高频小信号选频放大器的测试与分析

合集下载

实验1小信号放大器

实验1小信号放大器

四、实验内容与操 基本条件:R=10K Vcc=12V 按表要求分别改变RE时 测试数据记录于表中: 按表要求分别改变RE时,测试数据记录于表中: RE
RE
Vb 500 1K 2K
实际测量值( 实际测量值(V)
Ve Vc Vce
计算值
Ic(mA)
Bw0.7=fHBw0.7=fH-FL= ?
Au Auo
通带特性曲线
fo
f
通带特性曲线
fo
f
说明1 什么是通频带? 说明1:什么是通频带? 说明2 放大器阻尼电阻R变化对AVO与Bw的影响。 说明2:放大器阻尼电阻R变化对AVO与Bw的影响。 AVO 的影响
放大器选择性与矩形系数Kr0.1 Kr0.1的测定 4.放大器选择性与矩形系数Kr0.1的测定
二、实 验 内 容
高频谐振电压放大器静态工作状态的测量。 1、高频谐振电压放大器静态工作状态的测量。 2、高频谐振放大器谐振频率fo的调整与测定。 高频谐振放大器谐振频率fo的调整与测定。 fo的调整与测定 3、高频谐振放大器的主要技术性能指标的测定。 (1)谐振电压放大倍数Avo (2)谐振放大器的通频带BW0.7 (3)谐振放大器的选择性Kr0.1
预习实验: 预习实验:
单调谐高频小信号谐振放大器电路仿真实验
EWB电子工作平台软件构建如图所示设计实验电路 电子工作平台软件构建如图所示设计实验电路, 用EWB电子工作平台软件构建如图所示设计实验电路,仿真时可完成 下列内容: 下列内容:
1、测量并调整放大器的静态工作点。 仿真条件:晶体管用理想库(defauit)中的(ideal)器件。电 感线圈用固定电感L1=2.8uH、L2=1.2uH,中间抽头。其余元件参数参见图 1-5。IC=1.5mA。自建表格记录实验数据。 2、谐振频率的调测与电压放大倍数的测量。 仿真条件:输入高频信号频率=fo=10.7MHz,幅度(峰-峰值)50mV。 阻尼电阻R=∞、反馈电阻Re=1KΩ、负载电阻RL=10KΩ 3、研究阻尼电阻变化对放大器增益、带宽、品质因数的影响 用频率特性测试仪测试放大器的幅频特性,并计算出增益、带宽 及品质因数。测试条件:输入高频信号频率=fo=10.7MHz,幅度(峰-峰值) 50mV。反馈电阻Re=1KΩ、负载电阻RL=10KΩ。阻尼电阻R=∞(开路) 阻尼电阻R=10KΩ 阻尼电阻R=3KΩ 阻尼电阻R=470Ω 4、研究反馈电阻变化对放大器的影响 测试条件:输入高频信号频率=fo=10.7MHz,幅度(峰-峰值)50mV。 阻尼电阻R=10KΩ、负载电阻RL=10KΩ。

高频小信号谐振放大器实验总结(第五组)

高频小信号谐振放大器实验总结(第五组)

高频小信号谐振放大器(总结)高频小信号谐振放大器=高频+小信号+谐振+放大;高频:由于高频频率高波长短,不同于低频,所以在线路中会存在反射、串扰;以及整块电路板的寄生参数的影响会导致效果会一点也出不来。

因为此次的频率在6M频率不算很高,总结一些解决方法:①反射:器件之间的连线要短,最好是直接相连,背面焊接不要出现就90°转折。

②串扰:级与级之间的地线处理好,最好是单点供地,并且地线要是所有传输线中最粗的一根,信号线不要裸露的从地线上方走过。

③寄生参数:是个不好处理的参数,但是可以通过输出的波形分析出,然后实施相应方法避免或解决,如布线不要有平行线,减小接入系数可以减小晶体管极间电容的影响。

注:自制扼流线圈或电感在绕制好后需用绝缘胶布固定,防止其因线圈变动影响稳定性。

小信号:小信号的输入大小影响晶体管的基极偏置,但是不能太小,因为学校的数字合成信号发生器在输出小于10mv的时候会有寄生波纹输出,在示波器上显示的可能是几百Hz属于低频信号,但是此时的信号仍然是高频信号,出现这种现象是因为示波器导致的视觉误差。

