2019中考数学一轮复习单元检测试卷

合集下载

2019中考数学一轮复习《第一单元有理数》单元检测试卷(有答案)

2019中考数学一轮复习《第一单元有理数》单元检测试卷(有答案)

2019中考数学数学一轮复习单元检测试卷第一单元有理数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2019的相反数是()A.﹣2019B.﹣C.2019D.2.在,π,4,2,0,﹣0.中,表示有理数的有()A.3个B.4个C.5个D.6个3.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A.﹣3000元B.3000元C.5000元D.﹣5000元4.下列计算正确的是()A.﹣(﹣3)=﹣3B.﹣|﹣3|=﹣3C.﹣(+3)=3D.﹣|﹣3|=35.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为﹣13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.﹣1B.5C.6D.86.下列计算正确的是()A.﹣6+4=﹣10B.0﹣7=7C.﹣1.3﹣(﹣2.1)=0.8D.4﹣(﹣4)=07.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.49!C.2450D.2!8.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大9.定义一种新运算:a ※b=,则2※3﹣4※3的值( )A .5B .8C .7D .610.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是63,则m 的值是( ) A .5 B .6C .7D .8二、填空题(本大题共4小题,每小题5分,共20分)11.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破220000000000元,将数字220000000000用科学记数法表示为 . 12.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差 千克.13.p 在数轴上的位置如图所示,化简:|p +1|﹣|p ﹣2|= .14.若x 与y 互为相反数,m 是绝对值最小的数,则2019x +2019y +m = .三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)[(﹣2)×(﹣)+(﹣2)3]﹣34+(﹣27). (2)﹣.16.把下列各数按要求分类.﹣2,5,﹣2,0,﹣3.4,﹣21,π,,3.7,15%; 正数集合:{ …}, 负整数集合:{ …}, 分数集合:{ …} 非正数集合:{ …}17.已知a的绝对值是4,|b﹣2|=1,且a>b,求2a﹣b的值.18.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)19.国庆期间,出租车司机小李在东西方向的公路上接送游客,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+12,﹣4,+13,﹣14,﹣12,+3,﹣13,﹣5(1)最后一名学生被送到目的地时,小李在出发地的什么位置?(2)若汽车耗油量为0.5升/千米,小李出发前加满了40升油,当他送完最后一名学生后,问他能否开车顺利返回出发地?为什么?20.小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):)根据表中的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案与试题解析一.选择题(共10小题)1.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.【解答】解:在,π,4,2,0,﹣0.中,表示有理数的有:,4,2,0,﹣0.共有5个,故选:C.3.【解答】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“﹣3000元”,故选:A.4.【解答】解:A、﹣(﹣3)=3,错误;B、﹣|﹣3|=﹣3,正确;C、﹣(+3)=﹣3,错误;D、﹣|﹣3|=﹣3,错误;故选:B.5.【解答】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为﹣13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是﹣1、5、9.而A、E两点的中点表示的数应该是﹣0.5,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是﹣1.故选:A.6.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣1.3﹣(﹣2.1)=﹣1.3+2.1=0.8,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.7.【解答】解:==50×49=2450故选:C.8.【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.9.【解答】解:2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,故选:B.10.【解答】解:根据题意得:83=512=57+59+61+63+65+67+69+71,则m=8,故选:D.二.填空题(共4小题)11.【解答】解:将220000000000用科学记数法表示为:2.2×1011.故答案为:2.2×1011.12.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.13.【解答】解:由图形可知1<p<2,∴p+1>0,p﹣2<0,∴|p+1|=p+1,|p﹣2|=2﹣p,∴|p+1|﹣|p﹣2|=(p+1)﹣(2﹣p)=p+1﹣2+p=2p﹣1故答案为2p﹣1.14.【解答】解:∵x与y互为相反数,m是绝对值最小的数,∴x+y=0,m=0,原式=2019(x+y)+m=0.故答案为:0.三.解答题(共9小题)15.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.16.【解答】解:正数集合:{5,π,,3.7,15%…},负整数集合:{﹣2,﹣21…},分数集合:{﹣2,﹣3.4,,3.7,15%…}非正数集合:{﹣2,﹣2,0,﹣3.4,﹣21…}故答案为:5,π,,3.7,15%,﹣2,﹣21,﹣2,﹣3.4,,3.7,15%,﹣2,﹣2,0,﹣3.4,﹣21.17.【解答】解:∵a的绝对值是4,∴a=±4,∵|b﹣2|=1,∴b﹣2=1或b﹣2=﹣1,解得b=3或b=1,∵a>b,∴a=4,b=3或b=1,当a=4,b=3时,2a﹣b=2×4﹣3=5;当a=4,b=1时,2a﹣b=2×4﹣1=7;综上,2a﹣b的值为5或7.18.【解答】解:如图所示.19.【解答】解:(1)∵+12﹣4+13﹣14﹣12+3﹣13﹣5=(+12+13+3)+(﹣4﹣14﹣12﹣13﹣5)=28+(﹣48)=﹣20(千米)∴最后一名学生被送到目的地时,小李在出发地向西方向20千米处.(2)12+4+13+14+12+3+13+5=28+48=76(千米)(76+20)×0.5=48 (升)∵48>40,∴不能顺利返回出发地.20.【解答】解:(1)根据题意得:300+4﹣3﹣5=296;(2)根据题意得:321﹣292=29;故答案为:(1)296;(2)29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(4)(17+100×7)×(5﹣1)=717×4=2868(元).答:小明本周一共收入2868元.21.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).22.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x≤5时,原式=5﹣x+x﹣4=1;当x>5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x≤5时,原式=1;当x>5时,原式=2x﹣9>1.故代数式的最小值是1.23.【解答】解:(1)设两人船每艘x元/小时,则八人船每艘(2x﹣30)元/小时,由题意,可列方程2x+3(2x﹣30)=630,解得:x=90,∴2x﹣30=150,答:两人船每艘90元,则八人船每艘150元;(2)如下表所示:。

