(完整版)七年级下册数学应用题和几何题100道

合集下载

七年级下册数学应用问题和几何题100道

七年级下册数学应用问题和几何题100道

七年级下册数学应用问题和几何题100道第一部分:数学应用问题(50道)1. 某商店有100个苹果,每天卖出5个,问几天能卖完?2. 一本书的原价是80元,打6折后的价格是多少?3. 小明父亲的年龄是35岁,小明的年龄是他父亲的1/5,问小明几岁?4. 一个长方形的长度是10厘米,宽度是4厘米,计算它的面积和周长。

5. 爸爸给小明的压岁钱是200元,小明花了其中的1/4买了一本书,还剩多少钱?6. 小华每天早上骑自行车去学校,单程需要15分钟,问他来回一共要多长时间?7. 小红家离学校有3千米,她每天步行去学校,速度是每小时4千米,问她需要多长时间到达学校?8. 小明购买了一台电视机,原价是2000元,经过砍价后,他以8折的价格购买了它,他花了多少钱?9. 一家超市里面,水果有苹果、橙子和香蕉,苹果有24个,橙子是苹果的3/4,香蕉是橙子的2倍,问超市里面一共有多少个水果?10. 甲、乙两个人合作做一件工作,甲能独立完成这个工作需要6天,乙能独立完成这个工作需要8天,问他们合作完成这个工作需要多少天?...(依次类推)第二部分:几何题(50道)51. 把一个长方形切成4个同样大小的正方形,每个正方形的边长是10厘米,那么原来长方形的周长是多少?52. 一个正方形的边长是8厘米,计算它的面积和周长。

53. 一个圆的半径是5厘米,计算它的面积和周长。

54. 一条边长为12厘米的正三角形,计算它的周长。

55. 一个矩形的长是10厘米,宽是6厘米,计算它的面积和周长。

56. 一条边长为9厘米的正六边形,计算它的周长。

57. 一个长方体的长是5厘米,宽是3厘米,高是4厘米,计算它的体积和表面积。

58. 一个圆柱体的底面半径是3厘米,高是8厘米,计算它的体积和表面积。

59. 一个圆锥体的底面半径是6厘米,高是10厘米,计算它的体积和表面积。

60. 一个球的半径是7厘米,计算它的体积和表面积。

...(依次类推)本文档包含50道数学应用问题和50道几何题,帮助七年级学生进行数学应用和几何的练习。

(完整版)七年级下册数学应用题和几何题100道

(完整版)七年级下册数学应用题和几何题100道

追及问题姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上?2.小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速度是3.7千米/小时,那么小张的速度是多少?3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。

甲乙两车分别用10分钟、6分钟追上骑车人。

已知甲车速度是24千米/小时,乙车速度是30千米/小时,问两车出发时相距多少千米?4.一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。

为了回到队尾,在追上营长的地方等待了18分钟。

如果他从最前头跑步回到队尾,那么用多少时间?5.甲乙两车分别从两地同时相向开出。

快车经过8小时到达乙地,慢车经过10小时到达甲地。

(1)相遇时,乙车行了360千米。

求两地距离。

(2)相遇时,乙离目的地还有360千米。

求两地距离。

(3)相遇时,乙比甲多行360千米。

求两地距离。

(4)两车在离中点处360千米相遇,求两地距离。

(5)5分钟后两车又相距360千米。

求两地距离。

6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。

15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。

问:(1)哥哥在离家多远处追上弟弟?(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?环行跑道问题1.小张和小王各自以一定的速度在周长为500米的跑道上跑步。

小王每分跑180米。

①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度?②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.在600米环行跑道上,兄妹两同时从同一起点都按逆时针跑,每隔12分两人相遇一次;若两人反向跑,则每隔4分两人相遇一次。

七年级下册数学应用题和几何题100道只是分享

七年级下册数学应用题和几何题100道只是分享

追及问题姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上?2.小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速度是3.7千米/小时,那么小张的速度是多少?3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。

甲乙两车分别用10分钟、6分钟追上骑车人。

已知甲车速度是24千米/小时,乙车速度是30千米/小时,问两车出发时相距多少千米?4.一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。

