概率的概念古典概型几何概型概率的公理化定义共39页文档

合集下载

1.2事件的概率

1.2事件的概率

例4 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求电 话号码由五个不同数字组成的概率.
解:
从10个不同数字中 取5个的排列
=0.3024
问:
保持计 数法则 的一致 性!
错在何处?
计算样本空间样本点总数和所求事件 所含样本点数计数方法不同.
需要注意的是:
1、在应用古典概型时必须注意“等可能 性”的条件.
P(A) 55 4 5 5 6 6 9
(2)事件B包含的基本事件数为mB=4×4×2+5×4=52 所以
P(B) 52 13 5 6 6 45
例:30名学生中有3名运动员,将这30名学生平均分 成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
在许多场合,由对称性和均衡性,我们 就可以认为基本事件是等可能的并在此基础 上计算事件的概率.
2、在用排列组合公式计算古典概率时, 必须注意不要重复计数,也不要遗漏.
例:
用 0,1,2,3,4,5 这六个数字排成三位数,求
(1)没有相同数字的三位数的概率. (2)没有相同数字的三位偶数的概率.
解: 设A=没有相同数字的三位数,B表示没有相同 数字的三位偶数,则基本事件总数n=5×6×6=180 (1)事件A包含的基本事件数为mA=5×5×4 所以
NC C C
10 30
10 20
10 10
30! 10! 10! 10!
27! 3! 9! 9! 9! 50 P( A) N 203
3C C C P( B) N
7 27
10 20
10 10

第1章 第3讲 概率的公理化定义与运算性质

第1章 第3讲 概率的公理化定义与运算性质

性质2
4
47
ሜ =
()
4
50
计算事件A的概率不容易,而计算其对立事件的概率较
易时,可以利用性质2.
15
02
概率的运算性质
例2 (“分房模型”的应用)
恰有 k 个盒子中各有一球
某班级有 k (k≤365)个人,求k 个人的生日均不相同的概率.
P( A)
k
C 365
k!
365k
k
A365
18
02
概率的运算性质
例4 A,B是两个事件,已知 P ( B ) 0.3,P( A
B ) 0.6,
求 P ( AB ).
解 P ( AB ) P ( A AB ) P ( A) P( AB).
而 P( A
B ) P ( A) P ( B ) P ( AB) 0.6.
=
4
21
10
26
02
概率的运算性质
例10 已知() = 0.6,() = 0.2,() = 0.3,
求 ; ∪ .
解 = − = 0.3 − 0.2 = 0.1
∪ = 1 − ∪ = 1 −
= 1 − 0.1 = 0.9
件A发生的概率,并记 P ( A) p.
不足:不精确不严格不便使用.
公理化定义 通过规定概率应具备的基本性质来定义
概率.
4
01
概率论的公理化定义
概率的公式化定义
设随机试验E 的样本空间为S, 若对E 的每一事件
A 都有一个实数P(A)与之对应,并且满足下列三条公理,
则称P(A) 为事件A 的概率.

概率的公理化定义

概率的公理化定义
§2.4 概率的公理化定义
一、概率的公理化定义 二、概率的基本性质
前面分别介绍了统计概率定义、古典概率及几 何概率的定义,它们在解决各自相适应的实际问题 中,都起着很重要的作用,但它们各自都有一定局 限性.
为了克服这些局限性,1933年,前苏联数学家 柯尔莫哥落夫在综合前人成果的基础上,抓住概率 共有特性,提出了概率的公理化定义,为现代概率 论的发展奠定了理论基础.
思考题
1.已知 P ( A ) = P ( B ) = P(C) = 1/4 ,
P(AB) = 0 , P(AC) = P(BC) = 1/6
则事件A,B,C 全不发生的概率为 2.已知A、B两事件满足条件 P( AB) P( AB ) 且P ( A ) = p,则P ( B ) = (上述题是考研填空题)
i 1
n
P ( Ai A j ) 1 i j n

P ( Ai A j Ak ) ( 1) 1 i j k n
n 1
P ( A1 A2 An ).
1 1 例1 设事件 A, B 的概率分别为 和 , 求在下列 3 2 三种情况下 P ( B A) 的值. 1 (1) A与B互斥; ( 2) A B; ( 3) P ( AB) 8
2
中提出的“概
率 为1的事件为什么不一定发生?”这一问题. Y 如图,设试验E 为“ 随机地向 长为 1 的正方形内投点” 事件A 边 1 为“点投在黄、蓝两个三角形内” , 求 P( A) 0 1 x 1 S黄三角形 S蓝三角形 1 1 1 2 2 P( A) 1 S正方形 1 1 由于点可能投在正方形的对角线上, 所以 事件A未必一定发生.
2000 333 因为 333 334, 所以 P ( A) 6 2000

