2008年北京市高考数学试卷(理科)

合集下载

高中数学2008年普通高等学校招生全国统一考试(北京卷)(理科)试题

高中数学2008年普通高等学校招生全国统一考试(北京卷)(理科)试题

高中数学2008年普通高等学校招生全国统一考试(北京卷)(理科) 试题 2019.091,已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UA B ð等于( )A .{}|24x x -<≤B .{}|34x x x 或≤≥C .{}|21x x -<-≤D .{}|13x x -≤≤2,若0.52a =,πlog 3b =,22πlog sin5c =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>3,“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4,若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线5,若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1C.96,已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-7,过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( )A .30B .45C .60D .908,如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )9,已知2()2a i i -=,其中i 是虚数单位,那么实数a = . 10,已知向量a 与b 的夹角为120,且4==a b ,那么(2)+b a b 的值为 .11,若231nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n = ,其展开式中的常数项为 .(用数字作答)12,如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;0(1)(1)limx f x f x ∆→+∆-=∆ .(用数字作答)13,已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >;②2212x x >;③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .14,某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩,.()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 ;第2008棵树种植点的坐标应为 .15,已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16,如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.17,甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 18,已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.19,已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值.20,对于每项均是正整数的数列12n A a a a :,,,,定义变换1T ,1T 将数列A 变换成数列1()T A :12111n n a a a ---,,,,.对于每项均是非负整数的数列12m B b b b :,,,,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2()T B ; 又定义2221212()2(2)m mS B b b mb b b b =+++++++.设0A 是每项均为正整数的有穷数列,令121(())(012)k k A T T A k +==,,,.(Ⅰ)如果数列0A 为5,3,2,写出数列12A A ,;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(())()S T A S A =; (Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K ≥时,1()()k k S A S A +=.试题答案1, 【标准答案】: D【试题分析】: C U B=[-1, 4],()U A B ð={}|13x x -≤≤【高考考点】:集合【易错提醒】: 补集求错【备考提示】: 高考基本得分点 2, 【标准答案】: A【试题分析】:利用估值法知a 大于1,b 在0与1之间,c 小于0. 【高考考点】: 函数的映射关系,函数的图像。

2008高考北京数学理科试题及详细解答

2008高考北京数学理科试题及详细解答

2008年普通高等学校招生全国统一考试(北京卷)数 学(理科)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合)(B C A U 等于( ) A .{}|24x x -<≤B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤解:],4,1[-=B C U )(B C A U =}31|≤≤-x x 2.若0.52a =,πlog 3b =,22πlog sin 5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>解:0.521a =>,π0log 3log 1b ππ<=<=,222πlog sinlog 105c =<=,a b c ∴>> 3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解:函数()()f x x ∈R 存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必要条件显然成立。

4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:把P 到直线1x =-向左平移一个单位,两个距离就相等了,它就是抛物线的定义。

5.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1C .3D .9解:可行域是以(0,0),(0,1),(0.5,0.5)A B C -为顶点的三角形(如图),200x y y +≥+≥,0,0x y ∴==时20x y +=取最小值,0min 31z ==。

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)(后附答案解析)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)(后附答案解析)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分) 1.(5分)函数的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )A .B .C .D .3.(5分)在△ABC 中,=,=.若点D 满足=2,则=( )A .B .C .D .4.(5分)设a ∈R ,且(a +i )2i 为正实数,则a=( )A .2B .1C .0D .﹣15.(5分)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=() A .138B .135C .95D .236.(5分)若函数y=f (x )的图象与函数y=ln 的图象关于直线y=x 对称,则f (x )=( )A .e 2x ﹣2B .e 2xC .e 2x +1D .e 2x +27.(5分)已知曲线y=在点(3,2)处的切线与直线ax +y +1=0垂直,则a的值为( )A .2B .C .﹣D .﹣28.(5分)为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。

2008年北京市高考数学试卷(理科)(含解析版)

2008年北京市高考数学试卷(理科)(含解析版)

下条件:
①x1>x2;②x12>x22;③|x1|>x2.
其中能使 f(x1)>f(x2)恒成立的条件序号是

14.(5 分)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如
下:第 k 棵树种植在点 Pk(xk,yk)处,其中 x1=1,y1=1,当 k≥2 时,
T(a)表示非负实数 a 的整数部分,例如 T
(Ⅰ)如果数列 A0 为 5,3,2,写出数列 A1,A2; (Ⅱ)对于每项均是正整数的有穷数列 A,证明 S(T1(A))=S(A); (Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列 A0,存在正整数 K,
当 k≥K 时,S(Ak+1)=S(Ak).
第 5页(共 22页)
2008 年北京市高考数学试卷(理科)
. 的值
,其展开
式中的常数项为
.(用数字作答)
12.(5 分)如图,函数 f(x)的图象是折线段 ABC,其中 A,B,C 的坐标分
别 为 ( 0 , 4 ),( 2 , 0 ),( 6 , 4 ), 则 f ( f ( 0 )) =

=
.(用数字作答)
第 2页(共 22页)
13.(5 分)已知函数 f(x)=x2﹣cosx,对于[﹣ , ]上的任意 x1,x2,有如
(Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加 A 岗位服务的人数,求ξ的分布列.
18.(13 分)已知函数 间.
,求导函数 f′(x),并确定 f(x)的单调区
19.(14 分)已知菱形 ABCD 的顶点 A,C 在椭圆 x2+3y2=4 上,对角线 BD 所在 直线的斜率为 1.

高考试卷 全国普通高校招生统一考试数学(北京卷理科)(附答案 全字版)

高考试卷 全国普通高校招生统一考试数学(北京卷理科)(附答案 全字版)

高考试卷全国普通高校招生统一考试数学(北京卷理科)(附答案全字版)自己整理的高考试卷全国普通高校招生统一考试数学(北京卷理科)(附答案全字版)相关文档,希望能对大家有所帮助,谢谢阅读!2008年全国普通高等学校招生统一考试数学(理工农医)(北京卷)本试卷分为两部分:第一卷(选择题)和第二卷(非选择题)。

第一册1-2页,第二册3-9页,总分150。

考试时间120分钟。

考试结束后,这张试卷和答题卡应该一起归还。

卷一(选择题总分40)注意事项:1.在回答第一卷之前,考生必须在答题卡上写下自己的姓名、准考证号和考试科目。

2.为每个小问题选择答案后,用铅笔将答题卡上相应问题的答案标签涂黑。

如果需要改,用橡皮擦擦干净,然后选择其他答案。

你不能在试卷上回答它们。

一、这个大题有8个小题,每个小题5分,一共40分。

A.公元前2年.如果、那么()A.公元前3年.“函数中有反函数”就是“函数是世界上递增的函数”()A.充分和不必要的条件。

如果一个点到一条直线的距离比它点到一个点的距离小1,那么这个点的轨迹就是()A.圆b .椭圆c .双曲线d .抛物线5。

如果满足实数,则最小值为()A.0B.1C.D.9 6。

已知序列满足任意,则等于()A.公元前7年.圆的两条切线通过直线上的一点,当直线对称时,它们之间的夹角为()A.公元前8年.如图,移动点在立方体的对角线上。

交叉点是垂直于平面的直线,与立方体的表面相交。

如果,那么函数的图像大致是()a b c d m n p a1 B1 C1 d1y x a . o y x b . o y x c . o y x d . o 2008年全国高考数学(理工农医)(北京卷)第二卷(共110分)注意事项:1.用钢笔或圆珠笔直接把答案写在试卷上。