为了回到队尾,在追上营长的地方等待了18分钟。

如果他从最前头跑步回到队尾,那么用多少时间?5.甲乙两车分别从两地同时相向开出。

快车经过8小时到达乙地,慢车经过10小时到达甲地。

(1)相遇时,乙车行了360千米。

求两地距离。

(2)相遇时,乙离目的地还有360千米。

求两地距离。

(3)相遇时,乙比甲多行360千米。

求两地距离。

(4)两车在离中点处360千米相遇,求两地距离。

(5)5分钟后两车又相距360千米。

求两地距离。

6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。

15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。

问:(1)哥哥在离家多远处追上弟弟?(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?环行跑道问题1.小张和小王各自以一定的速度在周长为500米的跑道上跑步。

小王每分跑180米。

①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度?②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.在600米环行跑道上,兄妹两同时从同一起点都按逆时针跑,每隔12分两人相遇一次;若两人反向跑,则每隔4分两人相遇一次。

七年级下册数学应用题和几何题100道教案资料

七年级下册数学应用题和几何题100道教案资料

七年级下册数学应用题和几何题100道追及问题姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上?2.小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速度是3.7千米/小时,那么小张的速度是多少?3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。

甲乙两车分别用10分钟、6分钟追上骑车人。

已知甲车速度是24千米/小时,乙车速度是30千米/小时,问两车出发时相距多少千米?4.一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。

为了回到队尾,在追上营长的地方等待了18分钟。

如果他从最前头跑步回到队尾,那么用多少时间?5.甲乙两车分别从两地同时相向开出。

快车经过8小时到达乙地,慢车经过10小时到达甲地。

(1)相遇时,乙车行了360千米。

求两地距离。

(2)相遇时,乙离目的地还有360千米。

求两地距离。

(3)相遇时,乙比甲多行360千米。

求两地距离。

(4)两车在离中点处360千米相遇,求两地距离。

(5)5分钟后两车又相距360千米。

求两地距离。

6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。

15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。

问:(1)哥哥在离家多远处追上弟弟?(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?环行跑道问题1.小张和小王各自以一定的速度在周长为500米的跑道上跑步。

小王每分跑180米。

①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度?②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.在600米环行跑道上,兄妹两同时从同一起点都按逆时针跑,每隔12分两人相遇一次;若两人反向跑,则每隔4分两人相遇一次。

七年级下学期几何专题(附参考答案)

七年级下学期几何专题(附参考答案)

七年级下学期几何专题一、精心选一选,慧眼识金!1.过五边形的一个顶点可作()条对角线A.1B.2C.3D.42.三角形的三个内角( )A、至少有两个锐角B、至少有一个直角C、至多有两个钝角D、至少有一个钝角3.下列图形中具有稳定性的是( )A、菱形B、钝角三角形C、长方形D、正方形4.下列图形中,是属于轴对称图形的是()A. B. C. D.●5.如图:BE、CF是ABC∆的角平分线,0∠,A=40则=∠BDC( D )11065 C. 095 D. 0A.050 B. 06.以下列长度的三条线段为边,不能组成三角形的是()A.4,4,5 B.3,2,5 C.3,12,13 D.6,8,107. 下列说法:①等边三角形是等腰三角形;②在三角形中至少有二个锐角;③三角形的一个外角等于两个内角的和;④钝角三角形的三条高相交于三角形外一点,其中正确的个数有()A、1个B、2个C、3个D、4个8. 下列图形:①角;②线段;③等腰三角形;④等边三角形;⑤平行四边形中是轴对称图形的个数是()A、1个B、2个C、 3个D、4个9.平面内三条直线最少有()个交点A.3B.2C.1D.0●10.已知Rt△ABC,∠A=30°,则∠B=( C )A.60°B.90°C.60°或90°D.30°11.如图,由AB∥CD,能推出正确结论的是( B ) A 、∠1=∠2 B 、∠3=∠4 C 、∠A=∠C D 、AD∥BC12.下列命题为真命题的是( D ) A.内错角相等B.点到直线的距离即为点到直线的垂线段C.如果∠A+∠B+∠C=180°,那么∠A 、∠B 、∠C 互补D.同一平面内,垂直于同一直线的两直线平行。

