绝对值编码器(终审稿)
绝对值编码器的工作原理

绝对值编码器的工作原理绝对值编码器是一种用于测量物理量绝对位置的装置。
它广泛应用于工业自动化、机械加工、机器人技术等领域。
本文将详细介绍绝对值编码器的工作原理。
一、绝对值编码器的基本原理绝对值编码器通过测量物体的绝对位置来输出相应的编码信号。
它由光电传感器、光栅带、信号处理电路以及输出接口等组成。
1. 光电传感器光电传感器是绝对值编码器的核心部件之一。
它通常由发光二极管(LED)和光敏二极管(光电二极管)组成。
LED发出的光线照射到光敏二极管上,当光线被遮挡或反射时,光敏二极管会产生相应的电信号。
2. 光栅带光栅带是绝对值编码器的另一个重要组成部分。
它由一系列等距的透明和不透明条纹组成。
当光线通过光栅带时,光敏二极管会根据光线的遮挡情况产生不同的电信号。
3. 信号处理电路信号处理电路主要负责接收和处理光电传感器产生的电信号。
它将电信号转换为数字信号,并进行编码和解码操作。
这样可以确保输出的编码信号与物体的绝对位置一一对应。
4. 输出接口输出接口将处理后的编码信号传输给用户设备或控制系统。
常见的输出接口有并行接口、串行接口、模拟接口等。
二、绝对值编码器的工作过程绝对值编码器的工作过程可以分为以下几个步骤:1. 光栅带的旋转绝对值编码器通常将光栅带固定在旋转物体上。
当物体发生旋转时,光栅带也会随之旋转。
2. 光线的照射LED发出的光线照射到光栅带上。
根据光栅带上的透明和不透明条纹,光线被遮挡或反射的情况不同。
3. 电信号的产生被照射到的光线经过光敏二极管后,会产生相应的电信号。
根据光栅带上的条纹情况,不同的电信号将被产生。
4. 信号处理信号处理电路接收到光电传感器产生的电信号后,将其转换为数字信号,并进行编码和解码操作。
这样可以确保输出的编码信号与物体的绝对位置一一对应。
5. 编码信号的输出处理后的编码信号通过输出接口传输给用户设备或控制系统。
用户设备或控制系统可以根据编码信号来获取物体的绝对位置信息。
绝对值编码器原理

绝对值编码器原理绝对值编码器(Absolute Encoder)是一种用于测量旋转角度或线性位置的设备,它可以提供精确的绝对位置信息。
相比于增量式编码器,绝对值编码器不需要通过参考点回归零点,因此可以提供更高的定位精度和可靠性。
光学式绝对值编码器采用光栅原理进行测量。
图案编码盘上的透明和不透明条纹通过光源照射到光敏元件上,当光敏元件接收到光线时,会产生电信号。
通过测量这些信号的频率和相位差,可以计算出旋转角度或线性位置。
光学式绝对值编码器的优点是精度高,分辨率大,可以达到亚微米或更高的级别。
它还具有抗干扰能力强、结构紧凑、体积小等特点。
然而,由于光学元件易受灰尘和污染影响,所以在实际应用中需要注意维护和清洁。
磁性绝对值编码器使用磁场传感器来测量磁场的变化。
编码器轴上的磁性编码盘会产生磁场,磁场传感器会感知并测量这些磁场的变化。
通过分析磁场的强度和方向,可以计算出旋转角度或线性位置。
磁性绝对值编码器的优点是非接触式测量,具有较高的耐用性和可靠性。
它适用于工作环境恶劣、要求高速度和高温度的场合。
同时,由于磁性编码盘可以实现高精度的制造,因此磁性编码器也具有较高的分辨率和准确性。
绝对值编码器的关键部件是编码盘和传感器。
编码盘可以采用不同的几何形状,如圆盘、条盘等,且可以在编码盘上分布不同规则的编码图案,如光栅、格点、磁点等。
传感器有不同类型的选择,如光电传感器、霍尔传感器等。
1.编码盘上的编码图案通过传感器感知,并转化为电信号。
2.电信号经过放大、滤波和处理等步骤后,转化为数字信号。
3.数字信号经过解码和计算,可以得到准确的旋转角度或线性位置信息。
4.这些信息可以通过接口输出给控制系统,用于定位、运动控制和位置反馈等应用。
总之,绝对值编码器通过光学或磁性原理,将旋转角度或线性位置转化为准确的数字信号。
它具有高精度、高分辨率、非接触式测量和可靠性等特点,广泛应用于各种定位和控制系统中。
随着科技的不断进步,绝对值编码器的性能将进一步提高,为现代工业自动化和智能制造提供更多新的可能性。
绝对值角度编码器

绝对值角度编码器1. 概述绝对值角度编码器是一种用来测量旋转角度的传感器。
与传统的相对值角度编码器不同,绝对值角度编码器可以在任意时刻给出准确的角度值,而不需要通过与初始位置的比较来计算角度增量。