2019-2020中考数学一轮总复习(圆)测试含答案

2019-2020中考数学一轮总复习(圆)测试含答案

2019-2020中考数学一轮总复习(圆)测试含答案一、选择题(本大题有6小题,第6小题选做一题,每小题3分,共18分)1、下列命题中,真命题的个数是( )①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个 B.2个 C.3个 D.4个2、如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=( )A.5 B.7 C.9 D.113、如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=( )A.64° B.58° C.72° D.55°4、如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为( )A.20° B.25° C.40° D.50°5、如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm6~A、如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是( )A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π6~B、如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题(本大题有6小题,第12小题选做一题,每小题3分,共18分)7、如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB= 度.8、一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为 cm.9、如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 .10、.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为 .11、如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C= 度.12~A、如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 .12~B、如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为 .三、本大题有5小题,每小题6分,共30分13、如图,A,B,C是⊙O上三点,∠ACB=25°,求∠BAO的度数..14、已知圆的半径是2,求该圆的内接正六边形的面积.∆ABC15、如图,中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,求☉C的半径.16、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,求的长17、如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P ,求∠ADP 的度数.四、本大题有3小题,每小题8分,共24分18、如图,在△ABC 中,以BC 为直径的圆交AC 于点D ,∠ABD=∠ACB.(1)求证:AB 是圆的切线;(2)若点E 是BC 上一点,已知BE =4 ,tan∠AEB=,AB∶BC=2∶3,求圆的直径.5319、如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE⊥AF,垂足为点E(1)求证:DE=AB ;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)20、正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.五、本大题2小题,第小题9分,共18分21、如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.22、如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;并说明理由②连接OD,OE,当∠A的度数为 时,四边形ODME是菱形.说明理由。

2019中考数学一轮系列复习图形的变化综合提升测试B(含答案)

2019中考数学一轮系列复习图形的变化综合提升测试B(含答案)

2019中考数学一轮系列复习图形的变化综合提升测试B (含答案)1.若x 、y 为非零线段的长,则下列说法错误的是( )A .若73x y = ,则52x y x y +=-B .若2x ﹣5y=0,则212x y y -= C .若线段a :b=c :d,,则a b b c d d +=+ D .若线段a :b=c :d,则a m c b m d +=+ 2.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①△CF=2AF ;②tan ∠CAD=;③DF=DC ;④AEF ∽△CAB ;⑤52ABF CDEF S S ∆=四边形,其中正确的结论有( ) A .2个 B .3个 C .4个 D .5个3.下列4个图形中,是中心对称图形但不是..轴对称的图形是( ). A . B . C . D .4.下面两个三角形一定相似的是( )A .两个等腰三角形B .两个直角三角形C .两个钝角三角形D .两个等边三角形5.如图,已知点A 、B 分别在反比例函数y=1x (x >0),y=﹣4x (x >0)的图象上,且OA ⊥OB ,则OB OA的值为( )A B .2 C D .46.如图,已知钝角三角形ABC ,将△ABC 绕点A 按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .55°B .65°C .75°D .85°7.如图,河提横断面迎水坡AB 的斜坡坡度i=1:是指坡面的铅直高度BC 与水平宽度AC 的比,若堤高BC=5m ,则坡面AB 的长度是( )A .mB .5mC .15mD .10m8.如图是小明用八块小正方体搭的积木,该几何体的俯视图是( ).A .B .C .D .9.如图所示,在△ABC 中,∠CAB=70°,现将△ABC 绕点A 顺时针旋转一定角度后得到△AB′C′,连接BB′,若BB′∥AC′,则∠CAB′的度数为( )A .20° B.25° C.30° D.40°10.如图,□ABCD 中,E 是AD 延长线上一点,BE 交AC 于点F ,交DC 于点G ,则下列结论中错误的是( )A .△ABE ∽△DGEB .△CGB ∽△DGEC .△BCF ∽△EAFD .△ACD ∽△GCF11.若tana=12,则sina=___________________. 12.点A (-5,-6)与点B (5,-6)关于__________对称.13.在平面直角坐标系中,将点A(1,5)向右平移2个单位长度,可以得到对应点的坐标A′_________;将点A(1,5)向下平移6个单位长度,可以得到对应点的坐标A″________.14.如图,长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F 处,如果∠BAF=55°,则∠DAE =____15.四边形ABCD∽四边形A`B`C`D`,他们的面积之比为36:25,他们的相似比_____,若四边形A`B`C`D`的周长为15cm ,则四边形ABCD 的周长为________.16.直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sin A =________.17.如图,直线2y =-与双曲线k y x= (k >0)在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则k 等于__.18.如图所示.将△ABC 沿直线DE 折叠后,使点A 与点C 重合,已知BC=6,△BCD 的周长为15,则AB=______.19.如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°连接OD,则OD长的最大值为_____.20.将一个多边形放大为原来的3倍.则放大后的图形可作出____个.其原因是_____ 21.在平面直角坐标系中,已知两点A(-4,0)、B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A, B,C三点的抛物线解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.22.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC。