13.用同一种下列形状的图形地砖不能进行平面镶嵌的是( C ) A.正三角形 B.长方形 C.正八边形 D.正六边形14.当多边形的边数增加时,其外角和( C ) A 、增加 B 、减少 C 、不变 D 、不能确定● 15.已知:一光线沿平行于AB经镜面AC 、AB 反射后,如图所示, 若∠A=40°则∠MNA=( B ) A.90° B.100° C.60° D.80°● 16.已知:如图B 处在A 处的南偏西40C 处在A 处的南偏东15°方向上,C 处在B 处的北偏东80°方向,则∠ACB=( B )A.90°B.85°C.40°D.60° 17.若一个三角形中的其中一个外角等于与它相邻的内角,则此三角形是( A ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定18.点到直线的距离是指这点到这条直线的( D )A 、垂线段B 、垂线C 、垂线的长度D 、垂线段的长度二、巧心填一填,一锤定音!19.已知∠a 的对顶角是58°,则∠a=______。

初一下册数学角度几何解析题以及练习题附答案)

初一下册数学角度几何解析题以及练习题附答案)
4. (10分)如图17,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是 ,AB=20厘米,AC=8厘米,求 DE的长.
四、拓广探索!(本大题共22分)
1.(10分)如图18,在△ABC 中,点D在AB上,BD=BE,
(1)请你再添加一个条件,使得△BEA≌△BDC,
∴∠DCE= ∠ACB=35°.
∵∠DEB=∠DCE+∠EDC,
∴∠EDC=70°-35°=35°.
13.已知,如图,∠1=∠2,CF⊥AB于F,DE⊥AB于E,求证:FG∥BC.(请将证明补充完整)
证明∵CF⊥AB,DE⊥AB(已知),
∴ED∥FC().
∴∠1=∠BCF().
又∵∠1=∠2(已知),
7、如图,AB∥CD,直 线EF分别交AB、CD于点E、F,ED平分∠BEF,若∠1=72°,则∠2=________ ___.
8、如图,DE∥BC,∠DBE=40°,∠EBC=25° ,则∠BED=___________度,∠BDE=___________度.
9、已知,如图,∠1=∠2,AB∥CD,∠A=105°,∠ABD=35°,则∠BDE=___________度,∠ABC=___________度.
(图22)
23,如图,已知l∥m,求∠x,∠y的度数.
24,如图,直线l1,l2,分别和直线l3,l4,相交,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°.求∠3的度数.
25,如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.
(图25)
26,如图,AB、AE是两条射线,∠2+∠3+∠4=∠1+∠2+∠5=180°,求∠1+∠2+∠3的度数.

(完整版)七下数学几何试题及答案(北师大版)

(完整版)七下数学几何试题及答案(北师大版)

七年级下学期数学几何阶段测试题一、选择题:(每题3分,共30分)1.下面有4个汽车标志图案,其中是轴对称图形的是()A.②③④ B.①③④ C.①②④ D.①②③2.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A. B. C. D.3.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A. B. C. D.4、在△ABC所在的平面内存在一点P,它到A、B、C三点的距离都相等,那么点P一定是()A.△ABC三边中垂线的交点 B.△ABC三边上高线的交点C.△ABC三内角平分线的交点 D.△ABC三条中线的中点5.△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.9<AB<19 C.5<AB<19 D.4<AB<24 6.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④ B.①②③④ C.①②④ D.①③9题图 11题图 12题图 13题图8题图 7题图 7.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A ,B .若击打小球A ,经过球台边的反弹后,恰好击中小球B ,那么小球A 击出时,应瞄准球台边上的点( ) A .P 1 B .P 2 C .P 3 D .P 48.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,连接AE ,则∠CEA 是( )A .15°B .20°C .30°D .35°9.如图,已知∠AOB=40°,点P 关于OA 、OB 的对称点分别为C 、D ,CD 交OA 、OB 于M 、N 两点,则∠MPN 的度数是( )A .70°B .80°C .90°D .100°10.如图,C 为线段AE 上一动点(不与A 、E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ 、OC ,以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOE=120°;⑥OC 平分∠AOE 。

(完整版)初一下册几何练习题(可编辑修改word版)

(完整版)初一下册几何练习题(可编辑修改word版)

初一下册几何练习题1.如图 1,推理填空: (1)∵∠A =∠ (已知),A∴AC∥ED( ); (2)∵∠2 =∠ (已知),E F ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知),∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知),∴AC∥ED( );2.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.1 2 3BD图 1ACE D CF图 23.如图 3,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.ABDC4.如图 4,直线 AB 、CD 被 EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD 图,M 2P∥NQ.EAM1 BPCN 2DFQ图 45.如图 5,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.AB 1C FGD2 E图 51 F2 E36.如图 10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.D E21B C图67.如图 11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)A 1 BEFC 2 D图78.如图12,∠ABD和∠BDC的平分线交于E,BE 交CD 于点F,∠1+∠2 =90°.求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.A B123C F D图89.已知:如图:∠AHF+∠FMD=180°,GH 平分∠AHM,MN 平分∠DMH。