这使得绝对值角度编码器在需要精确控制旋转角度的应用中具有重要作用。
2. 工作原理绝对值角度编码器通常基于光学或磁性原理来测量旋转角度。
光学编码器使用光源和光传感器的组合来测量旋转角度,而磁性编码器则使用磁场和磁传感器来实现。
光学编码器中,光源会照射在旋转的编码盘上,编码盘上的刻纹会导致光的反射或遮挡,从而产生脉冲信号。
通过计算脉冲的数量和位置,可以确定旋转角度。
磁性编码器则利用旋转磁场产生的磁感应强度变化来测量角度。
通常会使用一个定位磁极和一个检测磁极,在旋转过程中,检测磁极会感受到磁场的变化,从而输出相应的角度信息。
3. 类型绝对值角度编码器可以根据不同的工作原理和使用场景分为多种类型。
常见的绝对值角度编码器类型包括:3.1 光学编码器光学编码器以光学原理为基础,通过光源和光传感器来测量旋转角度。
光学编码器具有精度高、分辨率高的特点,适用于对角度测量要求较高的应用,如机器人、自动化设备等。
3.2 磁性编码器磁性编码器使用磁场和磁传感器来测量旋转角度。
磁性编码器具有抗干扰能力强、耐高温等特点,适用于工作环境复杂、对耐久性要求较高的应用,如汽车、航空航天等。
3.3 电容式编码器电容式编码器是一种基于电容原理的角度测量设备。
通过测量电容变化来获得旋转角度信息。
电容式编码器具有体积小、功耗低等特点,适用于小型设备和电池供电的场景。
3.4 磁致伸缩编码器磁致伸缩编码器通过磁致伸缩效应来测量旋转角度。
当施加外部磁场时,编码器材料会发生伸缩,通过测量伸缩量来得到旋转角度信息。
磁致伸缩编码器具有高灵敏度、高分辨率的特点,适用于精密测量和调整控制等场景。
4. 应用领域绝对值角度编码器在许多领域中都发挥着重要作用。
以下是几个常见应用的例子:4.1 机器人控制在机器人控制领域,绝对值角度编码器可以用于测量关节角度,从而实现对机器人的精确控制。
绝对值编码器

绝对值编码器概述工作原理绝对值编码器与增量编码器工作原理非常相似。
它是一个带有若干个透明和不透明窗口的转动圆盘,用光接收器来收集间断的光束,光脉冲转换成电脉冲后,由电子输出电路进行处理,并将电脉冲发送出去。
绝对值代码绝对值编码器和增量编码器之间主要的差别在于位置是怎么样来确定的:增量编码器的位置是从零位标记开始计算的脉冲数量来确定的,而绝对值编码器的位置是由输出代码的读数来确定的,在一转内每个位置的读数是唯一的。
因此,当电源断开或码盘移位时,绝对值编码器不会丢失实际位置。
然而,当绝对值编码器的电源一旦重启位置值就会立即替代旧值,而一个增量编码器则需要设置零位标记。
输出代码用于指定绝对位置。
很明显首选会是二进制码,因为它可以很容易被外部设备所处理,但是,二进制码是直接从旋转码盘上取得的,由于同时改变的编码状态位数超过一位,所以要求同步输出代码很难。
例如,两个连续的二进制码编码7(0111)变到8(1000),可以注意到所有位的状态都发生了变化。
因此,如果你试着读在特定时刻的编码,要保证读数的正确性是很困难的,因为在数据改变的一瞬间同时就有超过一位的状态变化。
因此,格雷码在二个连续编码之间(甚至于从最后一个到第一个)只有一位二进码状态变化。
格雷码通过一个简单的组合电路就可以很容易被转换为二进制码。
(见如下表单)格雷余码当定义位置的个数不是2的幂次方时,从最后一个位置变到最前一个位置,即使是格雷码,同时改变的编码状态也会超过一位。
例如,假设一个每转12个位置的绝对型编码器,其格雷码如右侧所示,显而易见在位置11和0之间变化时,3位二进制码位同时改变状态,可能会引起读数出错,这是不允许的。
试用格雷余码,3位二进制就可以维护编码仅仅只有一位状态变化,使得位置0与N值一一对应,这就得到格雷余码。
其中,N是这样一个数,从转换成二进制码的格雷余码中减去N,就得到正确的位置值。
超差值N的计算:N=(2n-IMP)/2式中:IMP IMP是每转的位置数(只能是偶数)2n是2的脉冲数次幂,其数值必须大于IMP在我们的情况下,N是:N=(2n-12)/2=(16-12)/2=2单圈绝对值编码器单圈绝对值编码器即使在掉电的情况下,只要编码器轴转动了一个角度就可以得到一个精确的位移值,而且,每个位移值都能准确地转换成格雷码或二进制码。
绝对值编码器算法

绝对值编码器算法
