的对称轴是直线x =-b 2a. 3.一元二次函数y =ax 2+bx +c(a ≠0)的性质:当a>0时,函数在区间(-∞,-b 2a ]上是减函数 ,在[-b 2a,+∞)上是增函数 ,当x =-b 2a 时,y min =4ac -b 24a ;当a<0时,函数在区间(-∞,-b 2a ]上是增函数 ,在[-b 2a,+∞)上是 减函数 ,当x =-b 2a 时,y max =4ac -b 24a. 研一研:问题探究、课堂更高效[问题情境] 在初中我们学习过二次函数,但研究的不够深入.譬如:y =ax 2和y =ax 2+bx +c(a≠0)的图象之间有什么关系?y =ax 2+bx +c(a≠0)的单调性如何?何时取得最值?这些问题就是我们本节重点研究的问题. 探究点一 二次函数的概念问题1在初中我们学习过二次函数,那么二次函数是如何定义的?它的定义域是什么?问题2对于二次函数y =ax 2(a ≠0) ,观察下面的图象,说出a 的变化是如何影响其图象的张口的大小的?探究点二 二次函数的性质例1 试述二次函数f(x)=12x 2+4x +6的性质,并作出它的图象.跟踪训练1 求函数y=-x2+2x+3的最值、顶点坐标、对称轴、与坐标轴的交点及函数的单调区间.问题1 由函数y=ax2(a≠0)的图象作怎样的变换就能得到函数y=a(x+h)2+k(a≠0)的图象?问题2由函数y=ax2的顶点和对称轴分别为(0,0)及y轴,你能得出函数y=a(x+h)2+k (a≠0)图象的顶点坐标及对称轴各是什么吗?问题3 二次函数y=ax2+bx+c (a≠0)与y=a(x+h)2+k (a≠0)之间有什么关系?例2已知函数y=ax2+(a-1)x+14的图象恒在x轴上方,求实数a的取值范围.跟踪训练2 已知函数f(x)=12x2-3x-34:(1)求函数图象的顶点坐标、对称轴方程和最值;(2)若x∈[1,4],求函数的值域.例3 求函数y=x2-2x+3在区间[0,a]上的最值,并求此时x的值.跟踪训练3 求函数f(x)=x2-2ax-1在区间[0,2]上的最小值.练一练:当堂检测、目标达成落实处1.已知一元二次函数y=-x2+2x+4,则函数 ( )A.对称轴为x=1,最大值为3B.对称轴为x=-1,最大值为5C.对称轴为x=1, 最大值为5D.对称轴为x=-1,最小值为32.若f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(-3,1)上 ( )A.单调递增 B.单调递减 C.先增后减D.先减后增3.把函数y=x2-2x的图象向右平移2个单位,再向下平移3个单位所得图象对应的函数解析式为_________.课堂小结:1.函数y=a(x-h)2+k(a≠0)的图象为一条抛物线:函数 y=a(x-h)2+k与函数y=ax2的图象形状相同,开口方向相同,函数y=a(x-h)2+k(a≠0)的图象的对称轴是直线x=h;顶点坐标为(h,k).2.二次函数y=a(x-h)2+k的图象是将函数y=ax2的图象先向上或向下平移|k|个单位,再向左或向右平移|h|个单位得到的.(移动规律可以简单记作:左加右减,上加下减)3.二次函数y=a(x-h)2+k的性质:(1)当a>0时,抛物线的开口向上,x<h时,y随x的增大而减小;x>h时,y随x的增大而增大,x=h时,函数有最小值是k.(2)当a<0时,抛物线的开口向下,x<h时,y随x的增大而增大;x>h时,y随x的增大而减小,x=h时,函数有最大值是k.。
二次函数之配方法求顶点式以及与一元二次方程的关系

§6.2二次函数的图像与性质⑸【课前自习】1. 根据y2 2.抛物线y =2(x +2)2+1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 3.抛物线y =-2(x -2)2-1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 4.抛物线y =-12(x +1)2-3与抛物线 关于x 轴成轴对称;抛物线y =-12(x +1)2-3 与抛物线 关于y 轴成轴对称;抛物线y =-12(x +1)2-3与抛物线 关于原点对称.5. y =a (x +m )2+n 被我们称为二次函数的 式.一、探索归纳:1.问题:你能直接说出函数y =x 2+2x +2 的图像的对称轴和顶点坐标吗? .2.你有办法解决问题①吗?y =x 2+2x +2的对称轴是 ,顶点坐标是 .3.