求证:GH∥MN。

图910.已知:如图,,,且.求证:EC∥DF.11.如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED全等吗?为什么?.12.如图, 已知点A C、B、D、在同一直线上, AM=CN, BM=DN, ∠M=∠N, 试说明: AC=BD.13.如图所示, 已知AB=DC, AE=DF, CE=BF, 试说明: AF=DE.14.11、如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追及问题
姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上?
2.小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速度是
3.7千米/小时,那么小张的速度是多少?
3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。

甲乙两车分别用10分钟、6分钟追上骑车人。

已知甲车速度是24千米/小时,乙车速度是30千米/小时,问两车出发时相距多少千米?
4.一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。

为了回到队尾,在追上营长的地方等待了18分钟。

如果他从最前头跑步回到队尾,那么用多少时间?
5.甲乙两车分别从两地同时相向开出。

快车经过8小时到达乙地,慢车经过10小时到达甲地。

(1)相遇时,乙车行了360千米。

求两地距离。

(2)相遇时,乙离目的地还有360千米。

求两地距离。

(3)相遇时,乙比甲多行360千米。

求两地距离。

(4)两车在离中点处360千米相遇,求两地距离。

(5)5分钟后两车又相距360千米。

求两地距离。

6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。

15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。

问:
(1)哥哥在离家多远处追上弟弟?
(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?
环行跑道问题
1.小张和小王各自以一定的速度在周长为500米的跑道上跑步。

小王每分跑180米。

①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度?
②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?
2.在600米环行跑道上,兄妹两同时从同一起点都按逆时针跑,每隔12分两人相遇一次;若两人反向跑,则每隔4分两人相遇一次。

两人跑一圈各要几分钟?
3.在300米长的环行跑道上,甲乙两人同时同向并排起跑,甲平均5米/秒,乙
4.4米/秒。

两人起跑后的第一次相遇在起跑线前多少米?
4.甲乙两人环湖跑步,环湖一周长是400米,乙每分跑80米,甲速是甲速的1.25倍
①现两人同时向前跑,乙在甲前方100米处,多少分钟后两人第一次相遇?
②现两人同时向前跑,甲在乙前方100米处,多少分钟后两人第一次相遇?
相遇问1、甲乙两辆汽车从相距600千米的两地相对开出,甲车每小时行45千米,乙车每小时行40千米,甲车先开出2小时后,乙车才开出。

乙车行几小时后与甲车相遇?
2、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一列火车以同样的速度从乙站开出,晚上9时30分两车相遇。

甲乙两站铁路长多少千米?
3、快车和慢车同时从甲、乙两地相对开出,已知快车每小时行60千米,慢车每小时行52千米,经过几小时后快车经过中点32千米处与慢车相遇。

甲、乙两地的路程是多少千米?
4、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇。

A、B两地相距多少千米?
5、甲乙相距640千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米,第一辆汽车到达乙地后立即返回,两辆汽车从开出到相遇共与偶用了几小时?
6、哥哥和妹妹同时从甲到相距540米远的学校上学,哥哥每分钟走60米,妹妹每分钟走48米,哥哥到达学校后发现忘了拿铅笔,立即返回家去取,在途中遇到妹妹。

从开始上学到两人再相遇共有多少分钟?
7、甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分钟150的速度在两队之间不停地往返联络,甲队每分钟行25米,乙队每分钟行20米,两队相遇时,骑自行车的同学共行了多少米?
8、AB两人同时从相距3000米的家里相向而行,A每分钟行70米,B每分钟行80米,一只大狗与他同时出发,每分钟行100米,狗与B相遇后立即掉头向A跑去,遇到A后又向B跑去,直到AB两人相遇。

这只狗一共跑了多少米?
水速问题
甲, 乙两地间河流长为90千米,A, B两艘客船同时启航,如果相向而行3小时相遇,同向而行15小时A船追上B船,求船在静水中的速度。

一只船的燃料最多用6小时,去时顺水,速度每小时15千米,回来时逆流,速度每小时12千米,这只船最多行出多少千米就需要往回开?。

相关文档
最新文档