绝对值编码器算法(Absolute-value Encoder Algorithm)是一种用于在数据封装中
进行序列编码的一种算法,是目前流行的一种数据封装算法,以进行序列的编码户实现数
据的封装。
绝对值编码器算法的工作原理很简单,它要求输入序列中每个字节的数值都大于等于0,且序列的长度必须为2的n次方,其中n>0,可以根据输入的序列的总长度来计算n
的值。
算法的第一步是将输入的序列中的每个字节的数值都减去最小值后得到一个新序列,这个新序列包含了最小值减去它本身的差值。
接下来,算法将对新序列中的每个字节进行
编码,每个字节的编码长度将会通过将该字节的值加上1后,再计算得到该编码长度。
之后,算法会将该位数内字节的值写入序列,写入的数值将是新序列中每个字节的绝对值,
而最后写入的最后一位将会是这个序列的校验码。
绝对值编码器算法的特点在于它既可以压缩数据,又能够有效地抵御数据丢失、篡改
等情况,特别是在数据传输时可以尽量保证数据的完整性,其安全性也很高。
绝对值编码
器算法的优势在于它不仅能有效地减少通信带宽,而且可以防止数据丢失、篡改等情况的
发生,有助于数据的安全传输。
绝对值编码器算法可以应用于多种场景,例如IP数据包有效载荷安全编码,以及增强
型电视图像压缩等。
因此,绝对值编码器算法拥有很强的可扩展性和强大的灵活性,也能
满足不同的需求。
绝对值编码器的工作原理

绝对值编码器的工作原理绝对值编码器是一种用于测量旋转角度或线性位移的设备,它通过将位置信息转换为数字信号来实现精确的位置测量。
它广泛应用于机械工程、自动化控制系统和机器人等领域。
绝对值编码器的工作原理基于光电传感技术或磁传感技术,下面将分别介绍这两种原理。
1. 光电传感技术光电传感技术是绝对值编码器中常用的一种原理。
它基于光电效应,通过光电传感器和光栅来实现位置测量。
光电传感器通常由发光二极管(LED)和光敏二极管(Photodiode)组成。
光栅是一种具有周期性透光和不透光区域的光学元件,可以通过光电传感器来检测光栅的运动。
在绝对值编码器中,光栅通常被固定在测量轴上,而光电传感器则被安装在固定位置上。
当测量轴旋转或移动时,光栅会遮挡或透过光电传感器,从而产生一个周期性的光信号。
光电传感器接收到的光信号会被转换为电信号,然后经过信号处理电路进行解码。
解码过程可以分为两个步骤:位置检测和角度计算。
位置检测是通过识别光栅的透光和不透光区域来确定测量轴的位置。
光栅通常具有固定数量的透光和不透光区域,每个区域对应一个二进制码。
通过检测光电传感器接收到的光信号,可以确定当前测量轴的位置。
角度计算是根据位置信息计算出测量轴的旋转角度。
通过将位置信息转换为二进制码,并进行解码,可以得到测量轴相对于参考位置的角度值。
2. 磁传感技术磁传感技术是另一种常用于绝对值编码器的原理。
它利用磁场传感器和磁性标尺来实现位置测量。
磁场传感器通常采用霍尔效应或磁阻效应来检测磁场强度。
磁性标尺则是一种具有磁性材料的标尺,可以通过磁场传感器来检测标尺的位置。
在绝对值编码器中,磁性标尺通常被固定在测量轴上,而磁场传感器则被安装在固定位置上。
当测量轴旋转或移动时,磁场传感器会检测到磁性标尺产生的磁场变化。
磁场传感器接收到的磁场信号会被转换为电信号,然后经过信号处理电路进行解码。
解码过程与光电传感技术类似,包括位置检测和角度计算。
位置检测是通过识别磁性标尺上的磁场变化来确定测量轴的位置。
绝对值编码器的介绍

绝对值编码器的介绍绝对值编码器的介绍什么是绝对值编码器的“绝对式”的含义旋转编码器是工业中重要的机械位置角度、长度、速度反馈并参与控制的传感器,旋转编码器分增量值编码器、绝对值编码器、绝对值多圈编码器。
从外部接收的设备上讲(如伺服控制器、PLC),增量值是指一种相对的位置信息的变化,从A点变化到B点的信号的增加与减少的计算,也称为“相对值”,它需要后续设备的不间断的计数,由于每次的数据并不是独立的,而是依赖于前面的读数,对于前面数据受停电与干扰所产生的误差无法判断,从而造成误差累计;而“绝对式工作模式”是指在设备初始化后,确定一个原点,以后所有的位置信息是与这个“原点”的绝对位置,它无需后续设备的不间断的计数,而是直接读取当前位置值,对于停电与干扰所可能产生的误差,由于每次读数都是独立不受前面的影响,从而不会造成误差累计,这种称为接收设备的“绝对式”工作模式。