像这样我们可以把一个一般形式的二次函数用 的方法转化为 式,从而直接得到它的图像性质.练习1.用配方法把下列二次函数化成顶点式:①y =x 2-2x -2 ②y =x 2+3x +2 ③y =2x 2+2x +2④y =ax 2+bx +c (a ≠0)4.归纳:二次函数的一般形式y =ax 2+bx +c (a ≠0)可以被整理成顶点式: ,说明它的对称轴是 ,顶点坐标公式是 .练习2.用公式法把下列二次函数化成顶点式:①y =2x 2-3x +4 ②y =-3x 2+x +2 ③y =-x 2-2x二、典型例题:例1、用描点法画出y =12x 2+2x -1的图像.⑴用 法求顶点坐标:⑶在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线:⑷观察图像,该抛物线与y 轴交与点 ,与x 轴有 个交点.例2、已知抛物线y =x 2-4x +c 的顶点A 在直线y =-4x -1上 ,求抛物线的顶点坐标.【课堂检测】1.用配方法把下列二次函数化成顶点式:①y =x 2-3x -1 ②y =x 2+4x +22.用公式法把下列二次函数化成顶点式:①y =-2x 2+3x -4 ②y =12x 2-x +23.用描点法画出y =x 2+2x -3的图像. ⑴用 法求顶点坐标:⑵列表:⑶在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线:①抛物线与y 轴交点坐标是 ;②抛物线与x 轴交点坐标是 ; ③当x = 时,y =0; ④它的对称轴是 ;⑤当x 时,y 随x 的增大而减小.【课外作业】1. 抛物线y =3x 2+2x 的图像开口向 ,顶点坐标是 ,说明当x = 时, y 有最 值是 .2. 函数y =-2x 2+8x +8的对称轴是 ,当x 时,y 随x 的增大而增大.3. 用描点法画出y =-12x 2-x +32的图像.⑴用法求顶点坐标:⑵列表:⑶在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线:①抛物线与y轴交点坐标是;抛物线与x轴交点坐标是;②当x=时,y=0;③它的对称轴是;④当x时,y随x的增大而减小.§6.3二次函数与一元二次方程一、知识准备在同一坐标系中画出二次函数y=x2-2x-3,y=x2-6x+9,y=x2-2x+3的图象并回答下列问题:⑴说出每个图象与x轴的交点坐标?⑵分析二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的坐标,与一元二次方程ax2+bx+c=0(a≠0)的根有什么关系?【归纳】〖例题解析〗例1.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为.〖当堂练习一〗1.不画图象,你能求出函数y=x2+x-6的图象与x轴的交点坐标吗?2.判断下列函数的图象与x轴是否有交点,并说明理由.(1)y=x2-x(2)y=-x2+6x-9(3)y=3x2+6x+113.抛物线y=2x2+8x+m与x轴只有一个交点,则m=.例2.抛物线y=ax2+bx+c与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线表达式.〖当堂练习二〗4.抛物线y =3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无5.如图,已知抛物线y =x 2+bx +c 的对称轴为x =2,点A 、B 均在抛物线上,且AB与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A .(2,3) B .(3,2) C .(3,3) D .(4,3)6.二次函数y =kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围.7.抛物线y =x 2-2x -8的顶点坐标是________,与x 轴的交点坐标是________. 8.已知抛物线y =mx 2+(3-2m )x +m -2(m ≠0)与x 轴有两个不同的交点.(1)求m 的取值范围;(2)判断点P (1,1)是否在抛物线上;【课后延伸】①已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是 .②已知抛物线y =12x 2+x +c 与x 轴没有交点.