磁共振化学位移成像和频率选择脂肪抑制成像...

合集下载

常用脂肪抑制技术解读(二)

常用脂肪抑制技术解读(二)

常用脂肪抑制技术解读(二)● 化学位移法脂肪抑制技术基于化学位移法的选择性脂肪信号抑制:水和脂肪中氢质子周围化学环境的不同导致了它们在进动频率上的微小差别,这个差别用无量纲的ppm表示就是3.5ppm。

无论所使用的磁共振成像设备场强是多少,水和脂肪之间这个无量纲差异都是不变的。

但到了不同场强的成像设备,根据拉莫尔方程计算出来的以Hz为单位的频率差异就不同了。

磁共振成像设备的场强越高,这个频率差异就越大。

水和脂肪中氢质子核这种进动频率的差别为化学位移成像奠定了成像基础。

利用这种频率上的差异也可以实现选择性的脂肪信号抑制,这就是所说的化学位移法脂肪抑制,通常简称为Fat Sat。

与STIR脂肪抑制技术相比,利用化学位移法的脂肪信号抑制具有以下特点:01化学位移法脂肪抑制技术的临床优点相比于短时反转脂肪抑制STIR序列,化学位移法脂肪抑制具有以下两个突出的临床优点:1)化学位移法选择性脂肪抑制适用于更多的成像序列:与STIR 技术相比,化学位移法脂肪抑制可以作为一个成像技术选项,既可以用于T1加权成像,也可以用于T2加权成像,在序列上也可以同时兼容自旋回波序列家族和梯度回波序列家族。

化学位移法脂肪抑制的这种广适性使得它在临床上具有更广泛的应用。

2)化学位移法选择性脂肪抑制属于选择性脂肪抑制技术:这种选择性脂肪抑制技术可以特异性地抑制脂肪信号,这样对于鉴别出血或脂肪具有重要价值。

另一方面,这种选择性抑制脂肪信号也确保了组织中水中氢质子信号免受损失,因此相比于STIR脂肪抑制技术,化学位移法脂肪抑制具有更高的信噪比。

02化学位移法脂肪抑制技术的局限性相比于STIR脂肪抑制方法,化学位移法脂肪抑制技术也具有几方面自身的局限性:1)化学位移法选择性脂肪抑制对主磁场强度具有高度依赖性:当主磁场强度很低时,水和脂肪中氢质子核的进动频率从具体的Hz数来看差别就很小,也就是二者的进动频率点相离很近,如在0.2T的磁共振成像设备上,二者频率差异约为29Hz,而通常的射频激励脉冲宽度在数百个Hz或KHz量级,显然,这么窄的频率差异很容易被频率域更宽的射频脉冲所淹没,这是低场磁共振无法实现化学位移法脂肪信号抑制的根本原因。

磁共振成像脂肪抑制技术的初步探讨

磁共振成像脂肪抑制技术的初步探讨

陶仅德
谭琦轩
王青云




脂 肪抑 制是磁共 振成像 ( I重要 的成像 技术 , 理应 MR ) 合
Hale Waihona Puke 5例 , 子宫 5例 , 四肢 4 。年龄 5 7 例 ~ 0岁 , 中位年龄 4 岁 , 1 男 性2 6例 , 女性 2 4例 。 1 方法 :采用 P ip yocnIt a1 T磁共振成像仪 , . 2 hl s rsa ne . i G r 5
实用医技杂志 2 1 0 2年 3月第 1 9卷第 3 期
Ju o m ̄ o rci 1 dcI eh iu s f at a ia T c nq e ,Mac 0 2 V 1 1 ,N . P c Me rh2 1 , o. 9 0 3
27 ・ 5
磁共振成像脂肪抑制技术的初 步探讨
广 东省 东莞 市 东华 医5 (2 10  ̄ 531 )
1 资 料 与 方 法
图像进行 压脂效果 ( 压脂程度 、 匀度等 ) 均 和信噪 比( 图像 信
号/ 背景信号 ) 进行对 比分析 。
2 结 果
5 0例患者 中 , 阳性率 为 9 %(55 )其 中常规 T 、2均 0 4 /0 , lT
能发现可疑病变 , 压脂 后病 变显示更 明确 。各部位压脂效果 、
11 临床 资料 : 比分析 2 0 - 2 1 年在我 院行 MR 检查 . 对 09 0 1 I
并 同时加扫 S I TR和 S A R的患者 5 PI 0例 ,其中颅脑 2例 , 鼻 咽部 5例 , 眼眶 3例 , 颈部 6例 , 关节 1 , 0例 脊柱 1 , 0例 腹部
图像质量和扫描 时间, 见表 1 。