而对于绝对值编码器的内部的“绝对值”的定义,是指编码器内部的所有位置值,在编码器生产出厂后,其量程内所有的位置已经“绝对”地确定在编码器内,在初始化原点后,每一个位置独立并具有唯一性,它的内部及外部每一次数据刷新读取,都不依赖于前次的数据读取,无论是编码器内部还是编码器外部,都不应存在“计数”与前次读数的累加计算,因为这样的数据就不是“独立”“唯一”“量程内所有位置已经预先绝对确立”了,也就不符合“绝对”这个词的含义了。
所以,真正的绝对编码器的定义,是指量程内所有位置的预先与原点位置的绝对对应,不依赖于内部及外部的计数累加而独立、唯一的绝对编码。
关于“绝对式”编码器的概念的“故意混淆”与认识的误区关于绝对值编码器,很多人的认识还是停留在“停电”的位置保存这个概念,这个是片面而有局限性的,“绝对值”编码器不仅仅是停电的问题,对于接收设备,真正的“绝对值”的意义在于其数据刷新与读取无论在编码器内部还是外部,每一个位置的独立性、唯一性、不依赖于前次读数的“绝对编码”,对于这个“绝对”的定义市场上还是模糊不清的,为此有些商家就会对于此概念的“故意混淆”:混淆一:将接收设备的“绝对式工作模式”与绝对值编码器的“绝对式”的混淆。
绝对编码器

绝对编码器需要回零状况:
1更换伺服电机
2伺服电机与机械结构发生松动重新调整后
回零步骤:
1设置机床参数
30240 ENC-TYPE 编码器类型4(PO)
34200 ENC-REFP-MODE 0 绝对值编码器位置设定34210 ENC-REFP-STATE 0 设定绝对值编码器状态2进入“手动”将坐标轴移到一个已知位置
3输入已知位的位置值
34100 REFP-SET-POS (mm)机床坐标值
4激活绝对值编码器的调整功能
34210 ENC-REFP-STATE 1 绝对编码器调整
5通过机床控制面板上的复位键,激活以上设定参数
6通过机床面板进入返回参考点方式(REF)
7按照返回参考点的方向按方向键,无坐标移动,但系统自动设定了下列参数
34010 为0,按“+”向回参考点
为1,按“_”向回参考点
34090 EFP-MOV-DIST-CORR 参考点偏移量
34210 NEC-REFP-STATE 2绝对位置建立
设定完毕后,屏幕上显示位置MD34100设定的位置,回参考
点结束。
注:下载PLC应用程序会导致参考点位置丢失,必须在PLC 应用调试完毕后,再调试绝对值编码器。
如果需要改参考点位置,重复上述1-7,机床建立参考点后,要重新对刀,确认R参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值编码器文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-增量型编码器与绝对型编码器的区分编码器如以信号原理来分,有增量型编码器,绝对型编码器。
增量型编码器 (旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。
由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。
编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。
分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。
信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。
信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。
如单相联接,用于单方向计数,单方向测速。
A.B两相联接,用于正反向计数、判断正反向和测速。
A、B、Z三相联接,用于带参考位修正的位置测量。
A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。
对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。
对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。