求c 的取值范围 .③已知函数y =mx 2-6x +1(m 是常数).⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值.④若二次函数y =-x 2+2x +k 的部分图象如图所示,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=3,另一个解x 2= .⑤二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax 2+bx +c =0的两个根.x 1= _________ ,x 2= _________ ; (2)写出不等式ax 2+bx +c >0的解集. _________ ;(3)写出y 随x 的增大而减小的自变量x 的取值范围. _________ ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围. _________ . ⑥阅读材料,解答问题.例.用图象法解一元二次不等式:x 2-2x -3>0.解:设y =x 2-2x -3,则y 是x 的二次函数.∵a =1>0,∴抛物线开口向上. 又∵当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3.∴由此得抛物线y =x 2-2x -3的大致图象如图所示.观察函数图象可知:当x <-1或x >3时,y >0.∴x 2-2x -3>0的解集是:x <-1或x >3. (1)观察图象,直接写出一元二次不等式:x 2-2x -3<0的解集是 _________ ; (2)仿照上例,用图象法解一元二次不等式:x 2-5x +6<0.(画出大致图象).⑦如图是抛物线y =ax 2+bx +c 的一部分,对称轴为直线x =1,若其与x 轴一交点为B (3,0),则由图象可知,不等式ax 2+bx +c >0的解集是 _________ .⑧已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A (4,0)、B (1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.。
二次函数配方法

——配方法
河南省济源市实验中学 田爱平
学习目标
1 使学生掌握通过配方确定抛物线的开口方 向,对称轴,顶点坐标及最值
2 理解二次函数 y ax2 bx c 的性质
3 在实际应用中体会二次函数作为一种数学 模型的作用,会利用二次函数的性质求实 际问题中的最大值或最小值
1 说出二次函数 y 4(x 2)2 1 图象的 开口方向,对称轴,顶点坐标,增减 性
2 它是由y=-4x2怎样平移得到的
1的开不口画方图向象,,对直称接轴说,出顶点y 坐 12标x2,增2x减 3性
2 不画图象,直接说出 y 2x2 4x 1
的开口方向,对称轴,顶点坐标,增减性
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标.
2a
4a
当x b 时,最大值为 4ac b2
2a
4a
1 求下列抛物线的开口方向,顶点坐标,对称轴, 增减性,最值
(1) y x2 2x 2 (2) y 2x2 8x (3) y 2x2 4x 8
2 抛物线如何 y 2x2 4x 5 平移得到 y 2x2
某商店将每件进价为80元的某种商品按每件100元出 售,一天可售出约100件,该店想通过降低售价、增 加销售量的办法来提高利润,经过市场调查,发现 这种商品单价每降低1元,其销售量可增加约10件。
1 请表示出商品降价x元与利润y元之间的关系?
2 将这种商品的售价降低多少时,能使销售利润最 大?最大利润是多少?
顶点坐标
b 2a
,
4ac 4a
b2
b 2a
九年级数学下二次函数复习学案苏科版