2.答题前,请将密封线中的项目填写清楚。

2.填空题:这个大题有6个小题,每个小题5分,共30分。

把答案填在问题的横线上。

9.如果已知是虚数单位,那么实数。

精选北京市高考理科数学试题及答案

精选北京市高考理科数学试题及答案

2008年普通高等学校招生全国统一考试 数学(北京卷)第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UA B ð等于( ) A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤2.若0.52a =,πlog 3b =,22πlog sin5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线5.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1CD .96.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-7.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .908.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知2()2a i i -=,其中i 是虚数单位,那么实数a = ___________. 10.已知向量a 与b 的夹角为120,且4==a b ,那么(2)+b a b 的值为 _________ .11.若231n x x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和为32,则n =_______ ,其展开式中的常数项为 ________ .(用数字作答)12.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =________;0(1)(1)limx f x f x∆→+∆-=∆ ________.(用数字作答)13.已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >是 _________ .14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点()k k k P x y ,处,其中11x =,11y =,当2k ≥时,()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 __________ ;第2008棵树种植点的坐标应为________ . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.16.(本小题共14分)如图,在三棱锥P ABC -中,2AC BC==,90ACB ∠=,AP BP AB ==,PC AC ⊥.ABCD MN P A 1B 1C 1D 1A BP(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.17.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.18.(本小题共13分)已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间. 19.(本小题共14分)已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1. (Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值. 20.(本小题共13分)对于每项均是正整数的数列12n A a a a :,,,,定义变换1T ,1T 将数列A 变换成数列1()T A :12111n n a a a ---,,,,.对于每项均是非负整数的数列12m B b b b :,,,,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2()T B ; 又定义2221212()2(2)m m S B b b mb b b b =+++++++.设0A 是每项均为正整数的有穷数列,令121(())(012)k k A T T A k +==,,,. (Ⅰ)如果数列0A 为5,3,2,写出数列12A A ,; (Ⅱ)对于每项均是正整数的有穷数列A ,证明1(())()S T A S A =;(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K ≥时,1()()k k S A S A +=.参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.D2.A3.B4.D 5.B 6.C 7.C8.B 二、填空题(本大题共6小题,每小题5分,共30分) 9.1-10.011.51012.22-13.②14.(12), (3402), 三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 16.(共14分) 解法一:(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =, PD AB ∴⊥. AC BC =, CD AB ∴⊥.PD CD D =, AB ∴⊥平面PCD . PC ⊂平面PCD , PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠=,即ACBC ⊥,且AC PC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角.AC BDPABE P在BCE △中,90BCE ∠=,2BC =,2BE AB ==sin BC BEC BE ∴∠==. ∴二面角B AP C --的大小为arcsin. (Ⅲ)由(Ⅰ)知AB ⊥平面PCD ,∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . 平面APB 平面PCD PD =, CH ∴⊥平面APB .CH ∴的长即为点C 到平面APB 的距离. 由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =,PC ∴⊥平面ABC . CD ⊂平面ABC , PC CD ∴⊥.在Rt PCD △中,12CD AB ==,PD ==2PC ∴=.23PC CD CH PD ∴==.∴点C 到平面APB 的距离为3. 17.(共13分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A ==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)4P P ξξ==-==,ξ的分布列是ABDPH18.(共13分)解:242(1)(2)2(1)()(1)x x b x f x x ----'=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减.当2b >时,函数在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数在(1)-∞,上单调递减,在(1)+∞,上单调递减. 19.(共14分)解:(Ⅰ)由题意得直线BD 的方程为1y x =+.因为四边形ABCD 为菱形,所以AC BD ⊥.于是可设直线AC 的方程为y x n =-+.由2234x y y x n⎧+=⎨=-+⎩,得2246340x nx n -+-=.因为A C ,在椭圆上,所以212640n∆=-+>,解得33n -<<. 设A C ,两点坐标分别为1122()()x y x y ,,,, 则1232n x x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122ny y +=.所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,.由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-.所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=,所以AB BC CA ==.所以菱形ABCD 的面积2S =. 由(Ⅰ)可得22221212316()()2n AC x x y y -+=-+-=,所以2316)S n n ⎛=-+<< ⎝⎭.所以当0n =时,菱形ABCD 的面积取得最大值 20.(共13分)(Ⅰ)解:0532A :,,,10()3421T A :,,,,1210(())4321A T T A =:,,,;11()43210T A :,,,,, 2211(())4321A T T A =:,,,.(Ⅱ)证明:设每项均是正整数的有穷数列A 为12n a a a ,,,,则1()T A 为n ,11a -,21a -,,1n a -,从而112(())2[2(1)3(1)(1)(1)]n S T A n a a n a =+-+-+++-222212(1)(1)(1)n n a a a ++-+-++-.又2221212()2(2)n n S A a a na a a a =+++++++,所以1(())()S T A S A -2(1)0n n n n =-+++=,故1(())()S T A S A =. (Ⅲ)证明:设A 是每项均为非负整数的数列12n a a a ,,,.当存在1i j n <≤≤,使得i j a a ≤时,交换数列A 的第i 项与第j 项得到数列B ,则()()2()j i i j S B S A ia ja ia ja -=+--2()()0j i i j a a =--≤.当存在1m n <≤,使得120m m n a a a ++====时,若记数列12m a a a ,,,为C ,则()()S C S A =.所以2(())()S T A S A ≤.从而对于任意给定的数列0A ,由121(())(012)k k A T T A k +==,,, 可知11()(())k k S A S T A +≤.又由(Ⅱ)可知1(())()k k S T A S A =,所以1()()k k S A S A +≤. 即对于k ∈N ,要么有1()()k k S A S A +=,要么有1()()1k k S A S A +-≤.因为()k S A 是大于2的整数,所以经过有限步后,必有12()()()k k k S A S A S A ++===.即存在正整数K ,当k K ≥时,1()()k k S A S A +=.。

2008年高考数学试题及答案

2008年高考数学试题及答案

2008年高考北京理科数学详解一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()U A B ð等于( )A .{}|24x x -<≤B .{}|34x x x 或≤≥C .{}|21x x -<-≤D .{}|13x x -≤≤【标准答案】: D【试题分析】: C U B=[-1, 4],()U A B ð={}|13x x -≤≤ 【高考考点】:集合【易错提醒】: 补集求错【备考提示】: 高考基本得分点 2.若0.52a =,πlog 3b =,22πlo g sin5c =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 【标准答案】: A【试题分析】:利用估值法知a 大于1,b 在0与1之间,c 小于0. 【高考考点】: 函数的映射关系,函数的图像。

【易错提醒】: 估值出现错误。

【备考提示】: 大小比较也是高考较常见的题型,希望引起注意。

3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【标准答案】: B【试题分析】: 函数()()f x x ∈R 存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必有条件显然成立。

【高考考点】: 充要条件,反函数,映射关系,函数单调性。

【易错提醒】: 单调性与一一对应之间的关系不清楚 【备考提示】: 平时注意数形结合训练。

4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线【标准答案】: D【试题分析】: 把P 到直线1x =-向左平移一个单位,两个距离就相等了,它就是抛物线的定义。

2008年北京市高考数学试卷(理科)

2008年北京市高考数学试卷(理科)

