高中数学知识要点:充分条件和必要条件
高中数学知识讲解_充分条件与必要条件_基础

充分条件与必要条件【学习目标】1.理解充分条件、必要条件、充要条件的定义;2.会求某些简单问题成立的充分条件、必要条件、充要条件;3.会应用充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件表达命题之间的关系;4.能够利用命题之间的关系判定充要关系或进行充要性的证明.【要点梳理】要点一:充分条件与必要条件、充要条件的概念1. 符号p q⇒与p q⇒/的含义“若p,则q”为真命题,记作:p q⇒;“若p,则q”为假命题,记作:p q⇒/.2. 充分条件、必要条件与充要条件①若p q⇒,称p是q的充分条件,q是p的必要条件.②如果既有p q⇔,这时p是q的充分必要条件,称p是⇒,又有q p⇒,就记作p qq的充要条件.要点诠释:对p q⇒的理解:指当p成立时,q一定成立,即由p通过推理可以得到q.①“若p,则q”为真命题;②p是q的充分条件;③q是p的必要条件.以上三种形式均为“p q⇒”这一逻辑关系的表达.要点二:充分条件、必要条件与充要条件的判断1. 从逻辑推理关系看命题“若p,则q”,其条件p与结论q之间的逻辑关系.①若p q⇒,但q p⇒/,则p是q的充分不必要条件,q是p的必要不充分条件;②若p q⇒,则p是q的必要不充分条件,q是p的充分不必要条件;⇒/,但q p③若p q⇔,则p、q互为充要条件;⇒,且q p⇒,即p q④若p q⇒/,则p是q的既不充分也不必要条件.⇒/,且q p2. 从集合与集合间的关系看若p:x∈A,则q:x∈B.①若A⊆B,则p是q的充分条件,q是p的必要条件;②若A是B的真子集,则p是q的充分不必要条件;③若A=B,则p、q互为充要条件;④若A不是B的子集且B不是A的子集,则p是q的既不充分也不必要条件.要点诠释:充要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪个是条件,哪个是结论;②尝试用条件推结论;③再尝试用结论推条件;④最后判断条件是结论的什么条件.要点三:充要条件的证明要证明命题的条件是结论的充要条件,既要证明条件的充分性(即证原命题成立),又要证明条件的必要性(即证原命题的逆命题成立).要点诠释:对于命题“若p ,则q ” :①如果p 是q 的充分条件,则原命题“若p ,则q ”与其逆否命题“若q ⌝,则p ⌝”为真命题;②如果p 是q 的必要条件,则其逆命题“若q ,则p ”与其否命题“若p ⌝,则q ⌝”为真命题;③如果p 是q 的充要条件,则四种命题均为真命题.【典型例题】类型一:充分条件、必要条件、充要条件的判定例1. 指出下列各题中,p 分别是q 的什么条件?(1) p :(2)(3)0x x --=, q : 2x =;(2) p :0c =, q : 抛物线2y ax bx c =++过原点;(3) p :一个四边形是矩形, q : 四边形的邻边相等.【思路点拨】本题中,p 是条件,q 是结论. 尝试用条件推结论,再尝试用结论推条件,从而判断p 分别是q 的什么条件.【解析】(1)∵p : 2x =或3x =, q : 2x =,∴p q ⇒/且q p ⇒,∴p 是q 的必要不充分条件.(2)∵p q ⇒且q p ⇒,∴p 是q 的充要条件,(3)∵p q ⇒/且q p ⇒/,∴p 是q 的既不充分条件也不必要条件.【总结升华】判定充要条件的基本方法是定义法,即“定条件——找推式——下结论”.有时需要将条件等价转化后再判定.举一反三:【变式1】指出下列各题中,p 是q 的什么条件?(1)p :A B ∠=∠, q :A ∠和B ∠是对顶角.(2)p :1x =, q :21x =;【解析】(1)∵p q ⇒/且q p ⇒,∴p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)∵2:111q x x x =⇔==-或∴211x x =⇒=,但211x x =⇒=/,∴p 是q 的充分不必要条件,q 是p 的必要不充分条件.【变式2】判断下列各题中p 是q 的什么条件.(1)p :0a >且0b >, q :0ab >;(2)p :1x y>, q : x y >. 【答案】(1)p 是q 的充分不必要条件.∵0a >且0b >时,0ab >成立;反之,当0ab >时,只要求a 、b 同号即可.∴必要性不成立.(2)p 是q 的既不充分也不必要条件∵1x y >在0y >的条件下才有x y >成立. ∴充分性不成立,同理必要性也不成立.【高清课堂:充分条件与必要条件394804例2】例2. 已知p :0<x <3,q :|x -1|<2,则p 是q 的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】A【解析】解不等式|x -1|<2得-1<x <3,即q :-1<x <3.将集合P ={|03}x x <<与Q ={|13}A x x =<< 在数轴上表示出来,如图,从图中看P Q ⊆, 所以p ⇒q ,但q ⇒/p ,故p 是q 的充分不必要条件.【总结升华】①先对已知条件进行等价转化化简,然后由定义判断;②不等式(解集)表示的条件之间的相互关系可以借助集合间的关系判断.举一反三:【高清课堂:充分条件与必要条件394804例3】【变式1】设x ∈R ,则条件“2x >”的一个必要不充分条件为( )A.1x >B.1x <C.3x >D.3x <【答案】A【变式2】下列各小题中,p是q的什么条件?