磁共振脂肪抑制序列意义

磁共振脂肪抑制序列意义

磁共振脂肪抑制序列意义磁共振成像(MRI)是一种非侵入性的医学影像技术,广泛应用于临床诊断和研究领域。

脂肪抑制序列是MRI中常用的一种技术,旨在通过抑制脂肪信号,提高对其他组织结构的可视化程度。

本文将详细介绍磁共振脂肪抑制序列的意义及其临床应用。

一、磁共振脂肪抑制序列的原理磁共振脂肪抑制序列的原理基于脂肪和水信号在磁场中的不同特性。

脂肪具有高信号强度,而其他组织如肌肉、骨骼和血液等信号较低。

通过特殊的脉冲序列和参数设置,可以有效抑制脂肪信号,使其他组织结构更加清晰可见。

二、磁共振脂肪抑制序列的临床应用1. 肿瘤检测与评估磁共振脂肪抑制序列在肿瘤检测与评估中具有重要意义。

脂肪抑制可以提高肿瘤周围组织的可视化程度,有助于确定肿瘤的大小、边界和浸润范围。

此外,脂肪抑制还可以帮助区分良性肿瘤和恶性肿瘤,提供更准确的诊断信息,对于治疗方案的选择和预后评估具有重要指导意义。

2. 骨关节疾病诊断磁共振脂肪抑制序列在骨关节疾病的诊断中也有广泛应用。

例如,在关节炎、关节滑膜炎和骨折等疾病中,脂肪抑制可以清晰显示关节腔、滑膜和软骨病变情况,有助于评估病变的严重程度和范围,指导临床治疗和手术决策。

3. 炎症和感染性疾病诊断磁共振脂肪抑制序列对于炎症和感染性疾病的诊断也具有重要意义。

炎症和感染性病变常伴随有水肿、渗出和血管扩张等特征,这些信号可以通过脂肪抑制来突出显示。

因此,磁共振脂肪抑制序列可以帮助医生确定病变的位置、范围和严重程度,指导治疗方案的制定和效果评估。

4. 血管疾病诊断磁共振脂肪抑制序列在血管疾病的诊断中也有重要作用。

脂肪抑制可以消除脂肪信号的干扰,使血管结构更加清晰可见。

例如,在肾动脉狭窄和颈动脉狭窄等血管疾病中,磁共振脂肪抑制序列可以帮助医生评估病变的程度和位置,指导治疗和手术决策。

三、磁共振脂肪抑制序列的优势与局限磁共振脂肪抑制序列具有许多优势,如高分辨率、多平面成像、无辐射等。

然而,也存在一些局限性,如对扰动敏感、扫描时间较长等。

磁共振脂肪抑制技术

磁共振脂肪抑制技术

磁共振脂肪抑制技术由于⼈体内脂肪组织中的氢质⼦和其它组织中的氢质⼦所处的分⼦环境不同,使得它们的共振频率不相同;当脂肪和其它组织的氢质⼦同时受到射频脉冲激励后,它们的弛豫时间也不⼀样。

在不同的回波时间采集信号,脂肪组织和⾮脂肪组织表现出不同的信号强度。

利⽤⼈体内不同组织的上述特性,磁共振物理学家们开发出了多种⽤于抑制脂肪信号的脉冲序列。

下⾯对四种脂肪抑制序列的基本原理、特点及应⽤价值作⼀个简单的介绍。

1. DIXON技术DIXON,即⽔脂分离技术,是基于脂肪和⽔处于不同的共振频率。

DIXON基于TSE或者3DGRE 序列,可⽣成四种对⽐图像,包括正相位(⽔和脂肪相位⼀致)、反相位(⽔和脂肪相位相反),还有经过后处理对两组图像信息相加或相减⽣成的脂相图和⽔相图(图1)。

当MR设备缺少⾼阶匀场,常规压脂⽆法解决时,需使⽤DIXON技术。

1.DIXON技术基本原理优点:(1) 对主磁场B0和射频场B1不均匀性不敏感(2) “⼀出四”,⼀次检查⽣成四种对⽐缺点:(1) 由于采集正相位和反相位图像,最⼩TR增加(2) 计算⽅法复杂,容易产⽣错误2. 频率选择饱和法利⽤脂肪和⽔的化学位移效应,脂肪和⽔分⼦中质⼦的进动频率存在差别(3.5ppm),在成像序列的射频脉冲施加前,先连续施加数个带宽较窄的预脉冲,如果预脉冲的频率与脂肪中质⼦进动频率⼀致,脂肪组织的将被连续激发⽽发⽣饱和现象,⽽⽔分⼦中的质⼦由于进动频率不同不被激发。