2008年北京市高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2008•北京)已知全集U R =,集合{|23}A x x =-<,{|1B x x =<-或4}x ,那么集合AB 等于( )A .{|13}x x -<<B .{|1x x -或3}x >C .{|21}x x -<-D .{|13}x x -<2.(5分)(2008•北京)若0.52a =,log 3b π=,22log sin 5c π=,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.(5分)(2008•北京)“函数()()f x x R ∈存在反函数”是“函数()f x 在R 上为增函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(5分)(2008•北京)若点P 到直线1x =-的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线5.(5分)(2008•北京)若实数x ,y 满足1000x y x y x -+⎧⎪+⎨⎪⎩则23x y z +=的最小值是( )A .0B .1 CD .96.(5分)(2008•北京)已知数列{}n a 对任意的p ,*q N ∈满足p q p q a a a +=+,且26a =-,那么10a 等于( ) A .165-B .33-C .30-D .21-7.(5分)(2008•北京)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线1l ,2l ,当直线1l ,2l 关于y x =对称时,它们之间的夹角为( ) A .30︒B .45︒C .60︒D .90︒8.(5分)(2008•北京)如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M ,N .设BP x =,MN y =,则函数()y f x =的图象大致是( )A .B .C .D .二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2008•北京)已知2()2a i i -=,其中i 是虚数单位,那么实数a = . 10.(5分)(2008•北京)已知向量a 与b 的夹角为120︒,且||||4a b ==,那么(2)b a b +的值为 .11.(5分)(2008•北京)若231()nx x +展开式的各项系数之和为32,则n = ,其展开式中的常数项为 .(用数字作答)12.(5分)(2008•北京)如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f = ;0(1)(1)lim x f x f x→+-= .(用数字作答)13.(5分)(2008•北京)已知函数2()cos f x x x =-,对于[2π-,]2π上的任意1x ,2x ,有如下条件:①12x x >;②2212x x >;③12||x x >.其中能使12()()f x f x >恒成立的条件序号是 .14.(5分)(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点(k k P x ,)k y 处,其中11x =,11y =,当2k 时,111215[()()]5512()()55k k k k k k x x T T T k k y y T T ----⎧=+--⎪⎪⎨--⎪=+-⎪⎩(a )表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 ;第2009棵树种植点的坐标应为 .三、解答题(共6小题,满分80分)15.(13分)(2008•北京)已知函数2()sin 3sin sin()(0)2f x x x x πωωωω=++>的最小正周期为π. (1)求ω的值;(2)求函数()f x 在区间[0,2]3π上的取值范围. 16.(14分)(2008•北京)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=︒,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.17.(13分)(2008•北京)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 18.(13分)(2008•北京)已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.19.(14分)(2008•北京)已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(Ⅰ)当直线BD 过点(0,1)时,求直线AC 的方程; (Ⅱ)当60ABC ∠=︒时,求菱形ABCD 面积的最大值.20.(13分)(2008•北京)对于每项均是正整数的数列1:A a ,2a ,⋯,n a ,定义变换1T ,1T 将数列A 变换成数列1T (A ):n ,11a -,21a -,⋯,1n a -;对于每项均是非负整数的数列1:B b ,2b ,⋯,m b ,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2T (B );又定义S (B )22212122(2)m m b b mb b b b =++⋯++++⋯+.设0A 是每项均为正整数的有穷数列,令121(())(0k k A T T A k +==,1,2,)⋯.(Ⅰ)如果数列0A 为5,3,2,写出数列1A ,2A ;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(S T (A ))S =(A );(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K 时,1()()k k S A S A +=.2008年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U R =,集合{|23}A x x =-<,{|1B x x =<-或4}x ,那么集合A B等于( ) A .{|13}x x -<<B .{|1x x -或3}x >C .{|21}x x -<-D .{|13}x x -<【考点】1H :交、并、补集的混合运算【分析】由题意全集U R =,集合{|23}A x x =-<,{|1B x x =<-或4}x ,根据交集的定义计算AB .【解答】解:集合{|23}A x x =-<,{|1B x x =<-或4}x ,∴集合{|21}AB x x =-<-,故选:C .【点评】此题主要考查集合的交集运算,比较基础. 2.(5分)若0.52a =,log 3b π=,22log sin 5c π=,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>【考点】GF :三角函数的恒等变换及化简求值【分析】利用估值法知a 大于1,b 在0与1之间,c 小于0. 【解答】解:20sin15π<<, 由指对函数的图象可知:1a >,01b <<,0c <, 故选:A .【点评】估值法是比较大小的常用方法,属基本题.3.(5分)“函数()()f x x R ∈存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件【分析】函数()()f x x R ∈存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必要条件显然成立【解答】解:“函数()f x 在R 上为增函数” ⇒ “函数()()f x x R ∈存在反函数”; 反之取()()f x x x R =-∈,则函数()()f x x R ∈存在反函数,但是()f x 在R 上为减函数. 故选:B .【点评】本题考查充要条件的判断及函数存在反函数的条件,属基本题.4.(5分)若点P 到直线1x =-的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线【考点】6K :抛物线的定义【分析】把直线1x =-向左平移一个单位变为2x =-,此时点P 到直线2x =-的距离等于它到点(2,0)的距离,这就是抛物线的定义.【解答】解:因为点P 到直线1x =-的距离比它到点(2,0)的距离小1, 所以点P 到直线2x =-的距离等于它到点(2,0)的距离, 因此点P 的轨迹为抛物线. 故选:D .【点评】本题考查抛物线的定义.5.(5分)若实数x ,y 满足1000x y x y x -+⎧⎪+⎨⎪⎩则23x y z +=的最小值是( )A .0B .1 CD .9【考点】7C :简单线性规划【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件1000x y x y x -+⎧⎪+⎨⎪⎩画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解答】解:约束条件1000x y x y x -+⎧⎪+⎨⎪⎩对应的平面区域如图示:由图可知当0x =,0y =时,目标函数Z 有最小值,20331x y min Z +=== 故选:B .【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6.(5分)已知数列{}n a 对任意的p ,*q N ∈满足p q p q a a a +=+,且26a =-,那么10a 等于() A .165-B .33-C .30-D .21-【考点】81:数列的概念及简单表示法【分析】根据题目所给的恒成立的式子p q p q a a a +=+.