(1)p:22-<<;xx-≤≤,q:20(2)p:03xx-<<.<<,q:13【答案】(1) p是q的必要不充分条件;(2) p是q的充分不必要条件.【变式3】设条件甲为“250x x--<””那么甲是乙的()-<”,条件乙为“2560x xA、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】B类型二:充要条件的探求与证明例3.设x y、∈R,求证:|x y+|=|x|+|y|成立的充要条件是xy≥0.【思路点拨】注意分清条件与结论. 本题中条件:xy≥0;结论:|x y+|=|x|+|y|.要证明充要条件的成立,须从两方面着手:条件∣结论;结论∣条件.【证明】(1)充分性:若xy=0,那么①x=0,y≠0;②x≠0,y=0;③x=0,y=0,于是|x+y|=|x|+|y|如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|.当x<0,y<0时,|x+y|=-(x+y)=-x+(-y)=| x|+|y|.总之,当xy≥0时,有|x+y|=|x|+|y|.(2)必要性:由|x+y|=|x|+|y|及x、y∈R,得(x+y)2=(|x|+|y|)2,即2222x xy y x xy y++=++,|xy|=xy,22∴xy≥0.综上可得|x y+|=|x|+|y|成立的充要条件是xy≥0.【总结升华】充要条件的证明关键是根据定义确定哪是已知条件,哪是结论,然后搞清楚充分性是证明哪一个命题,必要性是证明哪一个命题.判断命题的充要关系有三种方法:(1)定义法;(2)等价法,即利用A B⇔与A B⌝⇔⌝的⇒与B A⌝⇒⌝;A B⇒与A B⌝⇒⌝;B A等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,若A B⊆,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.举一反三:【变式1】已知a b c,,都是实数,证明ac< 0是关于x的方程2++=0有一个正ax bx c根和一个负根的充要条件.【解析】(1)充分性:若ac<0,则Δ=b2-4ac>0,方程2ax bx c++=0有两个相异实根,设为x1,x2,∵ac<0,∴x1·x2=ca<0,即x1,x2的符号相反,即方程有一个正根和一个负根.(2)必要性:若方程2ax bx c++=0有一个正根和一个负根,设为x1,x2,且x1>0,x2<0,则x1·x2=ca<0,∴ac<0.综上可得ac<0是方程2ax bx c++=0有一个正根和一个负根的充要条件. 【变式2】求关于x的方程2210ax x++=至少有一个负的实根的充要条件. 【解析】(1)a=0时适合.(2)当a≠0时,显然方程没有零根.若方程有两异号的实根,则必须满足1440aaa⎧<⎪⇒<⎨⎪∆=->⎩;若方程有两个负的实根,则必须满足12001440aa aa⎧>⎪⎪⎪-<⇒<≤⎨⎪⎪∆=-≥⎪⎩综上知,若方程至少有一个负的实根,则a≤1;反之,若a≤1,则方程至少有一个负的实根,因此,关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件是a≤1类型三:充要条件的应用例4.已知条件p:2x+ax+1≤ 0,条件q:23x x-+2≤ 0,若p是q的充分不必要条件,求实数a的取值范围.【答案】-2≤a≤2【解析】解不等式23x x-+2≤ 0得1≤x≤2.令A={x∈R|2x+ax+1≤ 0},B={x|1≤x≤2},∵p是q的充分不必要条件,∴p q⇒,即A⊆B,可知A=∅或方程2x+ax+1=0的两根要在区间[1,2]内,∴Δ=a 2-4<0或01224210110a a a ∆≥⎧⎪⎪≤-≤⎪⎨⎪++≥⎪++≥⎪⎩,得-2≤a ≤2. 【总结升华】解决这类参数的取值范围问题,应尽量运用集合法求解,即先化简集合A 、B ,再由它们的因果关系,得到A 与B 的包含关系,进而得到相关不等式组,解之即可.举一反三:【变式1】已知命题p :()110c x +c c <<>-,命题q :x >7或x <-1,并且p 是q 的既不充分又不必要条件,则c 的取值范围是________.【答案】0<c ≤2【解析】命题p 对应的集合A ={x|1-c<x<1+c ,c>0},同理,命题q 对应的集合B ={x|x>7或x<-1}.因为p 是q 的既不充分又不必要条件,所以A B =∅或A 不是B 的子集且B 不是A 的子集,所以1117c c -≥-⎧⎨+≤⎩,①或1117c c +≥-⎧⎨-≤⎩,②,解①得c≤2,解②得c≥-2,又c>0,综上所述得0<c≤2.【变式2】已知p :1|1|23x --≤,q :22210(0)x x m m -+-≤>,若p 是q 的充分不必要条件,求m 的取值范围.【答案】9m ≥【解析】由22210(0)x x m m -+-≤>解得11m x m -≤≤+ 又由1|1|23x --≤解得210x -≤≤ p 是q 的充分不必要条件,所以012,110m m m >⎧⎪-≤-⎨⎪+>⎩或012,110m m m >⎧⎪-<-⎨⎪+≥⎩解得9m ≥。
高一数学充分条件与必要条件笔记

高一数学充分条件与必要条件笔记充分条件与必要条件是数学中重要的概念,它们描述了命题成立的条件和结论之间的关系。
1. 充分条件:如果由条件A可以推出结论B,那么就说A是B的充分条件。
简单来说,就是有了A,就可以得到B。