2019安徽数学中考一轮复习阶段性测试卷(2)有答案

2019安徽数学中考一轮复习阶段性测试卷(2)有答案

阶段性测试卷(二)(考查内容:三角形、四边形、圆时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.(改编题)如图,AB∥CD,CE交AB于点F.∠A=20°,∠E=30°,则∠C的度数为( A)A.50° B.55°C.60° D.65°2.(2018·蜀山区二模)如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC的度数是( B)A.20° B.25°C.30° D.50°3.(2018·宿州月考)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D 作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( D)A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形4.(改编题)正方形ABCD的边长为2,对角线相交于点O,点O又是长方形MNPO的一个顶点,且OM=4,OP=2,长方形绕O点转动的过程中,长方形与正方形重叠部分的面积等于( D)A.6 B.4C .2D .15.(2018·衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm6.(2018·明光市二模)如图,AB 与⊙O 相切于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,则劣弧BC ︵的长是( B )A .π2B .π3C .π4D .π67.(2018·河南)如图,已知▱AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( A )A .(5-1,2)B .(5,2)C .(3-5,2)D .(5-2,2)8.(改编题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点B 作⊙O 的切线,交AC 的延长线于点F .已知3AE =BE =6,则CF 的长是( C )A.12 3 B.16 3C.12 D.16二、填空题(每小题5分,共15分)9.(改编题)如图,已知矩形ABCD的对角线AC的长为10 cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为__20__cm.10.(2018·青岛模拟)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为__18__.11.(原创题)如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,BD⊥AC.下列结论:①∠P+2∠D=180°;②∠BOC=∠BAD;③∠DBO=∠ABP;④∠ABP=∠ABD.其中正确结论有__①②④__(只填序号).三、解答题(共40分)12.(10分)(2018·朝阳区二模)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD ,AB =CD ,∵DE =CD ,∴AB 綊DE ,∴四边形ABDE 是平行四边形;(2)解:∵AD =DE =4,∴AD =AB =4,∴▱ABCD 是菱形,∴AB =BC ,AC ⊥BD ,BO =12BD ,∠ABO =12∠ABC ,又∵∠ABC =60°,∴∠ABO =30°,在Rt△ABO 中,AO =AB·sin ∠ABO=2,BO =AB·cos ∠ABO =23,∴BD =43,∵四边形ABDE 是平行四边形,∴AE∥BD ,AE =BD =43,又∵AC ⊥BD ,∴AC ⊥AE ,在Rt △AOE 中,OE =AE 2+AO 2=213.13.(15分)(2018·霍邱县二模)已知:如图,四边形ABCD 是⊙O 的内接四边形,直径DG 交边AB 于点E ,AB ,DC 的延长线相交于点F .连接AC ,若∠ACD =∠BAD .(1)求证:DG ⊥AB ;(2)若AB =6,tan ∠FCB =3,求⊙O 半径.(1)证明:连接AG ,∵∠ACD 与AGD 是同弦所对圆周角,∴∠ACD =∠AGD ,∵∠ACD =∠BAD ,∴∠BAD =∠AGD ,∵DG 为⊙O 的直径,A 为圆周上一点,∴∠DAG =90°,∴∠BAD +∠BAG =90°,∴∠AGD +∠BAG =90°,∴∠AEG =90°,即DG ⊥AB ;(2)解:∵四边形ABCD 是⊙O 的内接四边形,∴∠FCB =∠BAD ,∵tan ∠FCB =3,∴tan ∠BAD =DE AE =3,连接OA ,由垂径定理得AE =12AB =3,∴DE =9,在Rt △OEA 中,OE2+AE 2=OA 2,设⊙O 半径为r ,则有(9-r )2+32=r 2,解得,r =5,∴⊙O 半径为5.14.(15分)(2018·安徽四模)如图,⊙O 的直径AD 长为6,AB 是弦,∠DAB =30°,CD ∥AB ,且CD = 3.(1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.(1)解:如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD =90°,∴BD =12AD =3,∵CD∥AB ,∠ABD =90°,∴∠CDB =∠ABD =90°,在Rt△CDB 中,tan C =BDCD=33=3,∴∠C =60°;(2)证明:连接OB ,∵BD =3,AD =6,∴∠A =30°,∵OA =OB ,∴∠OBA =∠A =30°,∵CD∥AB ,∠C =60°,∴∠ABC =180°-∠C =120°,∴∠OBC =∠ABC -∠ABO =120°-30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线.。

2019中考数学数学一轮复习第一单元 有理数含答案

2019中考数学数学一轮复习第一单元  有理数含答案

2019中考数学数学一轮复习第一单元有理数单元检测试卷含答案考试时间:120分钟;满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2019的相反数是()A.﹣2019 B.﹣C.2019 D.2.在,π,4,2,0,﹣0.中,表示有理数的有()A.3个B.4个C.5个D.6个3.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A.﹣3000元B.3000元C.5000元D.﹣5000元4.下列计算正确的是()A.﹣(﹣3)=﹣3 B.﹣|﹣3|=﹣3 C.﹣(+3)=3 D.﹣|﹣3|=35.如图,在数轴上有A,B,C,D,E五个整数点(即各点均表示整数),且AB=2BC =3CD=4DE,若A、E两点表示的数的分别为﹣13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A.﹣1 B.5 C.6 D.86.下列计算正确的是()A.﹣6+4=﹣10 B.0﹣7=7C.﹣1.3﹣(﹣2.1)=0.8 D.4﹣(﹣4)=07.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.49!C.2450 D.2!8.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大9.定义一种新运算:a※b=,则2※3﹣4※3的值()A.5 B.8 C.7 D.610.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是63,则m的值是()A.5 B.6 C.7 D.8二、填空题(本大题共4小题,每小题5分,共20分)11.现在网购越来越多地成为人们的一种消费方式,在2018年的“双11”网上促销活动中天猫和淘宝的支付交易额突破220000000000元,将数字220000000000用科学记数法表示为.12.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.13.p在数轴上的位置如图所示,化简:|p+1|﹣|p﹣2|=.14.若x与y互为相反数,m是绝对值最小的数,则2019x+2019y+m=.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)[(﹣2)×(﹣)+(﹣2)3]﹣34+(﹣27).(2)﹣.16.把下列各数按要求分类.﹣2,5,﹣2,0,﹣3.4,﹣21,π,,3.7,15%;正数集合:{ …},负整数集合:{ …},分数集合:{ …}非正数集合:{ …}17.已知a的绝对值是4,|b﹣2|=1,且a>b,求2a﹣b的值.18.请将“2,4,6,7,9,11,12,14,16”共9个数,填入到下面3×3的方格中,使得每行、每列、每条对角线上的三个数之和相等,构成一个三阶幻方.(至少三种不同的填法)19.国庆期间,出租车司机小李在东西方向的公路上接送游客,如果规定向东为正,向西为负,出租车的行程如下(单位:千米)+12,﹣4,+13,﹣14,﹣12,+3,﹣13,﹣5(1)最后一名学生被送到目的地时,小李在出发地的什么位置?(2)若汽车耗油量为0.5升/千米,小李出发前加满了40升油,当他送完最后一名学生后,问他能否开车顺利返回出发地?为什么?20.小明在网上销售苹果,原计划每天卖100斤,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:斤):(1)根据表中的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划销量没有?(4)若每斤按5元出售,每斤苹果的运费为1元,那么小明本周一共收入多少元?21.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b =ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案与试题解析一.选择题(共10小题)1.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.【解答】解:在,π,4,2,0,﹣0.中,表示有理数的有:,4,2,0,﹣0.共有5个,故选:C.3.【解答】解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“﹣3000元”,故选:A.4.【解答】解:A、﹣(﹣3)=3,错误;B、﹣|﹣3|=﹣3,正确;C、﹣(+3)=﹣3,错误;D、﹣|﹣3|=﹣3,错误;故选:B.5.【解答】解:由题意可设AB=x,由AB=2BC=3CD=4DE有BC=x,CD=x.DE=x∵A、E两点表示的数的分别为﹣13和12,∴AE=25∴x+x+x+x=25,解得x=12∴AB=12,BC=6,CD=4,DE=3∴B、C、D三个点表示的数分别是﹣1、5、9.而A、E两点的中点表示的数应该是﹣0.5,∴上述五个点所表示的整数中,离线段AE的中点最近的整数是﹣1.故选:A.6.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣1.3﹣(﹣2.1)=﹣1.3+2.1=0.8,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.7.【解答】解:==50×49=2450 故选:C.8.【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.9.【解答】解:2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,故选:B.10.【解答】解:根据题意得:83=512=57+59+61+63+65+67+69+71,则m=8,故选:D.二.填空题(共4小题)11.【解答】解:将220000000000用科学记数法表示为:2.2×1011.故答案为:2.2×1011.12.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.13.【解答】解:由图形可知1<p<2,∴p+1>0,p﹣2<0,∴|p+1|=p+1,|p﹣2|=2﹣p,∴|p+1|﹣|p﹣2|=(p+1)﹣(2﹣p)=p+1﹣2+p=2p﹣1故答案为2p﹣1.14.【解答】解:∵x与y互为相反数,m是绝对值最小的数,∴x+y=0,m=0,原式=2019(x+y)+m=0.故答案为:0.三.解答题(共9小题)15.【解答】解:(1)原式=﹣8﹣81﹣27=﹣113;(2)原式=﹣1+8﹣2+4=9.16.【解答】解:正数集合:{5,π,,3.7,15%…},负整数集合:{﹣2,﹣21…},分数集合:{﹣2,﹣3.4,,3.7,15%…}非正数集合:{﹣2,﹣2,0,﹣3.4,﹣21…}故答案为:5,π,,3.7,15%,﹣2,﹣21,﹣2,﹣3.4,,3.7,15%,﹣2,﹣2,0,﹣3.4,﹣21.17.【解答】解:∵a的绝对值是4,∴a=±4,∵|b﹣2|=1,∴b﹣2=1或b﹣2=﹣1,解得b=3或b=1,∵a>b,∴a=4,b=3或b=1,当a=4,b=3时,2a﹣b=2×4﹣3=5;当a=4,b=1时,2a﹣b=2×4﹣1=7;综上,2a﹣b的值为5或7.18.【解答】解:如图所示.19.【解答】解:(1)∵+12﹣4+13﹣14﹣12+3﹣13﹣5=(+12+13+3)+(﹣4﹣14﹣12﹣13﹣5)=28+(﹣48)=﹣20(千米)∴最后一名学生被送到目的地时,小李在出发地向西方向20千米处.(2)12+4+13+14+12+3+13+5=28+48=76(千米)(76+20)×0.5=48 (升)∵48>40,∴不能顺利返回出发地.20.【解答】解:(1)根据题意得:300+4﹣3﹣5=296;(2)根据题意得:321﹣292=29;故答案为:(1)296;(2)29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(4)(17+100×7)×(5﹣1)=717×4=2868(元).答:小明本周一共收入2868元.21.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).22.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x≤5时,原式=5﹣x+x﹣4=1;当x>5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x≤5时,原式=1;当x>5时,原式=2x﹣9>1.故代数式的最小值是1.23.【解答】解:(1)设两人船每艘x元/小时,则八人船每艘(2x﹣30)元/小时,由题意,可列方程2x+3(2x﹣30)=630,解得:x=90,∴2x﹣30=150,答:两人船每艘90元,则八人船每艘150元;(2)如下表所示:。