给任意的p ,*q N ∈,我们可以先算出4a ,再算出8a ,最后算出10a ,也可以用其他的赋值过程,但解题的原理是一样的.给 【解答】解:42212a a a =+=-, 84424a a a ∴=+=-, 108230a a a ∴=+=-,故选:C .【点评】这道题解起来有点出乎意料,它和函数的联系非常密切,通过解决探索性问题,进一步培养学生创新能力,综合运用数学思想方法分析问题与解决问题的能力. 7.(5分)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线1l ,2l ,当直线1l ,2l 关于y x =对称时,它们之间的夹角为( ) A .30︒B .45︒C .60︒D .90︒【考点】7J :圆的切线方程【专题】16:压轴题【分析】过圆心M 作直线:l y x =的垂线交于N 点,过N 点作圆的切线能够满足条件,不难求出夹角为060.明白N 点后,用图象法解之也很方便【解答】解:圆22(5)(1)2x y -+-=的圆心(5,1),过(5,1)与y x =垂直的直线方程:60x y +-=,它与y x = 的交点(3,3)N ,N 到(5,1)距离是22,两条切线1l ,2l ,它们之间的夹角为60︒.故选:C .【点评】本题考查直线与圆的位置关系,以及数形结合的数学思想;这个解题方法在高考中应用的非常普遍.8.(5分)如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M ,N .设BP x =,MN y =,则函数()y f x =的图象大致是( )A .B .C .D .【考点】LO :空间中直线与直线之间的位置关系 【专题】16:压轴题【分析】只有当P 移动到正方体中心O 时,MN 有唯一的最大值,则淘汰选项A 、C ;P 点移动时,x 与y 的关系应该是线性的,则淘汰选项D .【解答】解:设正方体的棱长为1,显然,当P 移动到对角线1BD 的中点O 时,函数y MN AC ===取得唯一最大值,所以排除A 、C ;当P 在BO 上时,分别过M 、N 、P 作底面的垂线,垂足分别为1M 、1N 、1P , 则1111222cos 23y MN M N BP x D BD x ====∠=是一次函数,所以排除D .故选:B .【点评】本题考查直线与截面的位置关系、空间想象力及观察能力,同时考查特殊点法、排除法.二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知2()2a i i -=,其中i 是虚数单位,那么实数a = 1- . 【考点】5A :复数的运算【分析】直接化简方程,利用复数相等条件即可求解. 【解答】解:2221122a ai a ai i --=--=,1a =- 故答案为:1-【点评】考查复数的代数形式的混合运算,复数相等条件,易错处增根1a =没有舍去.高考基本得分点.10.(5分)已知向量a 与b 的夹角为120︒,且||||4a b ==,那么(2)b a b +的值为 0 . 【考点】9O :平面向量数量积的性质及其运算 【分析】由向量数量积公式进行计算即可.【解答】解:由题意知22(2)2244cos12040b a b a b b +=+=⨯⨯︒+=. 故答案为0.【点评】本题考查向量数量积运算公式. 11.(5分)若231()nx x+展开式的各项系数之和为32,则n = 5 ,其展开式中的常数项为 .(用数字作答) 【考点】DA :二项式定理 【专题】11:计算题【分析】显然展开式的各项系数之和就是二项式系数之和,也即5n =;将5拆分成“前3后2”恰好出现常数项,2510C =.【解答】解:展开式的各项系数之和为32 232n ∴=解得5n = 231()n x x+展开式的通项为10515r rr T C x -+= 当2r =时,常数项为2510C =. 故答案为5,10.【点评】本题主要考查了二项式定理的应用,课本中的典型题目,套用公式解题时,易出现计算错误,二项式的考题难度相对较小,注意三基训练.12.(5分)如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f = 2 ;0(1)(1)limx f x f x→+-= .(用数字作答)【考点】3T :函数的值;6F :极限及其运算 【专题】11:计算题;16:压轴题【分析】由函数的图象可知,24,022,26x x y x x -+⎧=⎨-⎩,当02x ,()2f x '=-,所以由导数的几何意义知0(1)(1)lim x f x f f x→+-'=(1)2=-.【解答】解:(0)4f =,f (4)2=,f (2)4=,∴由函数的图象可知,24,022,26x x y x x -+⎧=⎨-⎩,由导数的几何意义知0(1)(1)lim x f x f f x→+-='(1)2=-.答案:2;2-.【点评】本题考查函数的图象,导数的几何意义.数形结合是最常用的手段之一,希望引起足够重视.13.(5分)已知函数2()cos f x x x =-,对于[2π-,]2π上的任意1x ,2x ,有如下条件:①12x x >;②2212x x >;③12||x x >.其中能使12()()f x f x >恒成立的条件序号是 ② . 【考点】3R :函数恒成立问题 【专题】16:压轴题【分析】先研究函数的性质,观察知函数是个偶函数,由于()2sin f x x x '=+,在[0,]2π上()0f x '>,可推断出函数在y 轴两边是左减右增,此类函数的特点是自变量离原点的位置越近,则函数值越小,欲使12()()f x f x >恒成立,只需1x ,到原点的距离比2x ,到原点的距离大即可,由此可得出12||||x x >,在所给三个条件中找符合条件的即可. 【解答】解:函数()f x 为偶函数,()2sin f x x x '=+, 当02xπ<时,0sin 1x <,02x π<,()0f x ∴'>,函数()f x 在[0,]2π上为单调增函数,由偶函数性质知函数在[2π-,0]上为减函数.当2212x x >时,得12||||0x x >,12(||)(||)f x f x ∴>,由函数()f x 在上[2π-,]2π为偶函数得12()()f x f x >,故②成立. 33ππ>-,而()()33f f ππ=,∴①不成立,同理可知③不成立.故答案是②.故应填②【点评】本题考查函数的性质奇偶性与单调性,属于利用性质推导出自变量的大小的问题,本题的解题方法新颖,判断灵活,方法巧妙.14.(5分)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种植在点(k k P x ,)k y 处,其中11x =,11y =,当2k 时,111215[()()]5512()()55k k k k k k x x T T T k k y y T T ----⎧=+--⎪⎪⎨--⎪=+-⎪⎩(a )表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案,第6棵树种植点的坐标应为 (1,2) ;第2009棵树种植点的坐标应为 .【考点】8B :数列的应用 【专题】16:压轴题;29:规律型【分析】由题意可知,数列n x 为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,⋯;数列{}n y 为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,⋯由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标. 【解答】解:12()()55k k T T ---组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1⋯,2k =,3,4,5,⋯一一代入计算得数列n x 为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,⋯ 即n x 的重复规律是511n x +=,522n x +=,533n x +=,544n x +=,55n x =.*n N ∈. 数列{}n y 为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,⋯ 即n y 的重复规律是5n k y n +=,05k <.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).【点评】本题考查数列的性质和应用,解题时要注意创新题的灵活运用. 三、解答题(共6小题,满分80分)15.(13分)已知函数2()sin sin()(0)2f x x x x πωωωω=+>的最小正周期为π.(1)求ω的值;(2)求函数()f x 在区间[0,2]3π上的取值范围. 【考点】GL :三角函数中的恒等变换应用;HJ :函数sin()y A x ωϕ=+的图象变换 【专题】11:计算题【分析】(Ⅰ)先根据倍角公式和两角和公式,对函数进行化简,再利用22T πω=,进而求得ω(Ⅱ)由(Ⅰ)可得函数()f x 的解析式,再根据正弦函数的单调性进而求得函数()f x 的范围. 【解答】解:(Ⅰ)1cos2111()22cos2sin(2)22262x f x x x x x ωπωωωω-=-+=-+. 函数()f x 的最小正周期为π,且0ω>,∴22ππω=,解得1ω=.(Ⅱ)由(Ⅰ)得1()sin(2)62f x x π=-+.203xπ, ∴72666x πππ--, ∴1sin(2)126x π--. ∴130sin(2)622x π-+,即()f x 的取值范围为3[0,]2. 【点评】本题主要考查函数sin()y A x ωϕ=+的图象,三角函数式恒等变形,三角函数的值域.公式的记忆,范围的确定,符号的确定是容易出错的地方.16.