2. 必要条件:如果由结论B可以推出条件A,那么就说A是B的必要条件。
简单来说,就是没有A,就没有B。
充分必要条件:如果由A可以推出B,由B也可以推出A,那么就说A是B的充分必要条件,简称充要条件。
既不充分也不必要条件:如果由A不能推出B,由B也不能推出A,那么就说A 是B的既不充分也不必要条件。
可以根据这些定义来判断某一条件是否为另一条件的充分条件、必要条件、既不充分也不必要条件。
同时,这些判断也可以基于逻辑推理关系来进行。
1. 充分条件:如果由条件A可以推出结论B,那么就说A是B的充分条件。
简单来说,就是有了A,就可以得到B。
比如,如果一个数能被2整除,那么这个数一定是偶数。
在这里,“能被2整除”就是“偶数”的充分条件。
2. 必要条件:如果由结论B可以推出条件A,那么就说A是B的必要条件。
简单来说,就是没有A,就没有B。
比如,如果一个数能被2整除,那么这个数一定是偶数。
在这里,“能被2整除”就是“偶数”的必要条件。
3. 充分必要条件:如果由A可以推出B,由B也可以推出A,那么就说A是B 的充分必要条件,简称充要条件。
比如,在三角形中,如果一个角是直角,那么这个三角形是直角三角形。
在这里,“是直角”就是“直角三角形”的充分必要条件。
4. 既不充分也不必要条件:如果由A不能推出B,由B也不能推出A,那么就说A是B的既不充分也不必要条件。
比如,在三角形中,“是等腰三角形”不能推出“有一个角是直角”,也不能推出“是直角三角形”,因此,“是等腰三角形”就是“是直角三角形”的既不充分也不必要条件。
这些判断可以根据逻辑推理关系来进行。
在判断某一条件是否为另一条件的充分条件、必要条件、既不充分也不必要条件时,可以通过逻辑推理的方法来验证。
高中数学讲义:充分条件与必要条件

充分条件与必要条件一、基础知识1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q Þ,(2)充分条件与必要条件:如果条件,p q 满足p q Þ,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件(2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q Û,则称p 是q 的充要条件,也称,p q 等价(4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件4、如何判断两个条件的充分必要关系(1)通过命题手段,将两个条件用“若……,则……”组成命题,通过判断命题的真假来判断出条件能否相互推出,进而确定充分必要关系。
例如2:1;:10p x q x =-=,构造命题:“若1x =,则210x -=”为真命题,所以p q Þ,但“若210x -=,则1x =”为假命题(x 还有可能为1-),所以q 不能推出p ;综上,p 是q 的充分不必要条件(2)理解“充分”,“必要”词语的含义并定性的判断关系① 充分:可从日常用语中的“充分”来理解,比如“小明对明天的考试做了充分的准备”,何谓“充分”?这意味着小明不需要再做任何额外的工作,就可以直接考试了。
在逻辑中充分也是类似的含义,是指仅由p 就可以得到结论q ,而不需要再添加任何说明与补充。
以上题为例,对于条件:1p x =,不需再做任何说明或添加任何条件,就可以得到2:10q x -=所以可以说p 对q 是“充分的”,而反观q 对p ,由2:10q x -=,要想得到:1p x =,还要补充一个前提:x 不能取1-,那既然还要补充,则说明是“不充分的”② 必要:也可从日常用语中的“必要”来理解,比如“心脏是人的一个必要器官”,何谓“必要”?没有心脏,人不可活,但是仅有心脏,没有其他器官,人也一定可活么?所以“必要”体现的就是“没它不行,但是仅有它也未必行”的含义。
高中数学充分条件和必要条件

第8讲:充分条件和必要条件【知识点梳理】知识点:充分条件与必要条件【考点解析】考点一:充分条件的判断例1.设x ∈R ,则“220x x -<”是“12x -<”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分又不必要条件变式训练1:“三角形是等腰三角形”是“三角形是等边三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件变式训练2:2x =是260x x +-=的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .即不充分也不必要条件变式训练3:设x ∈R ,则“2230x x --<”是“13x -<”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件变式训练4:使得()20x y -=成立的一个充分不必要条件是( ) A .20x y +-= B .22(2)0x y +-= C .221x y +=D .0x =或2y =考点二:必要条件的判断例2.已知a ,b ,c 是实数,则下列命题是真命题的( ) A .“a b >”是“22a b >”的充分条件 B .“a b >”是“22a b >”的必要条件 C .“a b >”是“22ac bc >”的充分条件 D .