§1.2 概率的定义与古典概型

§1.2 概率的定义与古典概型

设有k 个不同的球, 每个球等可能地落入N 个盒子中(), 设每个盒子容球数无限, 求下列事件的概率:N k ≤(1)某指定的k 个盒子中各有一球;(4)恰有k 个盒子中各有一球;(3)某指定的一个盒子没有球;k m ≤(2)某指定的一个盒子恰有m 个球( )(5)至少有两个球在同一盒子中;(6)每个盒子至多有一个球.例2(分房模型)例7两船欲停靠同一个码头, 设两船到达码头的时间各不相干,而且到达码头的时间在一昼夜内是等可能的. 如果两船到达码头后需在码头停留的时间分别是1 小时与2 小时,试求在一昼夜内,任一船到达时,需要等待空出码头的概率.解设船1 到达码头的时刻为x,0 ≤x < 24船2 到达码头的时刻为y,0 ≤y < 24设事件A表示任一船到达码头时需要等待空出码头设Ω是随机试验E 的样本空间,若能找到一个法则,使得对于E 的每一事件A 赋于一个实数,记为P ( A ), 称之为事件A 的概率,这种赋值满足下面的三个条件:非负性:0)(,≥⊂∀A P A Ω 规范性:1)(=ΩP ∑∞=∞==⎟⎠⎞⎜⎝⎛11)(i i i i A P A P U 可列可加性:L ,,21A A 其中为两两互斥事件,概率的公理化理论由前苏联数学家柯尔莫哥洛夫(A.H.Колмогоров)1933年建立.三、概率的公理化定义6、加法公式:对任意两个事件A, B, 有)()()()(ABPBPAPBAP−+=∪)()()(BPAPBAP+≤∪推广:) ()()() ()( )()()(ABC PBCP ACPAB PCP BPAPCBAP+−−−+ +=∪∪)()1()()()()(2111111n n nnk j i k j i nj i j i ni i ni i A A A P A A A P A A P A P A P L L U −≤<<≤≤<≤==−++++−=∑∑∑一般:右端共有项.12−n例9 中小王他能答出第一类问题的概率为0.7, 答出第二类问题的概率为0.2, 两类问题都能答出的概率为0.1. 为什么不是?2.07.0×若是的话, 则应有)()()(2121A P A P A A P =而现在题中并未给出这一条件.在§1.4中将告诉我们上述等式成立的条件是:事件相互独立.21,A A例10设A , B 满足P ( A ) = 0.6, P ( B ) = 0.7,在何条件下,P (AB ) 取得最大(小)值?最大(小)值是多少?解)()()()(AB P B P A P B A P −+=∪)()()()(B A P B P A P AB P ∪−+=3.01)()(=−+≥B P A P 1)(=∪B A P 最小值在时取得6.0)()(=≤A P AB P ——最小值——最大值)()(B P B A P =∪最大值在时取得。

2、概率的几种定义(古典概型)

2、概率的几种定义(古典概型)

又1~2000中能被6整除的整数有

能被8整除的整数有

既能被6整除又能被8整除的整数有 个
于是,所求概率
64
例 将15名新生随机的平均分配到三个班 级中去,这15名新生中有3名是优秀生。
(1)每一个班级各分配到一名优秀生的概 率是多少?
(2)3名优秀生分配在同一个班级的概率 是多少?
65
5
② 从 个元素中取出 个元素,而 不考虑其顺序,称为组合,其组合 的总数为:
6
三、举 例
例1 有一号码锁上有6个拨盘,每个 拨盘有 才能将锁打开。 十个数字,给定 一个6位数字暗码,只有拨对号码时,
问:“一次就能打开”的概率是多
少?
7
解:样本空间中样本点总数为 设 A=“一次就把锁打开” A所含样本点数
则称这个随机试验 为几何型随机
或称几何概型, 称为
的样本空
间,(可以是一维区间、二维区域、
三维区域,它们通常用长度,面积、
体积来度量大小)
A
S
27
定义:设 是一几何概型, 为它 的样本空间, 且A是可度量的, 以 、 分别表示 S 和 A 的 度量。
设 A=“随机点落在区域A内” 则 称为事件A发生的
23
所以事件
包含的样本点数为
所以
24
二、 概率的几何定义 古典概率局限于试验结果的有
限性,对许多试验结果无限的情况,
有时可用几何的方法来解决(注意
这里也要求等可能性)。
25
几何概型 向某一可度量的区域 内投一 点,如果所投的点落在 中任意区
域 内的可能性大小与
正比,而与 试验。
26
的度量成
的位置和形状无关,