(14分)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=︒,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.【考点】MJ :二面角的平面角及求法;MK :点、线、面间的距离计算 【专题】11:计算题;14:证明题【分析】(Ⅰ)欲证PC AB ⊥,取AB 中点D ,连接PD ,CD ,可先证AB ⊥平面PCD ,欲证AB ⊥平面PCD ,根据直线与平面垂直的判定定理可知只需证AB 与平面PCD 内两相交直线垂直,而PD AB ⊥,CD AB ⊥,又PDCD D =,满足定理条件;(Ⅱ)取AP 中点E .连接BE ,CE ,根据二面角平面角的定义可知BEC ∠是二面角B APC --的平面角,在BCE ∆中求出此角即可;(Ⅲ)过C 作CH PD ⊥,垂足为H ,易知CH 的长即为点C 到平面APB 的距离,在Rt PCD ∆中利用勾股定理等知识求出CH 即可.【解答】解:(Ⅰ)取AB 中点D ,连接PD ,CD .AP BP =,PD AB ∴⊥.AC BC =,CD AB ∴⊥. PDCD D =,AB ∴⊥平面PCD .PC ⊂平面PCD ,PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =,APC BPC ∴∆≅∆.又PC AC ⊥,PC BC ∴⊥. 又90ACB ∠=︒,即AC BC ⊥,且AC PC C =,BC ∴⊥平面PAC .取AP 中点E .连接BE ,CE .AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影,CE AP ∴⊥. BEC ∴∠是二面角B AP C --的平面角.在BCE ∆中,2BC =,BE ==,CEcos BEC ∠.∴二面角B AP C --的大小. (Ⅲ)由(Ⅰ)知AB ⊥平面PCD ,∴平面APB ⊥平面PCD . 过C 作CH PD ⊥,垂足为H .平面APB ⋂平面PCD PD =,CH ∴⊥平面APB . CH ∴的长即为点C 到平面APB 的距离.由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =,PC ∴⊥平面ABC .CD ⊂平面ABC ,PC CD ∴⊥.在Rt PCD ∆中,12CD AB ==PD =,∴2PC =.∴233PC CD CH PD ==∴点C 到平面APB【点评】本题主要考查了空间两直线的位置关系,以及二面角的度量和点到面的距离的求解,培养学生空间想象能力,属于基础题.17.(13分)甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.【考点】CB:古典概型及其概率计算公式;CG:离散型随机变量及其分布列【专题】5I:概率与统计【分析】(Ⅰ)甲、乙两人同时参加A岗位服务,则另外三个人在B、C、D三个位置进行全排列,所有的事件数是从5个人中选2个作为一组,同其他3人共4个元素在四个位置进行排列.(Ⅱ)总事件数同第一问一样,甲、乙两人不在同一个岗位服务的对立事件是甲、乙两人同时参加同一岗位服务,即甲、乙两人作为一个元素同其他三个元素进行全排列.ξ=”是指有两人同时(Ⅲ)五名志愿者中参加A岗位服务的人数ξ可能的取值是1、2,2参加A岗位服务,同第一问类似做出结果.写出分布列.【解答】解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,总事件数是从5个人中选2个作为一组,同其他3人共4个元素在四个位置进行排列2454C A .满足条件的事件数是33A ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E , 满足条件的事件数是44A ,那么4424541()10A P E C A ==,∴甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.∴3(1)1(2)P P ξξ==-==,ξ的分布列是 【点评】本题考查概率,随机变量的分布列,近几年新增的内容,整体难度不大,可以作为高考基本得分点.总的可能性是典型的“捆绑排列”,易把25C 混淆为25A , 18.(13分)已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.【考点】63:导数的运算;6B :利用导数研究函数的单调性【分析】根据函数的求导法则进行求导,然后由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.【解答】解:24332(1)(2)2(1)2222[(1)]()(1)(1)(1)x x b x x b x b f x x x x -----+---'===----. 令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(,1)b -∞-上单调递减,在(1,1)b -上单调递增, 在(1,)+∞上单调递减.当2b >时,函数()f x 在(,1)-∞上单调递减,在(1,1)b -上单调递增,在(1,)b -+∞上单调递减.当11b -=,即2b =时,22()0(1)f x x '=-<-,所以函数()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递减.【点评】本题主要考查函数的求导方法和导数的应用.导数题一般不会太难但公式记忆容易出错,要熟练掌握简单函数的求导法则.19.(14分)已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(Ⅰ)当直线BD 过点(0,1)时,求直线AC 的方程; (Ⅱ)当60ABC ∠=︒时,求菱形ABCD 面积的最大值. 【考点】4K :椭圆的性质 【专题】11:计算题;16:压轴题【分析】(Ⅰ)由题意得直线BD 的方程,根据四边形ABCD 为菱形,判断出AC BD ⊥.于是可设出直线AC 的方程与椭圆的方程联立,根据判别式大于0求得n 的范围,设A ,C 两点坐标分别为1(x ,1)y ,2(x ,2)y ,根据韦达定理求得12x x +和12x x ,代入直线方程可表示出12y y +,进而可得AC 中点的坐标,把中点代入直线1y x =+求得n ,进而可得直线AC 的方程.(Ⅱ)根据四边形ABCD 为菱形判断出60ABC ∠=︒且||||||AB BC CA ==.进而可得菱形ABCD 的面积根据n 的范围确定面积的最大值.【解答】解:(Ⅰ)由题意得直线BD 的方程为1y x =+. 因为四边形ABCD 为菱形,所以AC BD ⊥.于是可设直线AC 的方程为y x n =-+. 由2234x y y x n⎧+=⎨=-+⎩得2246340x nx n -+-=. 因为A ,C 在椭圆上,所以△212640n =-+>,解得n <<设A ,C 两点坐标分别为1(x ,1)y ,2(x ,2)y ,则1232nx x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122ny y +=.所以AC 的中点坐标为3(,)44n n . 由四边形ABCD 为菱形可知,点3(,)44n n在直线1y x =+上, 所以3144n n =+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=︒, 所以||||||AB BC CA ==.所以菱形ABCD 的面积2|S AC =. 由(Ⅰ)可得22221212316||()()2n AC x x y y -+=-+-=,所以2316)(S n n -+<<.所以当0n =时,菱形ABCD 的面积取得最大值【点评】本题主要考查了椭圆的应用,直线方程和最值解析几何的综合题,在高考中的“综合程度”往往比较高,注意复习时与之匹配20.(13分)对于每项均是正整数的数列1:A a ,2a ,⋯,n a ,定义变换1T ,1T 将数列A 变换成数列1T (A ):n ,11a -,21a -,⋯,1n a -;对于每项均是非负整数的数列1:B b ,2b ,⋯,m b ,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2T (B );又定义S (B )22212122(2)m m b b mb b b b =++⋯++++⋯+.设0A 是每项均为正整数的有穷数列,令121(())(0k k A T T A k +==,1,2,)⋯. (Ⅰ)如果数列0A 为5,3,2,写出数列1A ,2A ;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(S T (A ))S =(A );(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K 时,1()()k k S A S A +=.【考点】8B :数列的应用 【专题】16:压轴题;2A :探究型【分析】(Ⅰ)由0:5A ,3,2,求得10()T A 再通过121(())k k A T T A +=求解.(Ⅱ)设有穷数列A 求得1T (A )再求得1(S T (A )),由S (A )22212122(2)n n a a na a a a =+++++++,两者作差比较.(Ⅲ)设A 是每项均为非负整数的数列1a ,2a ,n a .在存在1i j n <,有i j a a 时条件下,交换数列A 的第i 项与第j 项得到数列B ,在存在1m n <,使得120m m n a a a ++====时条件下,若记数列1a ,2a ,⋯,m a 为C ,12111(())()(())k k k k A T T A s A S T A ++=.由1(())()k k S T A S A =,得到1()()k k S A S A +.()k S A 是大于2的整数,所以经过有限步后,必有12()()()0k k k S A S A S A ++===.