二次函数复习学案◆复习要求1.二次函数的开口方向、顶点坐标、对称轴、最值、抛物线平移以及增减性.2.求抛物线解析式的三种常用方法,并会灵活运用3.利用抛物线性质解决与之有关的生活实际问题.4.能解决抛物线与直线、相似三角形、圆等综合性问题.◆典型例题【例1】(1)抛物线y=-3+(x+1)2的顶点坐标是______,对称轴是_____,当x______时,y•随x的增大而增大;当x______时,y随x的增大而减小.(2)已知函数y=(m+1)x2m m 是二次函数,且图象的开口向下,则m=______,当x_____时,y随x的增大而增大;当x_____时,y随x的增大而减小.(3)要用长20m的铁栏杆,一面靠墙(墙的长度是15m),围成一个矩形的花圃,如果设垂直于墙的一边长为x(m),矩形的面积为y(m2),则y与x的关系式为_______,x•的取值X围是_______,当x_______时,y有最大值.(4)已知抛物线y=x2-2x+k-1,当k_____时,抛物线与x轴只有一个交点;当k_____时,抛物线与x轴有两个交点;当k______时,抛物线与x轴无交点.(5)二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c,a-b+c,4a-2b+c这些代数式中,值为正的有().A.5个B.4个C.3个D.2个(6)已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是().【例2】(1)如图,抛物线的图象经过A、B、C三点,求此抛物线的解析式、顶点坐标、对称轴,并讨论它们的增减性.(2)已知抛物线经过A(-1,0),B(3,0)和C(0,-3),求此抛物线解析式.(3)已知抛物线经过点(0,1),且顶点是(-1,2),求此抛物线的解析式.【例3】如图,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰好是水面中心,OA=,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至于落到池外?(2)若水池喷出的水流线形状与(1)相同,水池的半径为,要使水流不落到池外,此时水流的最大高度应达到多少米?(精确到)◆课堂作业1、如图,点A(-1,0),B(4,0)在x轴上,以AB为直径的半圆P交y轴于点C.(1)求经过A、B、C3点的抛物线的解析式;(2)设AC的垂直平分线交OC于D,连结AD并延长半圆P于点E,AC与EC相等吗?证明你的结论;(3)设点M为x轴负半轴上一点,OM=12AE,是否存在过点M的直线,使该直线与(1)中的抛物线的两个交点到y轴的距离相等?若存在,求这条直线的解析式;若不存在,请说明理由.2、如图,已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c 的图象经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.◆课后巩固(一)1.抛物线y=13(x-2)2-3与x轴的交点坐标是_______.2.已知一个二次函数的图象开口向下,且与y轴的负半轴相交,请写出一个满足条件的二次函数的解析式____________.3.某二次函数满足下列表格中的x,y的值:x …-2 -1 0 1 2 3 …y …9 4 1 0 1 4 …则该二次函数的解析式为_________,对称轴是_________,顶点坐标是_______.4.如图是二次函数y=ax2+bx+c的图象,下列结论中:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0;⑤4a+2b+c<0.正确的个数是().A.4个B.3个C.2个D.1个5.如图,将抛物线y=ax2+bx+c沿x轴翻转到虚线位置,那么所得到的抛物线的解析式为().A.y=-ax2+bx+c B.y=-ax2-bx+cC.y=-ax2-bx-c D.y=-ax2+bx-c6.已知抛物线y=3x2-2x+a与x轴有交点,则a的取值X围是().A.a<13B.a≤13C.a≤-13D.a≥137.已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴;(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.8.如图,施工队要修建一个横断面为抛物线的公路隧道,其高度为6m,宽度OM为12m,现以O点为原点,OM所在的直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求脚手架三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.◆课后巩固(二)1.已知二次函数y=12x2+bx+c的图象经过点A(c,-2),对称轴是直线x=3,则其解析式为________.2.