“a b >”是“22ac bc >”的必要条件变式训练1:若a R ∈,则“1=a ”是“1a =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件变式训练2:“2320x x -+>”是“1x <或4x >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件变式训练3:已知a ,b ,R c ∈,则“a b >”是“22ac bc >”成立的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件变式训练4:使得“1x >”成立的一个必要且不充分的条件是( ) A .21x >B .3 1x >C .11x> D .2x >考点三:充分条件与必要条件(一)例3.华夏文明五千多年,孕育出璀璨的诗歌篇章,诗歌“黄沙百战穿金甲,不破楼兰终不还”一句引自王昌龄的《从军行七首(其四)》,楼兰,汉时西域国名.据《汉书》载:汉武帝时,曾使通大宛国,楼兰王阻路,攻截汉朝使臣.汉昭帝元凤四年(公元前77)霍光派傅介子去楼兰,用计斩杀楼兰王.唐时与吐蕃在此交战颇多,王昌龄诗中借用傅介子斩楼兰王典故,表明征战将士誓平边患的决心.那么,“不破楼兰终不还”中,“还”是“破楼兰”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件变式训练1:老师经常说“努力不一定成功,但是不努力一定不会成功”,若这句话是真命题,则“努力”是“成功”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件变式训练2:为促进离汉人员安全有序流动,统筹推进疫情防控和复工复产复学,国务院联防联控机制日前印发《关于做好离汉人员新冠肺炎检测和健康管理服务工作的通知》,重点人群离汉前按照“应检尽检”原则进行新冠病毒核酸检测,离汉人员到达目的地后满足相应条件即可正常复工复产复学.这里的“相应条件”是“正常复工复产复学”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件考点四:充分条件与必要条件的应用(二)例4.已知,a b R ∈,那么“1a b +>”是“221a b +>”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件变式训练1:如果2:2,:4,p x q x >->则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件变式训练2:如果p 是q 的必要不充分条件,q 是r 的充要条件,r 是s 的充分不必要条件,那么p 是s 的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件考点五:充分条件与必要条件的应用(三)例5.已知p :1x >或2x <-,q :x a >,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .{}2a a <- B .{}2a a >-C .{}21a a -<≤D .{}1a a ≥变式训练1:若“14x ≤≤”是“4a x a ≤≤+”的充分不必要条件,则实数a 的取值范围为( ) A .0a ≤B .0a ≤或1a ≥C .01a <<D .01a ≤≤变式训练2:已知条件12p x +≤:,条件q x a ≤:,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .1a ≥B .1a ≤C .1a ≥-D .3a ≤﹣变式训练3:已知:11p m x m -<<+,()():260q x x --<,且q 是p 的必要不充分条件,则实数m 的取值范围为( ) A .35m <<B .35m ≤≤C .5m >或3m <D .5m >或3m ≤考点六:充分条件与必要条件的应用(四)例6.已知集合{}211A x m x m =-<<+,{}24B x x =<. (1)当2m =时,求AB ,A B ;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.变式训练1:已知集合{}12A x x =-<<,{}|1120B x m x m m =-<<+>,,若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围变式训练2:已知集合{14}M xx =-<<∣,{0}N x x a =->∣. (1)当1a =时,求M N ⋂,M N ⋃;(2)若x M ∈是x ∈N 的充分不必要条件,求实数a 的取值范围.【课堂检测】1、“5x =”是“2450x x --=”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2、设a R ∈,则“23a <<”是“2560a a --<”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3、设命题甲为“03x <<”,命题乙为“12x -<“,那么甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4、设R a ∈,则“a >22a >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件5、“04a <<”是“210ax ax ++>对x ∈R 恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6、若“x a >”是“13x<”的一个充分不必要条件,则下列a 的范围满足条件的是( ) A .2a > B .102a <<C .13a <-D .13a -<<7、若“2x >”是“x a >”的必要不充分条件,则a 的取值范围是( ) A .