【解答】解:(Ⅰ)解:0:5A ,3,2,10():3T A ,4,2,1,1210(()):4A T T A =,3,2,1;11():4T A ,3,2,1,0,2211(()):4A T T A =,3,2,1.(Ⅱ)证明:设每项均是正整数的有穷数列A 为1a ,2a ,n a , 则1T (A )为n ,11a -,21a -,1n a -,从而1(S T (A )22221212)2[2(1)3(1)(1)(1)](1)(1)(1)n n n a a n a n a a a =+-+-+++-++-+-++-.又S (A )22212122(2)n n a a na a a a =+++++++,所以1(S T (A ))S -(A )2212122[23(1)]2()2()(1)0n n n n a a a n a a a n n n n n =----++++++-++++=-+++=,故1(S T (A ))S =(A ).(Ⅲ)证明:设A 是每项均为非负整数的数列1a ,2a ,n a .当存在1i j n <,使得i j a a 时,交换数列A 的第i 项与第j 项得到数列B , 则S (B )S -(A )2()2()()0j i i j j i ia ja ia ja i j a a =+--=--.当存在1m n <,使得120m m n a a a ++====时,若记数列1a ,2a ,m a 为C , 则S (C )S =(A ). 所以2(S T (A ))S (A ).从而对于任意给定的数列0A ,由121(())(0k k A T T A k +==,1,2,) 可知11()(())k k S A S T A +.又由(Ⅱ)可知1(())()k k S T A S A =,所以1()()k k S A S A +.即对于k N ∈,要么有1()()k k S A S A +=,要么有1()()1k k S A S A +-.因为()k S A 是大于2的整数,所以经过有限步后,必有12()()()0k k k S A S A S A ++===. 即存在正整数K ,当k K 时,1()k S A S +=(A )【点评】本题是一道由一个数列为基础,按着某种规律新生出另一个数列的题目,要注意新数列的前几项一定不能出错,一出旦错,则整体出错.考点卡片1.交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C).集合的摩根律Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.2.充分条件、必要条件、充要条件【知识点的认识】1、判断:当命题“若p则q”为真时,可表示为p⇒q,称p为q的充分条件,q是p的必要条件.事实上,与“p⇒q”等价的逆否命题是“¬q⇒¬p”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.例如:p:x>2;q:x>0.显然x∈p,则x∈q.等价于x∉q,则x∉p一定成立.2、充要条件:如果既有“p⇒q”,又有“q⇒p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p⇔q”.p与q互为充要条件.【解题方法点拨】充要条件的解题的思想方法中转化思想的依据;解题中必须涉及两个方面,充分条件与必要条件,缺一不可.证明题目需要证明充分性与必要性,实际上,充分性理解为充分条件,必要性理解为必要条件,学生答题时往往混淆二者的关系.判断题目可以常用转化思想、反例、特殊值等方法解答即可.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.【命题方向】充要条件是学生学习知识开始,或者没有上学就能应用的,只不过没有明确定义,因而几乎年年必考内容,多以小题为主,有时也会以大题形式出现,中学阶段的知识点都相关,所以命题的范围特别广.3.函数恒成立问题【知识点的认识】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数f(x)=ax^2+1恒大于0,就必须对a进行限制﹣﹣令a≥0,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单【解题方法点拨】一般恒成立问题最后都转化为求最值得问题,常用的方法是分离参变量和求导.例:f(x)=x2+2x+3≥ax,(x>0)求a的取值范围.解:由题意可知:a恒成立即a≤x2⇒a≤22【命题方向】恒成立求参数的取值范围问题是近几年高考中出现频率相当高的一类型题,它比较全面的考查了导数的应用,突出了导数的工具性作用.4.函数的值【知识点的认识】函数不等同于方程,严格来说函数的值应该说成是函数的值域.函数的值域和定义域一样,都是常考点,也是易得分的点.其概念为在某一个定义域内因变量的取值范围.【解题方法点拨】求函数值域的方法比较多,常用的方法有一下几种:①基本不等式法:如当x>0时,求2x的最小值,有2x28;②转化法:如求|x﹣5|+|x﹣3|的最小值,那么可以看成是数轴上的点到x=5和x=3的距离之和,易知最小值为2;③求导法:通过求导判断函数的单调性进而求出极值,再结合端点的值最后进行比较例题:求f(x)=lnx﹣x在(0,+∞)的值域解:f′(x)1∴易知函数在(0,1]单调递增,(1,+∞)单调递减∴最大值为:ln1﹣1=﹣1,无最小值;故值域为(﹣∞,﹣1)【命题方向】函数的值域如果是单独考的话,主要是在选择题填空题里面出现,这类题难度小,方法集中,希望同学们引起高度重视,而大题目前的趋势主要还是以恒成立的问题为主.5.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′*(log a e)(a>0且a≠1)⑧[lnx]′.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【典型例题分析】题型一:和差积商的导数典例1:已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2014)+f(﹣2014)+f′(2015)﹣f′(﹣2015)=()A.0 B.2014 C.2015 D.8解:f′(x)=a cos x+3bx2,∴f′(﹣x)=a cos(﹣x)+3b(﹣x)2∴f′(x)为偶函数;f′(2015)﹣f′(﹣2015)=0∴f(2014)+f(﹣2014)=a sin(2014)+b•20143+4+a sin(﹣2014)+b(﹣2014)3+4=8;∴f(2014)+f(﹣2014)+f′(2015)﹣f(﹣2015)=8故选D.题型二:复合函数的导数典例2:下列式子不正确的是()A.(3x2+cos x)′=6x﹣sin x B.(lnx﹣2x)′ln2C.(2sin2x)′=2cos2x D.()′解:由复合函数的求导法则对于选项A,(3x2+cos x)′=6x﹣sin x成立,故A正确;对于选项B,成立,故B正确;对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确;对于选项D,成立,故D正确.故选C.【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.6.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年北京市高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合A={x|﹣2≤x<3},B={x|x<﹣1或x≥4},那么集合A∩B等于()A.{x|﹣1<x<3}B.{x|x≤﹣1或x>3}C.{x|﹣2≤x<﹣1}D.{x|﹣1≤x<3}2.(5分)若a=20.5,b=logπ3,c=log2sin,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a3.(5分)“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)若点P到直线x=﹣1的距离比它到点(2,0)的距离小1,则点P的轨迹为()A.圆B.椭圆C.双曲线D.抛物线5.(5分)若实数x,y满足则z=3x+2y的最小值是()A.0 B.1 C.D.96.(5分)已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=﹣6,那么a10等于()A.﹣165 B.﹣33 C.﹣30 D.﹣217.(5分)过直线y=x上的一点作圆(x﹣5)2+(y﹣1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°8.(5分)如图,动点P在正方体ABCD﹣A1B1C1D1的对角线BD1上.过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N.设BP=x,MN=y,则函数y=f(x)的图象大致是()A. B. C. D.二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知(a﹣i)2=2i,其中i是虚数单位,那么实数a=.10.(5分)已知向量与的夹角为120°,且,那么的值为.11.(5分)若展开式的各项系数之和为32,则n=,其展开式中的常数项为.(用数字作答)12.(5分)如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=;=.(用数字作答)13.(5分)已知函数f(x)=x2﹣cosx,对于[﹣,]上的任意x1,x2,有如下条件:①x1>x2;②x12>x22;③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是.14.