抛物线y=ax2+2ax+a2+2的一部分图象如图1所示,那么该抛物线在y•轴的右侧与x轴的交点的坐标是________.3.已知:二次函数的图象过点(0,3),图象向右平移3个单位后的对称轴是y轴,向下平移2个单位后与x轴只有一个交点,则此二次函数的解析式为________.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象与x轴交于点A(m,0)和点B,且m>4,那么AB的长为().A.8-2m B.2m-8 C.m+4 D.m5.已知二次函数y=-2x2+2kx-3的顶点在x轴的负半轴上,则k的值等于().A.6 B.-6 C.6D.-66.如图是抛物线形拱桥,已知水位在AB位置时,水面宽46m,水位上升3m就达到警戒水位线CD,这时水面宽4m3,若洪水到来时,水位以每小时的速度匀速上升,则水过警戒线后淹到拱桥顶部的时间是().A.10h B.9h C.12h D.8h7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x (月)之间的关系(即前x个月的利润和y与x的关系).(1)根据图上信息,求累积利润y(万元)与时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?8.如图,抛物线y=-32-2333x轴于A、B两点,交y轴于点C,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC.①求E的坐标;②试判断四边形AEBC的形状,并说明理由;(3)试探求:在直线BC上是否存在一点P,使得△PAD的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.◆典型例题参考答案【例1】解:(1)(-13);直线x=-1;x>-1;x<-1;(2)m=-2;x<0;x>0.(3)y=-2x2+20x,52≤x≤10,x=5;(4)将方程组2210()y x x ky x⎧=-+-⎨=⎩轴消y后得x2-2x+k-1=0,∴△=8-4k.当△=0时,k=2;当△>0时,k<2;当△<0时,k>2.(5)数形结合,x=-1时,y>0;x=1时,y<0;x=-2时,y>0,a>0,-2b a>0,c<0,△=b 2-4ac>0,∴选A .(6)两个函数的常数项相同,应交在y 轴同一点,∴排除A ,C ,D 中a ,c 异号,△>0,抛物线与x 轴应有两个交点,∴排除D ,∴选B .【例2】解:(1)设y=ax 2+bx+c ,再将A (-1,0),B (0,-3),C (4,5)代入可求得a=1,b=-2,c=-3.∴y=x 2-2x -3,即y=(x -1)2-4.∴顶点(1,-4),对称轴是直线x=1,当x<1时,y 随x 的增大而减小;当x>1时,y 随x 的增大而增大.(2)∵A (-1,0),B (3,0)在x 轴上,∴设y=a (x+1)(x -3),再将C (0,-3)代入得a=1,y=(x+1)(x -3),即y=x 2-2x -3.(3)∵抛物线的顶点是(-1,2),∴设解析式为y=a (x+1)2+2,再将(0,1)代入得a=-1,∴y=-(x+1)+2,即y=-x 2-2x+1.【例3】解:(1)以柱子OA 所在直线为y 轴,过点O 的水平面线为x 轴,建立如图所示的直角坐标系,由题意可知右侧抛物线过点A (0,),顶点(1,).∴设解析式为y=a (x -1)2,∴,a=-1,∴抛物线解析式为y=-(x -1)2,即y=-x 2.要求水池的半径,就是求当y=0时,点C的横坐标.∴-(x-1)2+2.25=0.∴,(不合题意,舍去).即半径至少要.(2)∵形状与(1)相同,∴a=-1设最高点坐标为(m,k),解析式为y=-(x-m)2+k,由题意可得点(0,)和点(,0)在抛物线上.∴m=117,,即最高应达到.◆课堂作业参考答案1、解:(1)连结BC,由△AOC∽△BOC,得OC2=OA·OB=4,∴OC=2,∴点C坐标(0,2).∵A(-1,0),B(4,0)在x轴上,∴设解析式y=a(x+1)(x-4),将C(0,2)代入,得a=-12,∴y=-12x2+32x+2.(2)AC=CE.理由:易证∠ACD=∠CBA,∠ACD=∠CAE,∴∠CAE=∠ABC AC=EC.(3)不存在符合条件的直线.理由:连结BE.设AD=x,则OD=OC-CD=2-x,由x2=12+(2-x)2,得x=54,即AD=54.