增量式编码器的问题:增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。
增量型编码器的一般应用:测速,测转动方向,测移动角度、距离(相对)。
绝对型编码器(旋转型)绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线。
编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。
这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。
绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
单圈绝对值编码器和多圈绝对值编码器旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。
如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。
编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。
多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。
绝对值编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出1.并行输出:绝对值编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单。
但是并行输出有如下问题:1。
必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。
2。
所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。
3。
传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。
4。
对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。
2.串行SSI输出:串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。
由于绝对值编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出。
SSI接口(RS422模式),以两根数据线、两根时钟线连接,由接收设备向编码器发出中断的时钟脉冲,绝对的位置值由编码器与时钟脉冲同步输出至接收设备。
由接收设备发出时钟信号触发,编码器从高位(MSB)开始输出与时钟信号同步的串行信号.串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了。
一般高位数的绝对编码器都是用串行输出的。
3.现场总线型输出现场总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址,用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号。
总线型编码器信号遵循RS485的物理格式,其信号的编排方式称为通讯规约,目前全世界有多个通讯规约,各有优点,还未统一,编码器常用的通讯规约有如下几种:PROFIBUS-DP; CAN; DeviceNet; Interbus等总线型编码器可以节省连接线缆、接收设备接口,传输距离远,在多个编码器集中控制的情况下还可以大大节省成本。
4.变送一体型输出我公司提供的GPMV0814、GPMV1016绝对编码器,其信号已经在编码器内换算后直接变送输出,其有模拟量4—20mA输出、RS485数字输出、14位并行输出。
连接绝对编码器的电气二次设备:连接绝对值编码器的设备可以是可编程控制器PLC、上位机,也可以是专用显示信号转换仪表,由仪表再输出信号给PLC或上位机。
1.直接进入PLC或上位机:编码器如果是并行输出的,可以直接连接PLC或上位机的输入输出接点I/O,其信号数学格式应该是格雷码。
编码器有多少位就要占用PLC的多少位接点,如果是24伏推挽式输出,高电平有效为1,低电平为0;如果是集电极开路NPN输出,则连接的接点也必须是NPN型的,其低电平有效,低电平为1。