{|2}a aB .{}|2a a ≤C .{}|2a a >D .{|2}a a ≥8、“三角形ABC 为锐角三角形”是“A ∠为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9、设,a b ∈R ,下列四个条件中,使a b <成立的必要不充分条件是( ) A .1a b <+B .1a b <-C .22a b <D .33a b <10、设集合{}|2M x x =>,{}|6P x x =<,那么“x M ∈或x P ∈”是“x M P ∈”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件11、使不等式22530x x --≥成立的一个必要不充分条件是( ) A .0x ≥或2x -≤ B .0x <或2x > C .1x <-或4x >D .12x ≤-或3x ≥12、使()f x = )A .16x -≤≤B .13xC .26x -<<D .61x -<<13、不等式22530x x --≥成立的一个充分不必要条件是( ) A .0x ≥ B .0x <或2x > C .2x <-D .12x ≤-或3x ≥14、王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分又不必要条件15、盛唐著名边塞诗人王昌龄在其作品《从军行》中写道:青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还.其最后一句中“攻破楼兰”是“返回家乡”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16、唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙.”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件17、2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征.“某人表现为发热、干咳、浑身乏力”是“新冠肺炎患者”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件18、2019年12月,湖北省武汉市发现多起病毒性肺炎病例.2020年1月12日,世界卫生组织正式将造成此次肺炎疫情的病毒命名为“2019新型冠状病毒”.2020年2月11日,世界卫生组织将新型冠状病毒感染的肺炎命名为COVID-19(新冠肺炎)。新冠肺炎患者症状是发热、干咳、浑身乏力等外部表征。“某人表现为发热、干咳、浑身乏力”是“新冠肺炎患者”的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件19、“不到长城非好汉,屈指行程二万”,出自毛主席1935年10月所写的一首词《清平乐·六盘山》,反映了中华民族的一种精神气魄,一种积极向上的奋斗精神,其中“到长城”是“好汉”的()A.充要条件B.既不充分也不必要条件C.充分条件D.必要条件20、钱大姐常说“好货不便宜”,她这话的意思是:“好货”是“不便宜”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件21、除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件22、已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( )A .12m >B .12m ≥C .1mD .m 1≥23、已知:12p x +≥,:q x a ≥,若p 是q 的必要不充分条件,则a 的取值范围是( ) A .1a ≥B .1a >C .3a ≥-D .3a >-24、若1x a -<成立的充分不必要条件是312x <<,则a 的取值范围( ) A .122a <<B .122a ≤≤ C .12a ≤或2a ≥D .12a <或2a >25、已知:12p x -≤<,2:21q a x a ≤≤+,若p 是q 的必要条件,则实数a 的取值范围是( )A .1a ≤-B .112a -<≤-C .112a -<≤ D .112a -≤<26、设p :112x ≤≤;q :1a x a ≤≤+,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .102a <<B .102a ≤≤C .102a ≤<D .102a <≤27、已知条件p :2230x x --≤,条件q :x a ≤,若p 是q 的充分非必要条件,利用教材中《子集与推出关系》的方法,求出实数a 的取值范围.28、设{|1A x x =≤或4},{|22}x B x a x a ≥=-<<. (1)若AB R =,求实数a 的取值范围;(2)设:,:p x A q x B ∈∈,且p 是q 的必要不充分条件,求实数a 的取值范围.。
高中数学必修一课件:充分条件与必要条件

2.设x∈R,则使x>3成立的一个充分条件是( A )
A.x>4
B.x>0
C.x>2
D.x<2
解析 若x>4,则x>3.故选A.