(5分)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为;第2009棵树种植点的坐标应为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=sin2ωx+sinωxsin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间[0,]上的取值范围.16.(14分)如图,在三棱锥P﹣ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC ⊥AC.(Ⅰ)求证:PC⊥AB;(Ⅱ)求二面角B﹣AP﹣C的大小;(Ⅲ)求点C到平面APB的距离.17.(13分)甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.18.(13分)已知函数,求导函数f′(x),并确定f(x)的单调区间.19.(14分)已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.20.(13分)对于每项均是正整数的数列A:a1,a2,…,a n,定义变换T1,T1将数列A变换成数列T1(A):n,a1﹣1,a2﹣1,…,a n﹣1;对于每项均是非负整数的数列B:b1,b2,…,b m,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);又定义S(B)=2(b1+2b2+…+mb m)+b12+b22+…+b m2.设A0是每项均为正整数的有穷数列,令A k+1=T2(T1(A k))(k=0,1,2,…).(Ⅰ)如果数列A0为5,3,2,写出数列A1,A2;(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(A k+1)=S(A k).2008年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2008•北京)已知全集U=R,集合A={x|﹣2≤x<3},B={x|x<﹣1或x≥4},那么集合A∩B等于()A.{x|﹣1<x<3}B.{x|x≤﹣1或x>3}C.{x|﹣2≤x<﹣1}D.{x|﹣1≤x<3}【分析】由题意全集U=R,集合A={x|﹣2≤x<3},B={x|x<﹣1或x≥4},根据交集的定义计算A∩B.【解答】解:∵集合A={x|﹣2≤x<3},B={x|x<﹣1或x≥4},∴集合A∩B={x|﹣2≤x<﹣1},故选C.2.(5分)(2008•北京)若a=20.5,b=logπ3,c=log2sin,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【分析】利用估值法知a大于1,b在0与1之间,c小于0.【解答】解:,由指对函数的图象可知:a>1,0<b<1,c<0,故选A3.(5分)(2008•北京)“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】函数f(x)(x∈R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必要条件显然成立【解答】解:“函数f(x)在R上为增函数”⇒“函数f(x)(x∈R)存在反函数”;反之取f(x)=﹣x(x∈R),则函数f(x)(x∈R)存在反函数,但是f(x)在R 上为减函数.故选B4.(5分)(2008•北京)若点P到直线x=﹣1的距离比它到点(2,0)的距离小1,则点P的轨迹为()A.圆B.椭圆C.双曲线D.抛物线【分析】把直线x=﹣1向左平移一个单位变为x=﹣2,此时点P到直线x=﹣2的距离等于它到点(2,0)的距离,这就是抛物线的定义.【解答】解:因为点P到直线x=﹣1的距离比它到点(2,0)的距离小1,所以点P到直线x=﹣2的距离等于它到点(2,0)的距离,因此点P的轨迹为抛物线.故选D.5.(5分)(2008•北京)若实数x,y满足则z=3x+2y的最小值是()A.0 B.1 C.D.9【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解答】解:约束条件对应的平面区域如图示:由图可知当x=0,y=0时,目标函数Z有最小值,Z min=3x+2y=30=1故选B6.(5分)(2008•北京)已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=﹣6,那么a10等于()A.﹣165 B.﹣33 C.﹣30 D.﹣21=a p+a q,给任意的p,q∈N*,我们可以【分析】根据题目所给的恒成立的式子a p+q先算出a4,再算出a8,最后算出a10,也可以用其他的赋值过程,但解题的原理是一样的.【解答】解:∵a4=a2+a2=﹣12,∴a8=a4+a4=﹣24,∴a10=a8+a2=﹣30,故选C7.(5分)(2008•北京)过直线y=x上的一点作圆(x﹣5)2+(y﹣1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°【分析】过圆心M作直线l:y=x的垂线交于N点,过N点作圆的切线能够满足条件,不难求出夹角为600.明白N点后,用图象法解之也很方便【解答】解:圆(x﹣5)2+(y﹣1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程:x+y﹣6=0,它与y=x 的交点N(3,3),N到(5,1)距离是,两条切线l1,l2,它们之间的夹角为60°.故选C.8.(5分)(2008•北京)如图,动点P在正方体ABCD﹣A1B1C1D1的对角线BD1上.过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N.设BP=x,MN=y,则函数y=f(x)的图象大致是()A. B. C. D.【分析】只有当P移动到正方体中心O时,MN有唯一的最大值,则淘汰选项A、C;P点移动时,x与y的关系应该是线性的,则淘汰选项D.【解答】解:设正方体的棱长为1,显然,当P移动到对角线BD1的中点O时,函数取得唯一最大值,所以排除A、C;当P在BO上时,分别过M、N、P作底面的垂线,垂足分别为M1、N1、P1,则y=MN=M1N1=2BP1=2•xcos∠D1BD=2•是一次函数,所以排除D.故选B.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2008•北京)已知(a﹣i)2=2i,其中i是虚数单位,那么实数a=﹣1.【分析】直接化简方程,利用复数相等条件即可求解.【解答】解:a2﹣2ai﹣1=a2﹣1﹣2ai=2i,a=﹣1故答案为:﹣110.(5分)(2008•北京)已知向量与的夹角为120°,且,那么的值为0.【分析】由向量数量积公式进行计算即可.【解答】解:由题意知==2×4×4cos120°+42=0.故答案为0.11.(5分)(2008•北京)若展开式的各项系数之和为32,则n=5,其展开式中的常数项为10.(用数字作答)【分析】显然展开式的各项系数之和就是二项式系数之和,也即n=5;将5拆分成“前3后2”恰好出现常数项,C52=10.【解答】解:∵展开式的各项系数之和为32∴2n=32解得n=5=C5r x10﹣5r展开式的通项为T r+1当r=2时,常数项为C52=10.故答案为5,10.12.(5分)(2008•北京)如图,函数f(x)的图象是折线段ABC,其中A,B,C 的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=2;=﹣2.(用数字作答)【分析】由函数的图象可知,,当0≤x≤2,f'(x)=﹣2,所以由导数的几何意义知=f'(1)=﹣2.【解答】解:∵f(0)=4,f(4)=2,f(2)=4,∴由函数的图象可知,,由导数的几何意义知=f′(1)=﹣2.答案:2;﹣2.13.(5分)(2008•北京)已知函数f(x)=x2﹣cosx,对于[﹣,]上的任意x1,x2,有如下条件:①x1>x2;②x12>x22;③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是②.【分析】先研究函数的性质,观察知函数是个偶函数,由于f′(x)=2x+sinx,在[0,]上f′(x)>0,可推断出函数在y轴两边是左减右增,此类函数的特点是自变量离原点的位置越近,则函数值越小,欲使f(x1)>f(x2)恒成立,只需x1,到原点的距离比x2,到原点的距离大即可,由此可得出|x1|>|x2|,在所给三个条件中找符合条件的即可.【解答】解:函数f(x)为偶函数,f′(x)=2x+sinx,当0<x≤时,0<sinx≤1,0<2x≤π,∴f′(x)>0,函数f(x)在[0,]上为单调增函数,由偶函数性质知函数在[﹣,0]上为减函数.当x12>x22时,得|x1|>|x2|≥0,∴f(|x1|)>f(|x2|),由函数f(x)在上[﹣,]为偶函数得f(x1)>f (x2),故②成立.∵>﹣,而f()=f(),∴①不成立,同理可知③不成立.故答案是②.故应填②14.(5分)(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).【分析】由题意可知,数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…;数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标.【解答】解:∵组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).三、解答题(共6小题,满分80分)15.(13分)(2008•北京)已知函数f(x)=sin2ωx+sinωxsin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f(x)在区间[0,]上的取值范围.