2019中考数学一轮复习《第七单元平面直角坐标系》单元检测试卷有答案

2019中考数学一轮复习《第七单元平面直角坐标系》单元检测试卷有答案

2019中考数学一轮复习单元检测试卷第七单元平面直角坐标系考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.已知点A(﹣3,0),则A点在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上2.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)3.点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(2,3)D.(2,﹣3)4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)6.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)7.在下列点中,与点A(﹣2,﹣4)的连线平行于y轴的是()A.(2,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)8.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)9.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)二、填空题(本大题共4小题,每小题5分,共20分)11.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.12.已知△ABC的三个顶点分别为A(﹣2,3)、B(﹣4,﹣1)、C(2,0),现将△ABC平移至△A′B′C′处,且A′坐标为(﹣1,2),则B′、C′点的坐标分别为.13.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.在直角坐标平面内,已点A (3,0)、B (﹣5,3),将点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D 点.(1)写出C 点、D 点的坐标:C ,D ;(2)把这些点按A ﹣B ﹣C ﹣D ﹣A 顺次连接起来,这个图形的面积是 .16.如图,在平面网格中每个小正方形边长为1. (1)线段CD 是线段AB 经过怎样的平移后得到的; (2)线段AC 是线段BD 经过怎样的平移后得到的.17.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4)B (2,4)C (3,﹣1). (1)试在平面直角坐标系中,标出A 、B 、C 三点; (2)求△ABC 的面积.(3)若△DEF 与△ABC 关于x 轴对称,写出D 、E 、F 的坐标.18.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B →A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最少路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.20.在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是.(2)将点C向x轴的负方向平移6个单位它与点重合.(3)连接CE,则直线CE与y轴位置关系是.(4)点F分别到x、y轴的距离分别是.21.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.(2)求爷爷家到和平路小学的直线距离.22.在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:秒,可得到的整数点的个数是个.(3)当P点从点O出发秒时,可得到整数点(10,5)23.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.参考答案与试题解析一.选择题(共10小题)1.解:点A(﹣3,0)在x轴的负半轴上.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:∵P在第四象限内,∴点P的横坐标>0,纵坐标<0,又∵点P到x轴的距离为3,即纵坐标是﹣3;点P到y轴的距离为2,即横坐标是2,∴点P的坐标为(2,﹣3).故选:D.4.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.5.解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x 轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.6.解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.7.解:∵平行于y轴的直线上所有点的横坐标相等,已知点A(﹣2,﹣4)横坐标为﹣2,所以结合各选项所求点为(﹣2,4).故选:C.8.解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.9.解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.10.解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:C.二.填空题(共4小题)11.解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是4,∴点P的坐标为(﹣3,4).故答案为:(﹣3,4).12.解:∵﹣1﹣(﹣2)=1,2﹣3=﹣1,∴点A的横坐标加1,纵坐标减1可得A′的坐标;∴B′的横坐标为﹣4+1=﹣3,纵坐标为﹣1﹣1=﹣2;C′的横坐标为2+1=3,纵坐标为0﹣1=﹣1.故答案为:B′(﹣3,﹣2)、C′(3,﹣1).13.解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.14.解:由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n(2n﹣1,1)(n为不为0的自然数),﹣2当n=505时,A2018(1009,1).故答案为:(1009,1)三.解答题(共9小题)15.解:(1)∵点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D 点, ∴得C (﹣3,0),D (﹣5,﹣3);(2)如图,S 四边形ABCD =S △ABC +S △ACD ,=×3×6+×3×6, =18.故答案为(﹣3,0),(﹣5,﹣3);18.16.解:(1)将线段AB 向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD .(2)将线段BD 向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC .17.解:(1)如图所示:(2)由图形可得:AB =2,AB 边上的高=|﹣1|+|4|=5,∴△ABC 的面积=×2×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△DEF与△ABC关于x轴对称,∴D(0,﹣4)、E(2,﹣4)、F(3,1).18.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.19.解:(1)A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);(2)1+4+2+1+2=10;(3)点P如图所示.20.解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.21.解:(1)以爷爷家为坐标原点,东西方向为x 轴,南北方向为y 轴建立坐标系.可得:和平广场A 坐标为(400,0);老年大学(﹣600,0);平路小学(﹣400,﹣300).(2)由(1)得:和平路小学(﹣400,﹣300),爷爷家为坐标原点,即(0,0)故爷爷家到和平路小学的直线距离为=500(m ).22.解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.23.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.。