1-3概率的公理化体系及性质

1-3概率的公理化体系及性质

于是所求概率为
P ( AB ) 1 { P ( A) P ( B ) P ( AB )}
83 3 333 250 1 . 2000 2000 2000 4
三、小结
1. 频率 (波动) n 概率(稳定). 2. 两个基本概率模型 古典概型:各样本点等可能出现,样本空间只有 有限个样本点。 m P ( A) n 几何概型:各样本点等可能出现,样本空间具有几 何度量。 L A P( A) L
A1 4只鞋子中恰有两只配成一双
于是 A A1 A2,且A1 A2 , 则 P( A) P( A1 A2 ) P( A1 ) P( A2 )
1 2 2 2 C5 [C4 2 ] C5 13 4 4 21 C10 C10
另解 设A 4只鞋子都不能配成双
( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 设 x , y 分别为甲,乙两人到达的时
刻, 那末 0 x T , 0 y T .
两人会面的充 T 上点的坐标 , 则有如图区域。
a
针的中点M到最近的一条平行 直线的距离, 表示针与该平行直线的 夹角.
M x
那么针落在平面上的位 置可由( x , )完全确定.
投 针 试 验 的 所 有 可 能果 结 与矩形区域 a {( x , ) | 0 x ,0 } 2 中的所有点一一对应 .
概率的可列可加性
2. 性质 (1) P ( ) 0.
(2) 若A1 , A2 ,, An是两两互不相容的事件, 则有
P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An ).

概率公理化的定义

概率公理化的定义概率公理化是概率论的基本公理系统,用于定义和推导概率的性质和规则。

它由三个基本公理组成,分别是非负性公理、规范性公理和可列可加性公理。

首先,非负性公理指出概率是一个非负的实数,即概率值始终大于或等于零。

这是因为概率是表示事件发生的可能性的度量,而任何事件的发生概率都不应该是负数。

因此,对于任何事件A,其概率P(A)满足P(A)≥0。

其次,规范性公理指出概率的最大值是1,即整个样本空间的概率是1。

样本空间是所有可能事件的集合,而其中的某一个事件一定会发生。

因此,整个样本空间的概率等于1。

即对于整个样本空间S,有P(S) = 1。

最后,可列可加性公理是概率公理化的核心内容,它指出对于任意可列个互不相容的事件Ai(i=1,2,3,...),其概率P(Ai)的和等于它们各自概率的和。

这表示当我们考虑多个事件同时发生的情况时,可以将它们的概率逐个相加来求得总概率。

即对于事件A1,A2,A3,...,有P(A1∪A2∪A3∪...) =P(A1) + P(A2) + P(A3) + ...。

这三个基本公理共同构成了概率公理化的定义,通过这些公理我们可以进行概率的形式化描述和推导。

同时,这些公理也满足概率的一些基本性质和规则,如辅助定理、概率的有限可加性、概率的递减性等。

其中,辅助定理是基于这三个公理得到的,它指出对于事件A 和事件B,当A包含于B时,A的概率一定小于等于B的概率。

即当A⊆B时,有P(A)≤P(B)。

概率的有限可加性指出对于任意有限个互不相容的事件A1,A2,A3,...,它们的概率P(A1∪A2∪A3∪...)等于它们各自概率的和。

即对于有限个事件A1,A2,A3,...,有P(A1∪A2∪A3∪...) = P(A1) + P(A2) + P(A3) + ...。

概率的递减性指出对于事件A和事件B,当A包含于B时,B的概率一定大于等于A的概率。

即当A⊆B时,有P(B)≥P(A)。

§1.4 概率的公理化定义及概率的性质

§1.4 概率的公理化定义及概率的性质一、几何概率一个随机试验,如果数学模型是古典概型,那么描述这个实验的样本空间Ω,文件域 F 和概率P 已在前面得到解决。

在古典概型中,试验的结果是有限的,受到了很大的限制。

在实际问题中经常遇到试验结果是无限的情况的。

例如,若我们在一个面积为ΩS 的区域Ω中,等可能的任意投点,这里等可能的确切意义是这样的:在区域Ω中有任意一个小区域A ,若它的面积为A S , 则点A 落在A 中的可能性大小与A S 成正比,而与A 的位置及形状无关。