因为这种波纹的存在导致输出的波形上下浮动,很容易认为是电路的寄生振荡。

解决方法是提高小信号的输出幅度,一般在100mv时寄生波纹很小。

(注:有的数字合成信号发生器输出没有寄生波纹)谐振:涉及到输出的中心频率和带宽,如图:电容和电感可由计算可得,而这个电位器的作用是在输出带宽窄的情况下,调节电位器,减小其接入阻值,可以增加带宽。

放大:此次的核心是放大,其他的工作做的再好,不放大就是做无用功,只有放大了,再出现问题就好解决。

出现不放大的情况有以下几种:①输出增益为负值②增益不够高③输出波形失真,如图:解决方法:①静态工作点没有设置好,基极偏置跟低频不一样,经验值为+5V左右;②增益不够高很大程度上是因为晶体管的截止频率不够(静态工作点合理),可以尝试换截止频率高的晶体管,如9018 的截止频率为1G,足够放大。

高频小信号放大器实验报告

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验容1.2.1 单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。

ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形Avo=Vo/Vi=1.06/0.252=4.2063、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=(14.278GHz-9.359KHz)/7.092MHz=2013.2544、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.0285、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

2次谐波4次谐波6次谐波1.2.2 双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0。

高频小信号放大器 实验报告

高频小信号放大器 实验报告

高频小信号放大器实验报告高频小信号谐振放大器一、实验目的1、了解高频小信号谐振放大器的电路组成、工作原理。

2、进一步理解高频小信号放大器与低频小信号放大器的不同。

3、掌握用Multisim8分析、测试高频小信号放大器的基本性能。

4、掌握谐振放大器的调试方法。

5、掌握用示波器测试小信号谐振放大器的基本性能。

6、学会用扫频仪测试小信号谐振放大器幅频特性的方法。

二、实验仪器双踪示波器 数字频率计 高频毫伏表频率特性测试仪BT —3 直流稳压电源 万用表高频信号发生器三、实验原理高频小信号谐振放大器最典型的单元电路如图4.2.1所示,由LC 单调谐回路作为负载构成晶体管调谐放大器。

晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号的频率10.7MHz 上。

该放大电路能够对输入的高频小信号进行反相放大。

LC 调谐回路的作用主要有两个:一是选频滤波,选择放大o f f =的工作信号频率,抑制其它频率的信号。

二是提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。

高频小信号频带放大器的主要性能指标有:(1)中心频率o f :指放大器的工作频率。

它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。

(2)增益:指放大器对有用信号的放大能力。

通常表示为在中心频率上的电压增益和功率增益。

电压增益 o o i A V V υ= (4.2.1)功率增益 po o i A P P = ( 4.2.2)图4.2.1 晶体管单调谐回路调谐放大器式中o V 、i V 分别为放大器中心频率上的输出、输入电压,o P 、i P 分别为放大器中心频率上的输出、输入功率。

增益通常用分贝表示为()20lg o o i A dB V V υ= ( 4.2.3) ()10lg po o i A dB P P = ( 4.2.4)(3)通频带:指放大电路增益由最大值下降3db 时所对应的频带宽度,用BW 0,7表示。