【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

【含8套中考卷】2019年中考数学一轮复习《变量与函数》专题练习卷含答案

1. 2. 3. 4. 5. 6.7.变量与函数专题在平面直角坐标系中,点(-3,2)所在的象限是A.第一象限C.第三象限【答案】B函数y=VEE2中自变量X的取值范围是x-3A.x>2B.xN2【答案】CB.第二象限D.第四象限C.xN2且xU3若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则A.k<2B.k>2C.k>0D.k<0D.x"3【答案】B一次函数y=x+2的图象与y轴的交点坐标为A.(0,2)【答案】AB.(0,-2)C.(2,0)D.(-2,0)将直线y=2x-3向右平移2个单位长度,A.y=2x-4B.y=2x+4再向上平移3个单位长度后,所得的直线的表达式为C.y=2x+2D.y=2x-2【答案】A如图,在矩形A0BC中,A(-2,1A.--2【答案】A1B.-20),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为C.-2D.2如图,直线y二kx+b(k"0)经过点A(-2,4),则不等式kx+b>4的解集为A.x>-2 D.x<4【答案】A8.如图,直线1是一次函数y=kx+b 的图象,若点A (3, m)在直线1上,则m 的值是【答案】C9.反比例函数y=§的图象经过点(3, -2),下列各点在图象上的是xA. (-3, -2)B. (3, 2)C. ( - 2, - 3)D. ( -2, 3)【答案】D10.如图,已知直线y=k 1X (虹尹0)与反比例函数y=4 (k 2^0)的图象交于M, N 两点.若点M 的坐标x是(1, 2),则点N 的坐标是A. ( - 1> - 2)C. (1, -2)B. ( -1, 2)D. ( -2, - 1)【答案】A11.如图,点C 在反比例函数y=* (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,X△A0B 的面积为1,则k 的值为A. 1B. 2C. 3D. 4【答案】D12.某通讯公司就上宽带网推出A, B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是65503012025 50 55ox(h)A. 每月上网时间不足25h 时,选择A 方式最省钱B. 每月上网费用为60元时,B 方式可上网的时间比A 方式多C. 每月上网时间为35h 时,选择B 方式最省钱D. 每月上网时间超过70h 时,选择C 方式最省钱【答案】D13.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的 节气白昼时长伺咽A.惊蛰B.小满C.立秋D.大寒【答案】D14.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是B.—°/(min)D.【答案】B15.在平面直角坐标系中,一个智能机器人接到如下指令:从原点0出发,按向右,向上,向右,向下的方向依次不断移动,每次移动Im.其行走路线如图所示,第1次移动到Au 第2次移动到A 2,…,第n 次移动到A ”.则左OA 2A 20i9的面积是16.17.A, 504m 2【答案】A22二次函数y=ax 2+bx+c (a^O)的部分图象如图所示,则下列结论错误的是A. 4a+b=0C. a : c= - 1 : 5【答案】DD.当-1W x W5 时,y>0如图,若二次函数y=ax 2+bx+c (a 尹0)图象的对称轴为x=l,与y 轴交于点C,与x 轴交于点A 、点B ( - 1, 0),则①二次函数的最大值为a+b+c ;②a - b+c<0;(3)b 2 - 4ac<0;④当y>0时,其中正确的个数是【答案】B18. P (3, -4)到x 轴的距离是【答案】419.抛物线y=2(x+2)纤4的顶点坐标为.【答案】(-2,4)20.如图,抛物线y=ax,与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax^bx+c的解是.【答案】xi=-2,x2=l21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.【答案】1503, 22.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-一尸.在2飞机着陆滑行中,最后4s滑行的距离是m.【答案】2423.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.【答案】(4扼-4)24.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S acod=|saboc,求点D的坐标.【解析】(1)当X=1时,y=3x=3,.•.点C 的坐标为(1, 3) .将 A ( - 2, 6)、C (1, 3)代入 y=kx+b,得:—2k + 〜=6k + b = 3,解徐’k = -l b = 4(2)由(1)得直线AB 的解析式为y=-x+4.当 y=0 时,有-x+4=0,解得:x=4,.•.点B 的坐标为(4, 0).设点D 的坐标为(0, m ) (m<0),1 nn 1 1 1S acod = — S aboc ,即m = — X — X 4X 3,3 2 3 2解得:m= - 4,.•.点D 的坐标为(0, -4).25.抛物线y=-|x +bx+c 经过点A (3 0, 0)和点B (0, 3),且这个抛物线的对称轴为直线1,顶点121 9 l【解析】(1) •抛物线y = +版+。

2019中考一轮复习《第二单元整式的加减》单元检测试卷(含答案)

2019中考一轮复习《第二单元整式的加减》单元检测试卷(含答案)