3.对于任意实数a,b,c,在下列命题中,真命题是( B ) A.“ac>bc”是“a>b”的必要条件 B.“ac=bc”是“a=b”的必要条件 C.“ac<bc”是“a<b”的充分条件 D.“ac=bc”是“a=b”的充分条件 解析 ∵a=b⇒ac=bc,∴“a=b”是“ac=bc”的充分条件,∴“ac= bc”是“a=b”的必要条件.
【解析】 p:3a<x<a,即集合A={x|3a<x<a}.q:-2≤x≤3,即集合B={x|
-2≤x≤3}.因为p⇒q,所以A⊆B,所以3aaa≤ <≥03- ,2,⇒-23≤a<0,所以a的取值 范围是-23≤a<0.
探究3 记A={x|x满足p},B={x|x满足q},则 (1)p是q的充分条件,那么A⊆B. (2)p是q的必要条件,那么B⊆A.
答:等价.
课时学案
题型一 充分条件的判断
例1 下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件? (1)若a∈Q,则a∈R. (2)若x,y∈R,|x|=|y|,则x=y. (3)若(a-2)(a-3)=0,则a=3. (4)在△ABC中,若A>B,则BC>AC. (5)若四边形ABCD是正方形,则四边形ABCD是菱形.
探究1 充分条件的两种判断方法: (1)定义法:
(2)命题判断方法: 如果命题:“若p,则q”是真命题,则p是q的充分条件;如果命题:“若 p,则q”是假命题,则p不是q的充分条件.
人教版高中数学课件-充分条件与必要条件

錯解
錯因剖析
(-1,5) 忽略了端點1與a-4重合、a+4與3 重合的情況
【防範措施】 1.集合關係中等號的處理 在已知兩集合間的關係求參數的值或範圍時,等號問題常有以下 兩種處理方法:一是借助數軸分析法,二是假設等號成立求出字 母的值,再驗證其是否符合題意.如本例中a-4≤1,a+4≥3都能夠 取到等號. 2.轉化思想的應用 在由充分和必要條件轉化為集合間的關係時,要分清是包含關係 還是真包含關係,如本例應是Q P.
【微思考】 (1)若p是q的充分條件,p是惟一的嗎? 提示:不一定惟一,凡是能使q成立的條件都是它的充分條件,如 x>3是x>0的充分條件,x>5,x>10等都是x>0的充分條件. (2)“若﹁p,則﹁q”為真命題,則p是q的什麼條件? 提示:“若﹁p,則﹁q”為真命題,則其逆否命題“若q,則p”也為 真命題,即q⇒p,故p是q的必要條件.
1.2 充分條件與必要條件 第1課時 充分條件與必要條件
பைடு நூலகம்
1.充分條件、必要條件的定義是什麼? 問題
2.如何判斷p是q的充分條件,q是p的必要條 引航
件?
充分條件、必要條件 (1)前提:“若p,則q”形式的命題為_真__命__題__. (2)條件:p⇒q. (3)結論:p是q的_充__分__條件,q是p的_必__要__條件.
來判斷充分條件、必要條件為: ①若P⊆Q,則p是q的充分條件,q是p的必要條件. ②若p是q的充分條件,即p⇒q,相當於P⊆Q,即:要使x∈Q成立, 只要x∈P就足夠了——有它就行;為使x∈P成立,必須要使 x∈Q——缺它不可.