2.编码器如果是串行输出的,由于通讯协议的限制,后接电气设备必须有对应的接口。
例如SSI串行,可连接西门子的S7-300系列的PLC,有SM338等专用模块,或S7-400的FM451等模块,对于其他品牌的PLC,往往没有专用模块或有模块也很贵。
3.编码器如是总线型输出,接受设备需配专用的总线模块,例如PROFIBUS-DP。
但是,如选择总线型输出编码器,在编码器与接收设备PLC中间,就无法加入其他显示仪表,如需现场显示,就要从PLC 再转出信号给与信号匹配的显示仪表。
作为位置检测的传感器,现在普遍采用了绝对位置测量,为保证高精度、高位数绝对型传感器的数据传输可靠性,目前世界上通常采用先进的SSI(synchronous-serial interface同步串行介面)输出技术,信号传输只需2根时钟线,2根数据线,另外配以2根电源线,仅需6根线即可达到工作及传输的目的.通过SSI转换模块,传感器输出的信号就可进行计算.格雷码格雷码(Gray code),又叫循环二进制码或反射二进制码在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。
格雷码属于可靠性编码,是一种错误最小化的编码方式,因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。
而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。
它在任意两个相邻的数之间转换时,只有一个数位发生变化。
它大大地减少了由一个状态到下一个状态时逻辑的混淆。
另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。
下表为几种自然二进制码与格雷码的对照表:┌────┬──────┬───┬────┬──────┬────┐│十进制数│自然二进制数│格雷码│十进制数│自然二进制数│格雷码│├────┼──────┼───┼────┼──────┼────┤│0 │0000 │0000 │8 │1000 │1100 │├────┼──────┼───┼────┼──────┼────┤│1 │0001 │0001 │9 │1001 │1101│├────┼──────┼───┼────┼──────┼────┤│2 │0010 │0011 │10 │1010 │1111 │├────┼──────┼───┼────┼──────┼────┤│3 │0011 │0010 │11 │1011 │1110 │├────┼──────┼───┼────┼──────┼────┤│4 │0100 │0110 │12 │1100 │1010 │├────┼──────┼───┼────┼──────┼────┤│5 │0101 │0111 │13 │1101 │1011 │├────┼──────┼───┼────┼──────┼────┤│6 │0110 │0101 │14 │1110 │1001 │├────┼──────┼───┼────┼──────┼────┤│7 │0111 │0100 │15 │1111 │1000 │└────┴──────┴───┴────┴──────┴────┘一般的,普通二进制码与格雷码可以按以下方法互相转换:格雷码-〉二进制码(解码):从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变).数学(计算机)描述:原码:p[0~n];格雷码:c[0~n](n∈N);编码:c=G(p);解码:p=F(c);书写时从左向右标号依次减小.编码:c=p XOR p[i+1](i∈N,0≤i≤n-1),c[n]=p[n];解码:p[n]=c[n],p=c XOR p[i+1](i∈N,0≤i≤n-1).Gray Code是由贝尔实验室的Frank Gray在20世纪40年代提出的(是1880年由法国工程师Jean-Maurice-EmlleBaudot发明的),用来在使用PCM(Pusle Code Modulation)方法传送讯号时避免出错,并于1953年3月17日取得美国专利。