由△AOD∽△AEB,得OA ADAE AB=14,∴AE=4,OM=12AE=2,∴M(-2,0).设过M点的直线解析式为y=kx+b.∴0=-2k+b ,∴b=2k ,∴y=kx+2k .① 由2213222y kx k y x x =+⎧⎪⎨=-++⎪⎩消y , 得12x 2+(k -32)x+2k -2=0.② 由题意得方程②的两个根互为相反数,∴k=32,但这时方程②无实根, ∴不存在符合要求的直线. 2、解:(1)解方程x 2-6x+5=0,得x 1=5,x 2=1.由m<n ,有m=1,n=5.所以点A 、B 的坐标分别为A (1,0),B (0,5).将A (1,0),B (0,5)的坐标分别代入y=-x 2+bx+c ,得105.b c c -++=⎧⎧⎨⎨=⎩⎩b =-4解这个方程组,得c =5.. 所以抛物线的解析式为y=-x 2-4x+5.(2)由y=-x 2-4x+5,令y=0,得-x 2-4x+5=0,解这个方程,得x 1=-5,x 2=1.所以C 点的坐标为(-5,0),由顶点坐标公式计算,得点D (-2,9),过D 作x 轴的垂线交x 轴于M .则S △DMC =12×9×(5-2)=272,S 梯形MDBO =12×2×(9+5)=14. S △BOC =12×5×5=252. 所以S △BCD =S 梯形MDBO +S △DMC -S △BOC =14+272-252=15. (3)设P 点的坐标为(a ,0),因为线段BC 过B 、C 两点,所以BC 所在的直线方程y=x+5.那么,PH 与直线BC 的交点坐标为E (a ,a+5),PH 与抛物线y=-x 2-4x+5•的交点坐标为H(a,-a2-4a+5).由题意,得①EH=32EP,即(-a2-4a+5)-(a+5)=32(a+5).解这个方程,得a=-32或a=-5(舍去).②EH=23EP,得(-a2-4a+5)-(a+5)=23(a+5).解这个方程,得a=-23或a=-5(舍去).P点的坐标为(-32,0)或(-23,0).◆课后巩固(一)参考答案1.(5,0),(-1,0)2.如:y=-x2+3x-4 3.y=x2-2x+1 对称轴是直线x=1,顶点(1,0)4.A 5.C 6.B7.(1)y=12(x+1)2-3 顶点(-1,-3)对称轴是直线x=-1(2)设A(x1,0),B(x2,0),∴x1+x2=-2,x1x2=-5,∴│x1-x2│2=(x1+x2)2-4x1x2=24,│x1-x28.(1)M(12,0),P(6,6)(2)y=-16x2+2x(3)A(m,-16m2+2m),OB=m,AB=DC=-16m2+2m,AD=BC=12-2m,∴L=AB+AD+DC=-13(m-3)2+15,当m=3时,即OB=3m时,L的最大值为15m.◆课后巩固(二)参考答案1.y=12x2-3x+2 2.(1,0)3.y=19x2+23x+3 4.B 5.D 6.C7.(1)y=12x2-2x (2)10月末(3)万元8.(1)A(-3,0),B(1,0),C(0)(2)①E(-2)②AEBC是矩形∵AEBC 是平行四边形,且∠ACB=90° (3)存在,D (-1)A 点关于BC 的对称点A′,直线A′D :y=6x+2,直线BC :y=交点P (-37,7).。
人教版初三数学上册用配方法求二次函数的顶点坐标

运用配方法把二次函数一般式化为顶点式。 • 【学习难点】
当二次项系数不是正负1时,配方法的运用技巧。
知识回顾
一、完全平方公式:
a2 ±2ab +b2= ( a±b) 2
x2 6x (__3_2 _) (_x__3_)2
2 x 3
(x+3)2=25
系数化为1:x2+3x-8=0
x+3= 25
x=±5-3 x1=+5-3=2 x2=-5-3=-8
知识回顾
《学考精练》P6:10、用配方法证明:2x2-4x+7的值恒大于0.
解: 2 x 2 4 x 7
2( x 2 2 x 7 ) 2
2( x 2 2 x 1 1 7 ) 2
2x2 12x (_____) 2(____)2
2( x2 6x __3_2 _) 2(__x___3_)2
知识回顾
二、用配方法解一元二次方程:
x2+6x-16=0
如果是2x2+6x-16=0呢?
解:x2+6x =16
x2+6x+
6 2
2
=16+
6
2
2
2( x 2 2 x 1 5 ) 2
2x
12
5 2
2x 12 5 0 所以2x2-4x+7的值恒大于0.
知识总结
给出二次函数的一般式如何求顶点坐标?