【分析】(Ⅰ)先根据倍角公式和两角和公式,对函数进行化简,再利用T=,进而求得ω(Ⅱ)由(Ⅰ)可得函数f(x)的解析式,再根据正弦函数的单调性进而求得函数f(x)的范围.【解答】解:(Ⅰ)==.∵函数f(x)的最小正周期为π,且ω>0,∴,解得ω=1.(Ⅱ)由(Ⅰ)得.∵,∴,∴.∴,即f(x)的取值范围为.16.(14分)(2008•北京)如图,在三棱锥P﹣ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(Ⅰ)求证:PC⊥AB;(Ⅱ)求二面角B﹣AP﹣C的大小;(Ⅲ)求点C到平面APB的距离.【分析】(Ⅰ)欲证PC⊥AB,取AB中点D,连接PD,CD,可先证AB⊥平面PCD,欲证AB⊥平面PCD,根据直线与平面垂直的判定定理可知只需证AB与平面PCD 内两相交直线垂直,而PD⊥AB,CD⊥AB,又PD∩CD=D,满足定理条件;(Ⅱ)取AP中点E.连接BE,CE,根据二面角平面角的定义可知∠BEC是二面角B﹣AP﹣C的平面角,在△BCE中求出此角即可;(Ⅲ)过C作CH⊥PD,垂足为H,易知CH的长即为点C到平面APB的距离,在Rt△PCD中利用勾股定理等知识求出CH即可.【解答】解:(Ⅰ)取AB中点D,连接PD,CD.∵AP=BP,∴PD⊥AB.∵AC=BC,∴CD⊥AB.∵PD∩CD=D,∴AB⊥平面PCD.∵PC⊂平面PCD,∴PC⊥AB.(Ⅱ)∵AC=BC,AP=BP,∴△APC≌△BPC.又PC⊥AC,∴PC⊥BC.又∠ACB=90°,即AC⊥BC,且AC∩PC=C,∴BC⊥平面PAC.取AP中点E.连接BE,CE.∵AB=BP,∴BE⊥AP.∵EC是BE在平面PAC内的射影,∴CE⊥AP.∴∠BEC是二面角B﹣AP﹣C的平面角.在△BCE中,BC=2,,CE=cos∠BEC=.∴二面角B﹣AP﹣C的大小arccos.(Ⅲ)由(Ⅰ)知AB⊥平面PCD,∴平面APB⊥平面PCD.过C作CH⊥PD,垂足为H.∵平面APB∩平面PCD=PD,∴CH⊥平面APB.∴CH的长即为点C到平面APB的距离.由(Ⅰ)知PC⊥AB,又PC⊥AC,且AB∩AC=A,∴PC⊥平面ABC.∵CD⊂平面ABC,∴PC⊥CD.在Rt△PCD中,,,∴.∴.∴点C到平面APB的距离为.17.(13分)(2008•北京)甲、乙等五名奥运志愿者被随机地分到A,B,C,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.【分析】(Ⅰ)甲、乙两人同时参加A岗位服务,则另外三个人在B、C、D三个位置进行全排列,所有的事件数是从5个人中选2个作为一组,同其他3人共4个元素在四个位置进行排列.(Ⅱ)总事件数同第一问一样,甲、乙两人不在同一个岗位服务的对立事件是甲、乙两人同时参加同一岗位服务,即甲、乙两人作为一个元素同其他三个元素进行全排列.(Ⅲ)五名志愿者中参加A岗位服务的人数ξ可能的取值是1、2,ξ=2”是指有两人同时参加A岗位服务,同第一问类似做出结果.写出分布列.【解答】解:(Ⅰ)记甲、乙两人同时参加A岗位服务为事件E A,总事件数是从5个人中选2个作为一组,同其他3人共4个元素在四个位置进行排列C52A44.满足条件的事件数是A33,那么,即甲、乙两人同时参加A 岗位服务的概率是.(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E,满足条件的事件数是A44,那么,∴甲、乙两人不在同一岗位服务的概率是.(Ⅲ)随机变量ξ可能取的值为1,2.事件“ξ=2”是指有两人同时参加A岗位服务,则.∴,ξ的分布列是ξ12P18.(13分)(2008•北京)已知函数,求导函数f′(x),并确定f(x)的单调区间.【分析】根据函数的求导法则进行求导,然后由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.【解答】解:==.令f'(x)=0,得x=b﹣1.当b﹣1<1,即b<2时,f'(x)的变化情况如下表:x(﹣∞,b﹣1)b﹣1(b﹣1,1)(1,+∞)f′(x)﹣0+﹣当b﹣1>1,即b>2时,f'(x)的变化情况如下表:x(﹣∞,1)(1,b﹣1)b﹣1(b﹣1,+∞)f′(x)﹣+0﹣所以,当b<2时,函数f(x)在(﹣∞,b﹣1)上单调递减,在(b﹣1,1)上单调递增,在(1,+∞)上单调递减.当b>2时,函数f(x)在(﹣∞,1)上单调递减,在(1,b﹣1)上单调递增,在(b﹣1,+∞)上单调递减.当b﹣1=1,即b=2时,,所以函数f(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递减.19.(14分)(2008•北京)已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.【分析】(Ⅰ)由题意得直线BD的方程,根据四边形ABCD为菱形,判断出AC ⊥BD.于是可设出直线AC的方程与椭圆的方程联立,根据判别式大于0求得n 的范围,设A,C两点坐标分别为(x1,y1),(x2,y2),根据韦达定理求得x1+x2和x1x2,代入直线方程可表示出y1+y2,进而可得AC中点的坐标,把中点代入直线y=x+1求得n,进而可得直线AC的方程.(Ⅱ)根据四边形ABCD为菱形判断出∠ABC=60°且|AB|=|BC|=|CA|.进而可得菱形ABCD的面积根据n的范围确定面积的最大值.【解答】解:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=﹣x+n.由得4x2﹣6nx+3n2﹣4=0.因为A,C在椭圆上,所以△=﹣12n2+64>0,解得.设A,C两点坐标分别为(x1,y1),(x2,y2),则,,y1=﹣x1+n,y2=﹣x2+n.所以.所以AC的中点坐标为.由四边形ABCD为菱形可知,点在直线y=x+1上,所以,解得n=﹣2.所以直线AC的方程为y=﹣x﹣2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积.由(Ⅰ)可得,所以.所以当n=0时,菱形ABCD的面积取得最大值.20.(13分)(2008•北京)对于每项均是正整数的数列A:a1,a2,…,a n,定义变换T1,T1将数列A变换成数列T1(A):n,a1﹣1,a2﹣1,…,a n﹣1;对于每项均是非负整数的数列B:b1,b2,…,b m,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);又定义S(B)=2(b1+2b2+…+mb m)+b12+b22+…+b m2.设A0是每项均为正整数的有穷数列,令A k+1=T2(T1(A k))(k=0,1,2,…).(Ⅰ)如果数列A0为5,3,2,写出数列A1,A2;(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(A k+1)=S(A k).【分析】(Ⅰ)由A0:5,3,2,求得T1(A0)再通过A k+1=T2(T1(A k))求解.(Ⅱ)设有穷数列A求得T1(A)再求得S(T1(A)),由S(A)=2(a1+2a2++na n)+a12+a22++a n2,两者作差比较.(Ⅲ)设A是每项均为非负整数的数列a1,a2,a n.在存在1≤i<j≤n,有a i≤a j时条件下,交换数列A的第i项与第j项得到数列B,在存在1≤m<n,使得a m+1=a m+2═a n=0时条件下,若记数列a1,a2,…,a m为C,A k+1=T2(T1(A k))s(A k+1)≤S(T1(A k)).由S(T1(A k))=S(A k),得到S(A k+1)≤S(A k).S(A k)是大于2的整数,所以经过有限步后,必有S(A k)=S(A k+1)=S(A k+2)=0.【解答】解:(Ⅰ)解:A0:5,3,2,T1(A0):3,4,2,1,A1=T2(T1(A0)):4,3,2,1;T1(A1):4,3,2,1,0,A2=T2(T1(A1)):4,3,2,1.(Ⅱ)证明:设每项均是正整数的有穷数列A为a1,a2,a n,则T1(A)为n,a1﹣1,a2﹣1,a n﹣1,从而S(T1(A))=2[n+2(a1﹣1)+3(a2﹣1)++(n+1)(a n﹣1)]+n2+(a1﹣1)2+(a2﹣1)2++(a n﹣1)2.又S(A)=2(a1+2a2++na n)+a12+a22++a n2,所以S(T1(A))﹣S(A)=2[n﹣2﹣3﹣﹣(n+1)]+2(a1+a2++a n)+n2﹣2(a1+a2++a n)+n=﹣n(n+1)+n2+n=0,故S(T1(A))=S(A).(Ⅲ)证明:设A是每项均为非负整数的数列a1,a2,a n.当存在1≤i<j≤n,使得a i≤a j时,交换数列A的第i项与第j项得到数列B,则S(B)﹣S(A)=2(ia j+ja i﹣ia i﹣ja j)=2(i﹣j)(a j﹣a i)≤0.=a m+2═a n=0时,若记数列a1,a2,a m为C,当存在1≤m<n,使得a m+1则S(C)=S(A).所以S(T2(A))≤S(A).从而对于任意给定的数列A0,由A k+1=T2(T1(A k))(k=0,1,2,)可知S(A k)≤S(T1(A k)).+1又由(Ⅱ)可知S(T1(A k))=S(A k),所以S(A k+1)≤S(A k).即对于k∈N,要么有S(A k)=S(A k),要么有S(A k+1)≤S(A k)﹣1.+1因为S(A k)是大于2的整数,所以经过有限步后,必有S(A k)=S(A k+1)=S(A k+2)=0.)=S(A)即存在正整数K,当k≥K时,S(A k+1参与本试卷答题和审题的老师有:zhiyuan;wdlxh;wzj123;豫汝王世崇;涨停;qiss;minqi5;zlzhan;xintrl;wsj1012;zhwsd;wodeqing(排名不分先后)菁优网2017年2月4日。

相关文档
最新文档