这时再施加射频脉冲,脂肪组织因为饱和不能再接受能量,因⽽不产⽣信号,从⽽达到脂肪抑制的⽬的(图2)。

2.频率饱和脂肪抑制基本原理优点:(1) 信号抑制的特异性较⾼,对其他组织信号影响⼩(2) 组织对⽐不会发⽣变化(3) Quick-Fatsat模式只稍为增加TR,使得如腹部增强扫描的屏⽓时间尽可能短缺点:(1) 对主磁场B0和射频场B1不均匀性敏感,尤其是MR没有⾼阶匀场时,压脂效果⽐较差(2) 场强依赖性较⼤,低场强中脂肪和⽔进动频率差别⼩3. 选择性⽔激发技术⽔激发技术也是基于化学位移技术。

【MRI小问】脂肪抑制成像的作用及各种序列介绍

【MRI小问】脂肪抑制成像的作用及各种序列介绍

【MRI⼩问】脂肪抑制成像的作⽤及各种序列介绍往期相关内容链接:【如何简单理解、认识MRI图像】【MRI⼩问】磁共振检查前须知【MRI⼩问】MR对⽐剂的应⽤须知【MRI⼩问】如何分辨T1WI与T2WI?⼀、为什么要进⾏脂肪抑制成像脂肪抑制(fat suppression, FS)是指通过应⽤特殊技术,使MR图像中的脂肪组织表现为低信号。

FS即可在T1WI(如Gd对⽐剂增强扫描),也可在T2WI(如区别⽔与脂肪的⾼信号)实现。

压脂后背景信号明显变暗,⿊⽩反差增⼤,⾼信号病变更易于显⽰。

不仅有利于显⽰病变,还能为疾病鉴别诊断提供依据,可提⾼诊断准确性。

在FS T2WI,如病变组织含⽔较多,⾼信号将更明显,易于识别;在FS T1WI增强扫描时,由于没有脂肪信号的⼲扰,将更容易观察和评价病变的强化程度,这对显⽰肌⾻系统和眼眶病变尤为重要。

能够抑制脂肪信号的MRI技术有:①反相位成像(Dixon技术,体素内⽔脂相位⼤⼩相减);②频率选择性脂肪抑制,常⽤的技术有CHEMSAT(通⽤电⽓)、FATSAT(西门⼦)、SPIR和SPAIR(飞利浦),前⼆者常被称为化学饱和法(CHESS);③T1恢复时间依赖脂肪抑制,⼜称短时反转恢复(STIR);④其他,包括选择性⽔激励成像(3D-FATS,Proset,Quick Fatsat)、层⾯选择梯度反转技术以及⼀些将脉冲序列混合应⽤的成像技术。

⼆、反相位成像脂肪抑制是如何实现的?相位指氢质⼦围绕外磁场进动时,每⼀个磁矩在进动轨迹上的位置。

同相位指组织中所有进动质⼦的磁矩在某⼀时刻处于处于同⼀位置,失相位指组织中质⼦的磁矩不能保持在同⼀位置⽽逐渐离散的过程,反相位指两种组织的磁矩在某⼀时刻处于180°相反⽅向的状态。

在静磁场中脂肪和⽔质⼦的共振频率存在轻微差异,他们之间的化学位移是3.5ppm。

利⽤脂肪和⽔质⼦的相位处于180°相反⽅向或相同⽅向时分别采集MR信号,就可以产⽣反相位或同相位图像。

如何做好磁共振脂肪抑制成像

如何做好磁共振脂肪抑制成像

如何做好磁共振脂肪抑制成像人体内到处都是脂肪,脂肪信号在MRI中表现的都是比较高的信号,这主要是由于脂肪的磁豫时间和组织特性所决定。

高的信号会使整体图像的动态灰阶范围增加,从而降低了感兴趣组织之间的对比度,也因为脂肪呈现的高信号对于成像中运动伪影也有一定的放大作用。

对于脂肪中脂质子和水质子的进动频率不一样,会在脂肪-水交界面产生暗带,这种就是常说的化学位移伪影,它会影响图像中解剖细节的显示。

通常高的脂肪信号存在会大大干扰疾病的突显也会不同程度增加运动伪影的产生,为了提高图像质量,通常在扫描部位的序列中都会常规扫描一个施加了脂肪抑制技术的序列(对于特殊部位除外),这样会提高病灶的显示、增加组织对比及减少运动伪影等。