它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度,如图4.2.2所示。

高频小信号放大电路实验报告

高频小信号放大电路实验报告

高频小信号放大电路
一.实验目的
1.了解Multisim软件的各项功能,掌握其使用方法。

2.通过使用Multisim软件来仿真电路,掌握高频小信号调谐放大器的工作原理。

3.了解负载对谐振回路的影响。

4.掌握高频小信号放大器动态范围的测试方法。

二.实验内容
1.并联谐振回路的演示仿真分析。

2.测试小信号放大器的静态工作状态。

3.观察放大器输出波形与谐振回路的关系。

4.测试放大器的幅频特性。

5.观察放大器的动态范围。

三.绘图
四.数据处理
<4>.动态数据分析:
增益计算公式:(2.)
幅频特性曲线:。

高频小信号放大器实验报告

高频小信号放大器实验报告

高频电子线路实验报告——高频小信号放大器实验报告班级:电信工一班姓名:汪宁泽学号: 201400121049高频小信号放大器实验报告1.测量并调整单调谐回路谐振放大器(工作频率为4MHz )的静态工作点,将结果记录在下表中V BQ V CQ V EQ I CQ 估算值 2.112V 12V 1.412V 1.412mA 仿真值 2.082V 12V 1.348V 1.7913mA 实测值 1.38V10.35V0.96V1.23mA2.观察单调谐回路谐振放大器(工作频率为4MHz )的输入、输出信号的波形,注意幅度变化和相位关系。

(此时应调节回路有元器件至谐振状态)。

3.用示波器测量单调谐回路谐振放大器的频率特性曲线与增益,并计算通频带宽度。

要求在3.9~4.1MHz 频率范围内,每隔200kHz 测量一次。

f/kHz 3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100 增益(B ) 15.83 18.33 23.3 27.5 29.17 36 31 27 22 19 16.5 增益(C ) 6.57.28.210121412.311109.47.6讨论负载对放大器频率特性的影响R 7 ∞100k51k 10k增益 05.11095.01010 25.010BW 0.70.170.3 0.250.34由表可得:MHz BW 617.0=用频率特性测试仪直接观察幅频特性曲线。

高频集成放大器1、 用示波器测量宽带放大器在工作频率附近的电压增益。

(4MHz )7.360220===mVmV v v A i o v 2、 当输入信号频率发生变化时(保持输入幅度不变),用示波器观察输出信号波形的幅度变化情况,分析幅频特性(即用逐点法测量幅频特性)。

f/kHz 3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100 增益3.7 3.69 3.7 3.7 3.69 3.7 3.7 3.68 3.7 3.68 3.68思考题:1.实验书中图 4.2.5所示双调谐回路高频小信号放大电路中电容C9的作用是什么?解:隔直流,其旁路耦合电容的功能。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

高频实验:小信号调谐放大器实验报告综述

高频实验:小信号调谐放大器实验报告综述

实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。

2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。

二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。

所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。

这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。

图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:K ( f ) / K 010.7070.10f 0B 0.7B 0.1f1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。

2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。

In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。

电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。

晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。

通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频小信号选频放大器的测试与分析
Q值)的影响。

图1-2 单调谐回路谐振放大器
【实验内容】
1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点。

2.采用点测法测量单调谐放大器的幅频特性。

3.用示波器观察静态工作点、集电极负载对单调谐放大器幅频特性的影响。

4.用示波器观察放大器输入、输出波形。

3、学会连接电路的方法。

4、按《实验报告》的要求做好记录。

【实验步骤】
1. 在实验箱上插上实验板1。

接通实验箱上电源开关,此时电源指示灯点亮。

2. 把实验板1左上方单元(单调谐放大器单元)的电源开关(K7)拨到ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。

3.单调谐回路谐振放大器静态工作点测量
①取射极电阻R4=1kΩ(接通K4,断开K5、K6),集电极电阻R3=10kΩ(接通K1,断开K2、K3),用万用表测量各点(对地)电压VB、VE、VC,并填入表1.1内。

表1.1
射极偏置电阻
实测(V) 计算(V,mA)
晶体管工作于放大
区? 理由V B V E V C V BE V CE I C是否
R4=1kΩ 3.41 2.76 11.80 0.65 9.04 2.76 是V BE在0.6-0.7V间R4=510Ω 3.37 2.71 11.79 0.66 9.08 5.31 是V BE在0.6-0.7V间R4=2kΩ 3.45 2.81 11.80 0.64 8.99 1.41 是V BE在0.6-0.7V间
②当R
4分别取510Ω(接通K
5
,断开K
4
、K
6
)和2kΩ(接通K
6
,断开K
4
、K
5
)时,重复上述过程,将
结果填入表1.1,并进行比较和分析。

相关文档
最新文档