如果点A 落在区域A 这个随机事件仍记为A ,则由P(Ω)=1可得Ω=S S A P A)(, 这一类概率称为几何概率。

同样,如果在一条线段上投点,那么只需要将面积改为长度,如果在一个立方体内投点,则只需将面积改为体积。

例1:(会面问题)甲乙两人约定在6时到7时之间某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率。

解:以x 和y 分别表示甲乙约会的时间,则600,600≤≤≤≤y x 。

两人能会面的充要条件是15≤-y x 在平面上建立直角坐标系(如教材图)则(x,y )的所有可能结果是边长为60米的正方形,而可能会面的时间由图中阴影部分表示。

这是一个几何概率问题,由等可能性 167604560)(222=-==ΩS S A P A例2 蒲丰(Buffon )投针问题。

平面上画有等距离的平行线,平行线间的距离为a(a>0),向平面任意投掷一枚长为l(l<a)的针,试求针与平行线相交的概率。

解:假设x 表示针的中点与最近一条平行线的距离,又以ϕ表示针与此直线间的交角,有20ax ≤≤,πϕ≤≤0 由这两式可以确定ϕ,x 平面上的一个矩形 }0,20),({πϕϕ≤≤≤≤=Ωax x , 这时为了针与平行线相交,其条件为ϕsin 2lx ≤,由这个不等式表示的区域A 是图中的阴影部分 }sin 2,20),({ϕϕlx a x x A ≤≤≤=由等可能性可知 a la d lS S A P A ππϕϕπ22sin 2)(0===⎰Ω 若l,a 为已知,则以π值代入上式,即可计算得P (A )的值。

1-2(概率的定义、古典概率)


P( AB) P( A) P( B) P( A B)
P( A) P( B) 1 0.3 —— 最小值
最小值在 P( A B) 1 时取得
P( AB) P( A) 0.6
—— 最大值
最大值在 P( A B) P( B) 时取得
三.几何概率
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法.
P( AB ) P( A) P( AB) 0.7 0.1 0.6 (2) P( A B) P( A) P( B) P( AB) 0.8
(1)
(3) P( A B) P( A B) 0.2
例2 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在 何条件下, P(AB) 取得最大(小)值?最大(小) 值是多少? 解 P( A B) P( A) P( B) P( AB)
P ( Ai ) P ( Ai )
i 1 i 1 n n 1 i j n
P( A A )
i j
1 i j k n
P( A A A )
i j k
„ ( 1)
n1
P ( A1 A2 „ An )
例1 小王参加“智力大冲浪”游戏, 他能 答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题”

01.2古典概率几何概率统计概率


54
P( A)
C52 C82

2! 87
5 14
2!
令C=“取到两个白球”,由于有
B A C, AC
故 P(B) P(A C) P(A) P(C)
5 C32 14 C82
53 14 28
13 28
例3某校一年级新生共1000人,设每人的 生日是一年中的任何一天的可能性相同, 问至少有一人的生日是元旦这一天的概 率是多少?(一年以365天计).
B: 0.0156 F: 0.0256 J: 0.0010 N: 0.0706 R: 0.0594 V: 0.0102 Z: 0.0006
C: 0.0268 G: 0.0187 K: 0.0060 O: 0.0776 S: 0.0634 W: 0.0214
D: 0.0389 H: 0.0573 L: 0.0394 P: 0.0186 T: 0.0987 X: 0.0016
定义 (统计概率 )
若随着试验次数的增大,事件A
发生的频率在某个常数p 附近摆动, 并且逐渐稳定于p,则称该常数为事
件A的概率 。
在实际应用中,采取用频率来近似代替概率, P(A) fn (A).
f (S) 1 n
非负性 规范性
事件 A, B互斥,则
fn ( A B) fn ( A) fn (B)
可加性
可推广到有限个两两互斥事件的和事件
例 Dewey G. 统计了约438023个英语单词中各 字母出现的频率,发现各字母出现的频率 不同:
A: 0.0788 E: 0.1268 I: 0.0707 M: 0.0244 Q: 0.0009 U: 0.0280 Y: 0.0202
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档