在磁共振成像中,脂肪抑制不是单一的方法。

它由几种不同的技术组成,每种技术都旨在解决各种成像场景的特定需求,例如:小视野成像(例如关节)、大视野成像(例如腹部)、偏离中心成像(例如肩部)以及从图像中消除暗带(化学位移效应)。

脂肪抑制面临的挑战主要在于考虑其对图像信噪比(SNR)的影响和对B0场不均匀的敏感性的情况下,找到适合特定应用的最优和稳定的技术。

在以下不同类型的脂肪抑制技术中,先了解脂肪的相关MR特性,然后利用这些特性进行脂肪抑制的方式。

虽然没有一种单一的技术可以在所有情况下提供完美的脂肪抑制,但很好地理解这些不同技术背后的原理可以帮助在特定的临床应用中选择适当的脂肪抑制技术。

一、脂肪MR的特性脂肪(或甘油三酯)是脂质的一个亚类,由与甘油分子结合的三种脂肪酸组成。

脂肪酸有几个质子峰:烯烃质子峰在5.3ppm;烯丙基质子和与羧基相邻的质子峰在2.0ppm;末端甲基峰在0.9ppm。

然而,主峰是位于1.3ppm的脂肪亚甲基。

由于相对于硅的水质子共振频率为4.7ppm,因此脂肪峰和水峰被分开3.4ppm。

这意味着1.5T时为210 Hz,3T时为420Hz。

下图所示,显示了一名健康志愿者的脊椎骨髓磁共振频谱(1H质子),显示水峰在4.7ppm。

脂肪抑制技术Dixon法

脂肪抑制技术Dixon法

脂肪抑制技术Dixon法Dixon法,该技术方法是由Dixon提出,其基础原理和Opposed-phase法相同,是利用自旋回波序列,在不一样回波时间,分别采集水和脂肪质子In Phase 和Opposed-phase两种回波信号,两种不一样相位信号相加,去除脂肪信号,产生一幅纯水质子影像,从而达成脂肪抑制目标。

Dixon法缺点是需要采集两组数据,成像时间长,而且受磁场非均匀性影响较大,所以,现在该方法在临床应用极少。

多年来对Dixon法进行了改善,即所谓三点Dixon法(Three-point Dixon),该方法是在脂肪和水共振频率相位移分别为0o、180o、-180o三个点采集回波信号,因为增加了一个信号采集点用于修正磁场均匀性偏差引发信号误差,很好地克服了磁场非均匀性对脂肪抑制效果影响。

据Bredella等报道,经改良后三点Dixon法在低场强开放式磁共振系统中应用,脂肪抑制效果满意,诊疗关节软骨损伤敏感性和特异性均较高,是一个十分有用检验技术。

脂肪抑制技术是磁共振成像中常见技术方法之一,关键用于对一些病变组织判别,如肾上腺瘤、骨髓渗透、脂肪瘤、脂肪浸润及皮脂腺瘤等,改善增强后组织间对比度、消除脂肪信号对病灶掩蔽(如眶内病变),或用脂肪抑制技术测量组织内脂肪含量,降低化学位移伪影等。

理想脂肪抑制技术应能依据脂肪含量及信号强度,判别该信号所代表特定组织。

脂肪饱和序列关键用于抑制有大量脂肪存在部位和对比增强扫描中,它关键缺点是对磁场非均匀性较敏感,不适适用于低场强磁共振成像系统。

短TI翻转恢复序列对磁场非均匀性不敏感,可在低场强磁共振成像系统中使用,多用于抑制纯脂肪组织和球状脂肪组织,但该序列特异性较差,对含有长T1和短T1组织信号强度难于区分。

反相位成像是一个快速、有效脂肪抑制技术,该序列被推荐用于判别含有少许脂肪病灶,关键缺点是对被脂肪包围小肿瘤检测可靠性差。

最初Dixon法因为成像时间长,对磁场非均性敏感、易受呼吸运动影响等缺点,临床应用较少。

MRI基础知识题库单选题100道及答案解析

MRI基础知识题库单选题100道及答案解析

MRI基础知识题库单选题100道及答案解析1. MRI 利用的是以下哪种物理现象?()A. 电离辐射B. 电磁感应C. 光电效应D. 康普顿效应答案:B解析:MRI 是利用人体内氢质子在磁场中受到射频脉冲激励而发生磁共振现象,产生信号,通过计算机处理成像,其利用的是电磁感应原理。