2019中考数学数学一轮复习单元检测试卷第二单元整式的加减一、选择题(本大题共10小题,每小题4分,共40分)1.下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.abc2.单项式﹣x2y的系数和次数分别为()A.﹣,3B.﹣,2C.,3D.,23.小明按如图所示的程序输入一个正数x,最后输出的结果为597,则满足条件的x的不同值最多有()A.4个B.5个C.6个D.无数个4.若﹣3x m y3和8x5y n是同类项,则它们的和是()A.5x10y6B.﹣11x10y6C.5x5y3D.﹣11x5y65.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c6.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式7.下列各式中,正确的是()A.3a+b=3ab B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.﹣2(x﹣4)=﹣2x﹣48.若﹣2a2n b2m﹣2与b m+1a n+1可以合并,那么4n﹣2m的值是()A.﹣2B.﹣1C.1D.29.下列各式中,去括号错误的是()A.a+(b﹣c)=a+b﹣c B.a﹣(b﹣c)=a﹣b+cC.a+(﹣b+c)=a﹣b+c D.a﹣(﹣b﹣c)=a+b﹣c10.如图是一张长方形的拼图卡片,它被分割成4个大小不同的正方形和一个长方形,若要计算整张卡片的周长,则只需知道哪个正方形的边长即可()A.④B.③C.②D.①二、填空题(本大题共4小题,每小题5分,共20分)11.已知代数式x+3y﹣3的值是3,则代数式1﹣3x﹣9y的值是.12.某企业2018年9月份产值为x万元,10月份比9月份减少了10%,11月份比10月份增加了10%,则11月份的产值是万元(用含x的代数式表示)13.若m2+mn=﹣7,n2﹣5mn=﹣17,则m2+6mn﹣n2=.14.定义为二阶行列式,规定它的运算法则为=ad﹣bc,那么当x=﹣1时,二阶行列式的值为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.计算:(1)3a2+3b2+2ab﹣4a2﹣3b2;(2)a2+(5a2﹣2a)﹣2(a2﹣3a).16.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.17.已知:a2+2ab=﹣2,b2﹣2ab=6,求下列代数式的值:(1)a2+b2;(2)3a2﹣2ab+4b2.18.已知m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,求代数式m2+3m﹣的值.19.如图,大正方形的边长为a,小正方形的边长为b.(1)用代数式表示阴影部分的面积;(2)当a=20,b=12时,求阴影部分的面积.20.探究代数式a3+b3+3ab(a+b)与代数式(a+b)3的关系.(1)请分别计算当a=1,b=3时;当a=﹣1,b=2时两个代数式的值.(2)请写出你发现的规律:,并利用你发现的规律计算:513﹣3×51×49×2﹣493的值.21.光明中学组织学生到距离学校9千米的博物馆参观,学生小华因有事未能上包车,于是准备在学校门口直接乘出租车去博物馆,出租车的收费标准如下:(1)写出小华乘出租车的里程数为x千米(x≥3)时,所付车费为元(用含x的代数式表示);(2)如果小华同学身上仅有25元钱,由学校乘出租车到博物馆钱够不够?请说明理由.22.已知等式=1﹣,=,=,=,…………根据以上提供的信息,回答下列问题(1)你发现的规律是(用字母m表示).(2)应用你发现的规律计算;++++…………+++.23.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是;②若E是线段AC的中点,求点E表示的数.(2)在数轴上,若点M表示的数是m点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数.参考答案与试题解析一.选择题(共10小题)1.【解答】解:选项A正确的书写格式是48a,B正确的书写格式是,C正确,D正确的书写格式是abc.故选:C.2.【解答】解:单项式﹣x2y的系数和次数分别为:﹣,3.故选:A.3.【解答】解:若4x+1=597,则有x=149,若4x+1=149,则有x=37,若4x+1=37,则有x=9,若4x+1=9,则有x=2,若4x+1=2,则有x=,则满足条件的x不同值最多有5个,故选:B.4.【解答】解:∵﹣3x m y3和8x5y n是同类项,∴m=5,n=3,∴﹣3x m y3和8x5y n的和是:5x5y3.故选:C.5.【解答】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.6.【解答】解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.7.【解答】解:(A)原式=3a+b,故A错误;(B)原式=a,故B错误;(D)原式=﹣2x+8,故D错误;故选:C.8.【解答】解:由题意可知:2n=n+1,2m﹣2=m+1,∴n=1,m=3,∴原式=4﹣6=﹣2,故选:A.9.【解答】解:(D)原式=a+b+c,故D错误;故选:D.10.【解答】解:设正方形③的边长为x,正方形①的边长为y,则正方形②的边长为x﹣y,正方形④的边长为x+y,长方形⑤的长为y+x+y=x+2y,所以整张卡片的周长=2(x﹣y+x)+2(x﹣y+x+2y)=4x﹣2y+2x﹣2y+2x+4y=8x,所以只需知道正方形③的边长即可.故选:B.二.填空题(共4小题)11.【解答】解:因为x+3y﹣3=3,所以x+3y=6,﹣3x﹣9y=﹣18,所以1﹣3x﹣9y=1﹣18=﹣17.故答案为:﹣1712.【解答】解:∵某企业今年9月份产值为x万元,10月份比9月份减少了10%,∴该企业今年10月份产值为(1﹣10%)x万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣10%)(1+10%)x万元.故答案为:(1﹣10%)(1+10%)x13.【解答】解:由题意可知:m2+mn=﹣7,n2﹣5mn=﹣17,∴(m2+mn)﹣(n2﹣5mn)=m2+6mn﹣n2=﹣7﹣(﹣17)=17﹣7=10,故答案为:10.14.【解答】解:由定义可知:原式=﹣2(x﹣1)﹣(x+1)=﹣2x+2﹣x﹣1=﹣3x+1,当x=﹣1时,原式=3+1=4,故答案为:4三.解答题(共9小题)15.【解答】解:(1)原式=(3a2﹣4a2)+(3b2﹣3b2)+2ab=﹣a2+2ab;(2)原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a.16.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.17.【解答】解:∵a2+2ab=﹣2,b2﹣2ab=6,∴(1)原式=(a2+2ab)+(b2﹣2ab)=6﹣2=4;(2)原式=3(a2+2ab)+4(b2﹣2ab)=﹣6+24=18.18.【解答】解:∵m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,∴2mx2﹣2x+y﹣(﹣6x2+x﹣3y)=(2m+6)x2﹣x+4y,∴2m+6=0,解得:m=﹣3,∴m2+3m﹣=9﹣9﹣=﹣.19.【解答】解:(1)根据题意得:b2+b(a﹣b)=b2+ab﹣b2=ab;=×20×12=120.(2)当a=20,b=12时,S阴影20.【解答】解:(1)当a=1,b=3时,a3+b3+3ab(a+b)=13+33+3×1×3×(1+3)=1+27+36=64;(a+b)3=(1+3)3=43=64;当a=﹣1,b=2时,a3+b3+3ab(a+b)=(﹣1)3+23+3×(﹣1)×2×(﹣1+2)=﹣1+8﹣6=1;(a+b)3=(﹣1+2)3=13=1;(2)a3+b3+3ab(a+b)=(a+b)3或(a+b)3=a3+b3+3ab(a+b),513﹣3×51×49×2﹣493=513+3×51×(﹣49)×[51+(﹣49)]+(﹣49)3=[51+(﹣49)]3=23=8.