【易錯誤區】弄錯兩個集合間的關係而致誤
【典例】(2014·成都高二檢測)已知P={x|a-4<x<a+4},Q={x|1
高一数学必要条件与充分条件

高一数学必要条件与充分条件1. 引言大家好!今天咱们聊聊高一数学中的“必要条件”和“充分条件”,听起来有点高大上,其实就像我们日常生活中的一些道理,简单易懂却又非常重要。
想想看,吃饭必须得有饭,这是必要条件;而你想吃到好吃的,那就得去餐厅,这就算是充分条件了。
所以,咱们今天就把这些抽象的概念聊得轻松有趣些,像聊家常一样。
2. 必要条件的奥秘2.1 什么是必要条件?首先,必要条件是啥呢?简单来说,某个事情的发生必须有的条件。
就像你能在电影院里看电影,必须得买票,这票就是必要条件。
没有票,你就算到了电影院门口,连影子都看不见!说白了,必要条件就像是“没有它,事情就不能成”的那种感觉。
2.2 日常例子想想我们每天出门,如果不穿衣服,那真是“裸奔”了!在这个例子里,穿衣服就是出门的必要条件。
又比如,参加考试,必须得有考试卷,这卷子就是必要条件。
没卷子,你再聪明也没办法展现自己的才华,难道考个心里话不成?所以,必要条件就是那种你不能缺少的“硬条件”。
3. 充分条件的魅力3.1 充分条件到底是啥?好了,咱们再来看充分条件。
这可就有趣多了!充分条件是指,有了这个条件,事情就一定会发生。
比如你今天如果去买一份冰淇淋,那肯定是有冰淇淋的,这种情况下,去买冰淇淋就是吃到冰淇淋的充分条件。
有了这个条件,咱们就可以坐下来享受美味了,想想都让人开心!3.2 生活中的体现再比如,你想去旅行,如果有时间和钱,那就是旅行的充分条件。
有了时间和钱,想去哪里都能随心所欲,不用再担心“有没有钱去吃火锅”了。
对吧?就像是“有条件,任你飞”,多美好!所以,充分条件给我们的生活带来了更多的可能性,像是打开了一个新的大门,让你能探索更多的精彩。
4. 必要条件与充分条件的关系4.1 它们是朋友好了,现在咱们把这两个条件结合起来看一看。
必要条件和充分条件其实是好朋友。
就像是考试的时候,考得好是你努力学习的结果,但努力学习只是一个必要条件,考试前复习也得算上,这才是你能考好的充分条件。
第2章-2.2-充分条件、必要条件、充要条件高中数学必修第一册苏教版

题型4 根据充分、必要、充要条件确定参数
例13 已知条件: 2 + − 6 = 0,条件: + 1 = 0,且是的充分不必要条件,
求的值.
【解析】设 = {| }, = {| },则 = {| = −3或 = 2},
当 = 0时, = ⌀ ,
当 ≠ 0时, = {| =
只要闭合开关C即可,因此是的既不充分也不必要条件.
例16 (2024·四川省遂宁市期末)唐代诗人杜牧的七言绝句《偶题》传诵至今,“道在
人间或可传,小还轻变已多年.今来海上升高望,不到蓬莱不是仙”,由此推断,后
一句中“是仙”是“到蓬莱”的( B
)
A.必要条件
B.充分条件
C.充要条件
D.既非充分又非必要条件
例1-2 (2024·河北省唐山市期中)已知集合 = {1,}, = {1,2,3},则“ = 3”是“
⊆ ”的( A
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】若 = 3,则 = {1,3},所以 ⊆ ;
若 ⊆ ,则 = 2或 = 3,所以 ⊆ ⇏ = 3.
∴ “ = 1”是“ = ”的充分不必要条件.故选A.
3.(2024·浙江省金华一中期中)王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其
《从军行》传诵至今.“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破
楼兰终不还”,由此推断,最后一句“攻破楼兰”是“返回家乡”的( B
A.充分条件
1
− }.
∵ 是的充分不必要条件,∴ ⫋ ,
易知 = 0符合题意,
1
当−
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识要点:充分条件和必要条件
一、充分条件和必要条件
当命题若 A 则 B为真时,A 称为 B 的充分条件,B 称为 A 的必要条件。
二、充分条件、必要条件的常用判断法
1.定义法:判断B是A的条件,实际上就是判断B=A或者A=B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A B,则p是q的充分条件。
若AB,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A ?B,且B?A,则p是q的既不充分也不必要条件。
三、知识扩展
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于充分条件与必要条件是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑正难则反的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。
一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。