2. 磁共振成像中,T1 加权像重点突出的是组织的()A. 横向弛豫差别B. 纵向弛豫差别C. 质子密度差别D. 进动频率差别答案:B解析:T1 加权像主要反映的是组织纵向弛豫的差别。

3. 下列哪种元素不能用于MRI 成像?()A. 氢B. 碳C. 氮D. 氧答案:D解析:氢质子是MRI 成像的主要物质基础,碳和氮在特定情况下也可用于成像,而氧不用于MRI 成像。

4. 在MRI 中,图像的对比度主要取决于()A. 组织的T1 值B. 组织的T2 值C. 组织的质子密度D. 以上都是答案:D解析:组织的T1 值、T2 值和质子密度都会影响MRI 图像的对比度。

5. 以下哪种序列对出血最敏感?()A. T1WIB. T2WIC. 质子密度加权像D. 磁敏感加权成像(SWI)答案:D解析:SWI 对出血尤其是微出血非常敏感。

6. 下列哪种情况会导致T1 值缩短?()A. 组织含水量增加B. 磁场强度增加C. 大分子蛋白含量增加D. 顺磁性物质存在答案:C解析:大分子蛋白含量增加会使T1 值缩短。

7. 关于T2 加权像的描述,错误的是()A. 长TR、长TEB. 突出组织的T2 差别C. 对水肿敏感D. 对脂肪信号高答案:D解析:T2 加权像对脂肪信号不高。