故答案为:a3+b3+3ab(a+b)=(a+b)3或(a+b)3=a3+b3+3ab(a+b)21.【解答】解:(1)由题意得,所付车费为:2.4(x﹣3)+10=2.4x+2.8(x≥3);(2)将x=9代入得:2.4×9+2.8=24.4(元),∵25>24.4,∴25元钱够到达博物馆.22.【解答】解:(1)发现的规律是:=﹣;(2)++++…………+++=1﹣++++…………+﹣+﹣+﹣=1﹣=.23.【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,∴点D表示的数是﹣4,故答案为:﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为=.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为:(i)(ii)(iii);②点P表示的数为.第11页(共11页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019中考数学一轮复习单元检测试卷第十九单元一次函数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.在函数y=中,自变量x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣32.变量x与y之间的关系是y=2x﹣3,当因变量y=6时,自变量x的值是()A.9B.15C.4.5D.1.53.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.4.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y25.若函数y=kx(k≠0)的值随自变量的增大而增大,则函数y=x+2k的图象大致是()A.B.C.D.6.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A.y=3x﹣2B.y=x﹣C.y=x﹣1D.y=3x﹣37.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④8.速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=60,则b=.其中说法正确的是()A .①②③B .②③④C .①②④D .①③④9.如图,已知直线l :,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A .(0,128)B .(0,256)C .(0,512)D .(0,1024) 10.如图,等边三角形和正方形的边长均为a ,点B ,C ,D ,E 在同一直线上,点C 与点D重合.△ABC 以每秒1个单位长度的速度沿BE 向右匀速运动.当点C 与点E 重合时停止运动.设△ABC 的运动时间为t 秒,△ABC 与正方形DEFG 重叠部分的面积为S ,则下列图象中,能表示S 与t 的函数关系的图象大致是( )A .B .C. D.二、填空题(本大题共4小题,每小题5分,共20分)11.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表:由表格中y 与t 的关系可知,当汽车行驶 小时,油箱的余油量为0.12.若点(a ,3)在函数y =2x ﹣3的图象上,a 的值是 .13.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,则∠AOC 的角平分线所在直线的函数关系式为 .14.点A (m ,n )为直线y =﹣x +4上一动点,且满足﹣4<m <4,将O 点绕点B (﹣,﹣)逆时针旋转90°得点C ,连接AC ,则线段AC 长度的取值范围是 . 三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.已知y 与x +2成正比,当x =4时,y =4.(1)求y 与x 之间的函数关系式;(2)若点(a ,3)在这个函数图象上,求a 的值.16.已知一次函数y=kx+b的图象如图所示(1)求k、b的值;(2)在平面直角坐标系内画出函数y=bx+k的图象;(3)利用(2)中你所画的图象,写出0<x<1时,y的取值范围.17.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.18.如图,在平面直角坐标系中,A(4,0),B(0,2),C(4,4).已知四边形ABCD 为菱形,其中AB与BC为一组邻边.(1)请在图中作出菱形ABCD,并求出菱形ABCD的面积;(2)过点A的直线l:y=x+b与线段CD相交于点E,请在图中作出直线l的图象,并求出△ADE的面积.19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是 米.(2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)我们认为骑单车的速度超过300米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的汽车速度最快,速度在安全限度内吗?20.如图,在平面直角坐标系xOy 中,直线y =﹣x +4与x 轴、y 轴分别交于点A 、点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长;(2)求点C 和点D 的坐标;(3)y 轴上是否存在一点P ,使得S △PAB =S △OCD ?若存在,直接写出点P 的坐标;若不存在,请说明理由.21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示.(1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价﹣成本)(2)分别求出y1、y2与x之间的函数关系式;(3)哪个月出售这种蔬菜,每千克的收益最大?说明理由.22.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)23.阅读下列两段材料,回答问题:材料一:点A(x1,y1),B(x2,y2)的中点坐标为(,).例如,点(1,5),(3,﹣1)的中点坐标为(,),即(2,2).材料二:如图1,正比例函数l1:y=k1x和l2:y=k2x的图象相互垂直,分别在l1和l2上取点A,B,使得AO=BO.分别过点A,B作x轴的垂线,垂足分别为点C,D.显然,△AOC≌△OBD.设OC=BD=a,AC=OD=b,则A(﹣a,b),B(b,a).于是k1=﹣,k2=,所以k1•k2的值为一个常数.一般地,一次函数y=k1x+b1,y=k2x+b2可分别由正比例函数l1,l2平移得到.所以,我们经过探索得到的结论是:任意两个一次函数y=k1x+b1,y=k2x+b2的图象相互垂直,则k1•k2的值为一个常数.(1)在材料二中,k1•k2=(写出这个常数具体的值);(2)如图2,在矩形OBAC中A(4,2),点D是OA中点,用两段材料的结论,求点D的坐标和OA的垂直平分线l的解析式;(3)若点C′与点C关于OA对称,用两段材料的结论,求点C′的坐标.参考答案与试题解析一.选择题(共10小题)1.解:在函数y=中,x+3≥0,解得:x≥﹣3,故自变量x的取值范围是:x≥﹣3.故选:B.2.解:当y=6时,2x﹣3=6,解得:x=4.5,故选:C.3.解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.4.解:∵直线y=﹣x,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.5.