(1)提公因式:提取二次项系数 (2)配方:加上再减去一次项系数绝对值一半的平方 (3)整理:前三项化为平方形式,后两项合并同类项 (4)化简:去掉中括号
《用配方法求二次函数图象的对称轴和顶点坐标》教案

《用配方法求二次函数图象的对称轴和顶点坐标》教案教学目标1、 经历探索二次函数c bx ax y ++=2的图象的作法和性质的过程2、 用配方法求二次函数图象的对称轴和顶点坐标教学重点和难点重点:用配方法求二次函数图象的对称轴和顶点坐标难点:用配方法求二次函数图象的对称轴和顶点坐标教学过程设计从学生原有的认知结构提出问题上一节课,我们研究了二次函数k h x a y +-=2)(中的a 、h 、k 对二次函数图象的影响。
这节课,我们研究一般形式的二次函数图象的作法和性质。
||a 越大,开口越小;||a 越小,开口越大当0>a 时,抛物线的开口向上;当0<a 时,抛物线的开口向下;当0>c 时,抛物线与y 轴的交点在原点的上方;当0<c 时,抛物线与y 轴的交点在原点的下方。
平移:左加右减 对称轴、顶点坐标:前相反,后相同师生共同研究形成概念 1、 用配方法求二次函数c bx ax y ++=2图象的对称轴和顶点坐标与学生回忆配方的步骤。
2、 讲解例题例1 用配方法求二次函数图象的对称轴和顶点坐标。
(1)522++=x x y ; (2)1622-+=x x y ; (3)432++=x x y 。
分析:此处可由老师和学生一起完成,明确配方的步骤。
例2 用配方法求二次函数图象的对称轴和顶点坐标。
(1))5)(2(++=x x y ; (2))1)(32(-+=x x y ; (3)2)4)(3(+++=x x y 。
分析:此例比上一例的难度有所提高,可先学生尝试做,再由老师指导。
随堂练习3、 书本 P 50 随堂练习4、 《练习册》 P 26 3小结用配方法求二次函数c bx ax y ++=2图象的对称轴和顶点坐标公式。
作业书本 P 55 习题2.5 1教学后记。
二次函数y=ax2+bx+c配方法

3.列表:根据对称性,选取适当值列表计算.
x …
2
-2
-1
0
1
2
3
4
…
y 3x 1 2
…
29
14
5
2
5
14
29
…
4.画对称轴,描点,连线:作出二次函数y=3(x-1)2+2 的图象.
学了就用,别客气
y 3x 6 x 5
2
y 2x2 12x 13
●
(1,2)
?
函数y=ax2+bx+c(a≠0)的应用
如图,两条钢缆具有相同的抛物线形状.按照图中的直角坐 标系 ,左面的一条抛物线可以用 y=0.0225x² +0.9x+10 表示 , 而且左右两条抛物线关于y轴对称. y 0.0225x 2 0.9 x 10
Y/m 10
桥面 -5 0 5
x/m
⑴钢缆的最低点到桥面的距离是多少? ⑵两条钢缆最低点之间的距离是多少? ⑶你是怎样计算的?与同伴交流.
⑴. 钢缆的最低点到桥面的距离是少?你是怎样计算 的?与同伴交流. 可以将函数y=0.0225x2+0.9x+10配方, 求得顶点坐标,从 而获得钢缆的最低点到桥面的距离; 2 2 y 0 . 0225 x 0.9 x 10 y 0.0225x 0.9 x 10
X=1
作出函数y=2x2-12x+13的图象.
(3,-5) X=3
●
一般地,对于二次函数y=ax² +bx+c,我们可以 利用配方法推导出它的对称轴和顶点坐标.
例.求次函数y=ax² +bx+c的对称轴和顶点坐标.
二次函数一般式化为顶点式求顶点坐标

重法点。难点:
把一般式y=ax²+bx+c化成顶点 式y=a(x-h)²+k去求顶点坐标方
一般地,抛物线y=a(x-h) 2+k与 y=ax2的 形状 相同,位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
七、堂上训练:用配方法求顶点坐标:
解:y=-2x2-8x-7 一般式
y
2(x 2 4x
7 提公因式指各项提 2) 取二次项系数;
y
2(x 2 4x 22 22
y
2( x
2) 2
1 2
7 中括号里加上一次项 ) 系数一半平减去一次
2 项系数一半平方;
中括号里写成完全 平方和常数两部分;;
注意:上加下减指向上平移加尾巴向平移减尾巴; 左加右减指向左平移心状加向右平移心状减。
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
3.顶点坐标是 (h,k) 。
1. y=a(x-h)2+k的顶点坐标是_(__h_,__k_)_, 对称轴是__直__线__x_=__h_
y=-2x2-8x-7 你知道是怎样配方的吗?
(1)“提”:提出二次项系数;
配 方 ( 2 )“配”:括号内配成完全平方;
(3)“化”:化成顶点式。
y=-2 (x+2) 2 + 1
六、举例:用配方法求顶点坐标:
解:y=-2x2-8x+6 一般式
y
2(x 2 4x