8. 磁共振成像中,空间定位依靠的是()A. 梯度磁场B. 主磁场C. 射频脉冲D. 接收线圈答案:A解析:梯度磁场用于空间定位。

9. 下列哪种组织在T1 加权像上信号最高?()A. 脑脊液B. 脑灰质C. 脂肪D. 肌肉答案:C解析:脂肪在T1 加权像上信号最高。

10. 以下哪种技术可以减少运动伪影?()A. 快速自旋回波B. 梯度回波C. 呼吸门控D. 脂肪抑制答案:C解析:呼吸门控技术可以减少因呼吸运动导致的伪影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+ 如果回波时间正好落在同相位时刻,得到的将是
同相位图像 ,而如果回波时间正好落在反相位时 刻,得到的将是反相位图像。如果一个像素内既 有脂质成分又有水分子,那么在反相位上这两种 成分的信号相互抵消,像素的信号强度将降低;而 在同相位上这两种成分的信号相互叠加,则像素 的信号强度将相对增高。
+ 与频率选择脂肪抑制技术相比,磁共振化
+ 利用脂肪抑制前后同一加权序列进行比较。
可检测出病灶内含量较多的脂肪组织及比 较明显的脂质成份。
+ 化学位移成像技术是由leroy-willing等[6]于
1987年开发了该技术,在磁共振成像时, 像素的MR信号强度是像素内脂肪和水质子 信号的矢量和,由于组织中自由水的质子 和脂肪的质子的共振频率不同(相差 3.5ppm),当受到射频脉冲激发后,脂肪 氢质子和水质子位于同相位(相位差0°), 此时两种氢质子磁化矢量相互叠加称之为 同相位,几毫秒后两者相位相反(相位差 180°),此时两种氢质子磁化矢量相互抵 消称之为反相位。
+ 但是,这两种技术也存在一些不足:频率选择法脂肪抑制
技术在临床应用中存在场强依赖性大的缺点,在1.0T以上 的高场强磁共振机,脂肪和水中的质子进动频率差别才能 被识别和抑制脂肪;对磁场的均匀性要求高,如果磁场不 均匀,脂肪选择脉冲的中心频率很难与脂肪中的质子中心 频率一致,这样就会出现脂肪抑制不均匀的情况,随着磁 场技术的提高,此类问题正逐步解决。 化学位移成像需要 病人很好的屏气,若病人无法屏气,图像的质量就差一些, 目前只在T1WI实现了此项技术。虽然这两种技术都有一些 不足,但这并不能限制它们在实际工作当中的应用。在临 床工作中,我们应该取长补短,综合应用这两种技术来提 高我们的诊断准确率,不断探索这两种技术的更大应用价 值。
+ 腹部含脂病变的脂肪存在形式主要有两种:
一种是病变组织发生脂肪变性,以水脂混 合形式存在,脂滴可出现在细胞内或细胞 外间隙,主要病变有肾上腺腺瘤(95%)、 肝腺瘤(部分)、肝癌脂肪变性(部分) 等,
1A
+ 病理显示病灶内含有“空泡样结构”即脂
பைடு நூலகம்
肪成分,病变信号下降程度与脂肪含量相 关。
+
+谢谢!
学位移成像技术对于检测病灶内少量的脂 质更为敏感。这是因为假设某一像素信号 30%来自于脂肪组织70%来自于水,此时利 用频率选择法脂肪被抑制,还有70%水的信 号,而利用化学位移成像反相位时水与脂 肪信号相减只保留40%的信号强度;
+ 由此可见,当像素内为水脂混合形式存在时,应用化
学位移成像可出现明显的信号下降。当像素内的主要 成分为脂肪(皮下脂肪)或者水时,应用化学位移成 像时,信号下降就不明显了,此时应用频率选择法脂 肪抑制技术更为恰当。如在该研究中诊断肾血管平滑 肌脂肪瘤、畸胎瘤在频率选择法脂肪抑制中出现了明 显的信号下降,而在化学位移成像中没有出现明显的 信号下降。
+ 国内孙娟等在体外模型中显示,脂肪含量为23%时,
信号下降最显著。
+ 在临床工作中,这两种技术很容易实现,化学位移成
像只需16-20S左右的时间即可完成,简单易行;它对 场强的依赖性低,在低场强的机器上也可以很好的进 行同反相位的成像[9]。频率选择脂肪抑制脉冲序列具 有高选择性和特异性,它主要是抑制脂肪组织信号, 对其他组织的影响较小,还可用于多种序列,该脂肪 抑制在磁共振的T1WI和T2WI序列中均可以应用。 而 且二者对结果的判定较容易,只需在相同的窗宽和窗 位下观察病灶的信号有否下降,即可以判断病灶内有 无脂质或脂肪成分。
+ 以上序列,扫描肝脏层厚8mm,肾脏、肾上
腺、盆腔及较小病变层厚6mm;间隔1mm, 矩阵256×128 ,FOV40×30。以上病例均 行横断面扫描,必要时加扫矢状面或者冠 状面。
频率选择脂肪抑制技术是在成像时利用磁场中脂肪 质子的进动频率要比水分子的慢3.5ppm的原理,此时 如果在射频脉冲之前,先用以脂肪分子中氢质子进动频 率为中心频率的窄带宽射频脉冲对组织进行激发,这样 脂肪组织将被连续激发而产生选择性饱和现象,而水 分子的质子由于进动频率不同而不被激发,当给以射 频脉冲时已饱和的脂肪组织将不会接受激发,从而不 产生信号,脂肪组织被抑制,而事先未被激发的水分 子能够接受以后的射频脉冲激发从而产生信号。
+ 另一种是病灶内含有大量的成熟脂肪组织,
脂肪组织主要由脂肪细胞构成,频率选择 脂肪选择技术对此类脂肪的检测具有较高 的特异性,此类病变主要有脂肪瘤、血管 平滑肌脂肪瘤、畸胎瘤等.
+ GE Signa Twinspeed Excite 1.5T扫描仪,全部采用腹部
相控阵列线圈。 + 扫描序列包括:(1)T1WI 采用FSPGR脉冲序列。TR 180ms,TE值在同相位为4.4ms,反相位为2.1ms。 + (2) 频率选择脂肪脉冲T1WI(FST1WI), TR 180ms,TE 4.4ms. (3)T2WI:采用呼吸触发快速自旋回波,TR 20008000ms,TE 72-90ms,回波链长度10-16。 + (4)频率选择脂肪抑制脉冲T2WI(FST2WI),采用呼吸触发 快速自旋回波,TR 2000-8000ms,TE 72-90,回波链长 度10-16 。
患者男性,55岁,查体发现肝脏占位,超声提 示肝右叶占位病变。
河北医科大学第一医院放射科
雷立存
+ 腹部病变中是否含有脂肪/脂质及存在形式
对其定性十分重要,目前超声检查,CT检 查和常规MR检查对纯脂肪组织有很高的特 异性,但对于混合形式存在的脂肪的检出 很困难。而应用磁共振化学位移成像和频 率选择脂肪抑制成像对病变中的脂肪进行 探测,可以特异性的检出病变中脂肪/脂质 成份。
相关文档
最新文档