解:∵正比例函数y=kx(k是常数,k≠0)的函数值y随x的增大而增大,∴k>0,∵一次函数y=x+2k,∴k′=1>0,b=2k>0,∴此函数的图象经过一、二、三象限.故选:A.6.解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x﹣1.故选:C.7.解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.8.解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=60,∴b=,结论④正确.故选:D.9.解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=,∵A 1B ⊥l ,∴∠ABA 1=60°,∴A 1O =4,∴A 1(0,4),同理可得A 2(0,16),…∴A 4纵坐标为44=256,∴A 4(0,256).故选:B .10.解:如图所示,设△ABC 平移中与DG 交于点H ,当t ≤a 时,S =S △HCD =CD •HD =t •t •tan60°=t 2,该函数为开口向上的抛物线;当t >a 时,S =S 四边形ACDH =S △ABC ﹣S △BDH=﹣(a ﹣t )(a ﹣t )tan60°═﹣(a ﹣t )2,该函数为开口向下的抛物线;故选:C.二.填空题(共4小题)11.解:由题意可得:y=100﹣8t,当y=0时,0=100﹣8t解得:t=12.5.故答案为:12.5.12.解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.13.解:如图所示,延长BA交y轴于D,则BD⊥y轴,∵点A的坐标为(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4),设∠AOC的角平分线所在直线的函数关系式为y=kx,∵菱形OABC中,∠AOC的角平分线所在直线经过点B,∴4=8k,即k=,∴∠AOC的角平分线所在直线的函数关系式为y=x,故答案为:y=x.14.解:如图1中,∵A(m,n),∴点A关于原点对称点A′(﹣m,﹣n),∴OA′的中点B(﹣,﹣);∴OA=2OB=2BC,∴tan∠CAB==,∴点A在运动过程中,△ABC的形状相同,∴AB的值最大时,AC的值最大,AB的值最小时,AC的值最小,当点A的坐标为(﹣4,8)时,AB的值最大,此时B(2,﹣4),∴AB==6,∴BC=AB=2,∴AC==10.如图2中,当直线AB⊥直线y=﹣x+4时,AB的值最小,此时直线AB的解析式为y=x,由,解得,∴A(2,2),B(﹣1,﹣1),∴AB==3,∴BC=AB=,∴AC==2,综上所述,线段AC长度的取值范围是2≤AC<10,故答案为2≤AC<10.三.解答题(共9小题)15.解:(1)设y=k(x+2),∵当x=4时,y=4,∴k(4+2)=4,∴k=,∴y与x之间的函数关系式为y=(x+2)=x+;(2)∵点(a,3)在这个函数图象上,∴a+=3,∴a=2.5.16.解:(1)A(0,﹣2),B(1,0).将A(0,﹣2),B(1,0)两点代入y=kx+b中,得b=﹣2,k﹣2=0,k=2.(2)对于函数y=﹣2x+2,列表:图象如下:(3)由图象可得:当0<x<1时,y的取值范围为:0<y<2.17.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.18.解:(1)∵点A的坐标为(4,0),点B的坐标为(0,2),点C的坐标为(4,4),∴点D的坐标为(4+4﹣0,0+4﹣2),即(8,2).作出菱形ABCD,如图所示.S=AC•BD=×8×4=16.菱形ABCD(2)将A (4,0)代入y =x +b ,得:0=×4+b ,∴b =﹣6.∵点C 的坐标为(4,4),点D 的坐标为(8,2),∴直线CD 的解析式为y =﹣x +6.联立直线l 与直线CD 的解析式成方程组,得:,解得:,∴点E 的坐标为(6,3),∴S △ADE =×2×3+×(3+2)×2﹣×4×2=4.19.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)小明在书店停留了12﹣8=4(分钟),故答案为:4;(3)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14分钟,故答案为:2700,14;(4)当时间在0~6分钟内时,速度为:1200÷6=200米/分钟,当时间在6~8分钟内时,速度为:(1200﹣600)÷(8﹣6)=300米/分钟,当时间在12~14分钟内时,速度为:(1500﹣600)÷(14﹣12)=450米/分钟, ∵450>300,∴在整个上学途中12~14分钟时间段小明的汽车速度最快,速度不在安全限度.20.解:(1)令x =0得:y =4,∴B (0,4).∴OB =4令y =0得:0=﹣x +4,解得:x =3,∴A (3,0).∴OA =3.在Rt △OAB 中,AB ==5.∴OC =OA +AC =3+5=8,∴C (8,0).设OD =x ,则CD =DB =x +4.在Rt △OCD 中,DC 2=OD 2+OC 2,即(x +4)2=x 2+82,解得:x =6,∴D (0,﹣6).(3)∵S △PAB =S △OCD ,∴S △PAB =××6×8=12.∵点Py 轴上,S △PAB =12,∴BP •OA =12,即×3BP =12,解得:BP =8,∴P 点的坐标为(0,12)或(0,﹣4).21.解:(1)由图可知,6月份每千克售价为3元,成本为1元,∴每千克收益为3﹣1=2元;(2)设y 1=kx +b ,将(3,5)和(6,3)代入得,,解得.∴y 1=.设y 2=a (x ﹣6)2+1,把(3,4)代入得,4=a (3﹣6)2+1,解得a =.∴y 2=(x ﹣6)2+1,即y 2=x 2﹣4x +13.(3)收益W =y 1﹣y 2==(x﹣5)2+,∵a=<0,=.∴当x=5时,W最大值故5月出售每千克收益最大,最大为.22.解:(1)当1≤x≤10时,设AB的解析式为:y=kx+b,把A(1,300),B(10,120)代入得:,解得:,∴AB:y=﹣20x+320(1≤x≤10),当10<x≤30时,同理可得BC:y=14x﹣20,综上所述,y与x之间的函数表达式为:;(2)当1≤x≤10时,w=(10﹣6)(﹣20x+320)=﹣80x+1280,当w=1040元,﹣80x+1280=1040,x=3,∵﹣80<0,∴w随x的增大而减小,∴日销售利润不超过1040元的天数:3,4,5,6,7,8,9,10,一共8天;当10<x≤30时,w=(10﹣6)(14x﹣20)=56x﹣80,56x﹣80=1040,x=20,∵56>0,∴w随x的增大而增大,∴日销售利润不超过1040元的天数:11,12,13,14,15,16,17,18,19,20,一共10天;综上所述,日销售利润不超过1040元的天数共有18天;=﹣80×5+1280=880,(3)当5≤x≤10时,当x=5时,w大当10<x≤17时,当x=17时,w=56×17﹣80=872,大∴若5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.23.解:(1)∵k1=﹣,k2=,∴k1•k2=﹣•=﹣1.故答案为:﹣1.(2)∵点O的坐标为(0,0),点A的坐标为(4,2),点D是OA中点,∴点D的坐标为(2,1).∵点A的坐标为(4,2),∴直线OA的解析式为y=x.∵直线l⊥直线OA,∴设直线l的解析式为y=﹣2x+m.∵直线l过点D(2,1),∴1=﹣4+m,解得:m=5,∴OA的垂直平分线l的解析式为y=﹣2x+5.(3)∵点A的坐标为(4,2),四边形OBAC为矩形,∴点C的坐标为(0,2).设直线CC′的解析式为y=﹣2x+n,∵直线CC′过点C(0,2),∴n=2,即直线CC′的解析式为y=﹣2x+2.联立直线CC′和OA的解析式成方程组,得:,解得:,∴点E的坐标为(,).∵点E为线段CC′的中点,∴点C′的坐标为(×2﹣0,×2﹣2),即(,﹣).智浪教育—普惠英才文库。

相关文档
最新文档