《大学物理》量子物理基础一

合集下载

大学物理教案:量子力学基础知识

大学物理教案:量子力学基础知识

大学物理教案:量子力学基础知识简介量子力学是现代物理学的重要分支,它描述了微观世界中的粒子行为,并解释了许多奇特的现象。

本教案旨在向大学物理学生介绍量子力学的基础知识,包括波粒二象性、不确定性原理、波函数等核心概念。

目标•理解波粒二象性的概念及其实验观测•掌握不确定性原理及其与经典物理的区别•熟悉波函数的表示和应用教学内容1. 波粒二象性•定义:波粒二象性指微观粒子既具有粒子性质又具有波动性质。

•实验观测:通过双缝干涉实验、康普顿散射实验证明波粒二象性。

•特征:粒子表现出波动行为,如干涉和衍射;波动表现出离散行为,如能级和量子跳跃。

2. 不确定性原理•定义:不确定性原理是由海森堡提出的一个基本原理,它指出在某些物理量之间存在固有的不确定关系。

•区别于经典物理:经典物理中,粒子的位置和动量可以同时被准确测量;而在量子力学中,由于波粒二象性,位置和动量不能同时被准确确定。

•数学表述:∆x * ∆p ≥ h/4π,其中∆x表示位置的不确定性,∆p表示动量的不确定性,h为普朗克常数。

3. 波函数•定义:波函数是描述微观粒子状态及其演化的数学函数。

在薛定谔方程下演化。

•形式:一维情况下可用复数函数表示ψ(x),三维情况下可用复数函数表示ψ(x, y, z)。

•解释与应用:波函数的平方模值|ψ|^2 表征了粒子在空间中存在的概率分布。

波函数可以描述能级、态叠加等现象。

教学方法与活动建议1.通过实验演示双缝干涉实验,让学生亲身体验波粒二象性。

2.运用黑板或幻灯片展示不确定性原理的公式推导过程,并举例说明其应用。

3.利用计算机模拟软件绘制波函数的图像,让学生观察不同态的波函数变化。

4.在课堂上进行小组讨论和问题解答,加深学生对概念和原理的理解。

总结通过本教案,学生将能够初步了解量子力学中重要的基础知识。

这些核心概念对于理解量子物理现象以及后续相关课程的学习都具有重要意义。

在教学过程中,鼓励学生积极思考并提出问题,以促进他们对量子力学的兴趣和深入理解。

大学物理15 量子物理基础1

大学物理15 量子物理基础1

m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v

大学物理 第16章量子力学基本原理-例题及练习题

大学物理 第16章量子力学基本原理-例题及练习题
2( 2k + 1) ( k = 0,1,2......)
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0

大学物理课件量子力学

大学物理课件量子力学

量子通信与量子密码学
利用量子态的特性实现信息传输和保护,具有更高的安全性和保密性。 量子通信 量子密码学 量子密钥分发 基于量子力学原理的密码学技术,能够提供更强的加密和认证能力,保障信息安全。 利用量子力学原理实现密钥分发,能够确保通信双方拥有相同的密钥,保障通信安全。
量子纠缠与量子隐形传态
量子纠缠 量子力学中的一种现象,两个或多个粒子之间存在一种特殊的关联,当一个粒子状态发生变化时,另一个粒子也会立即发生相应变化。 量子隐形传态 利用量子纠缠实现信息传输的技术,能够在不直接传输粒子的情况下传输量子态的信息。 量子隐形传态的应用 在量子通信和量子计算中具有重要的应用价值,能够实现更安全、更快速的信息传输和处理。
大学物理课件量子力学
汇报人姓名
汇报时间:12月20日
Annual Work Summary Report
#2022
O1
点击此处添加正文,文字是您思想的提炼。
catalogue
O2
点击此处添加正文,文字是您思想的提炼。
目 录
引言
O1
量子力学的起源与发展
量子力学的发展经历了从初步提出到逐步完善的过程,期间涌现出许多杰出物理学家,如普朗克、爱因斯坦、玻尔等。 19世纪末,经典物理学无法解释黑体辐射、光电效应等现象,为解决这些问题,量子力学应运而生。
量子系统的演化与动力学是由薛定谔方程所描述的,该方程是一个偏微分方程,用于描述系统状态随时间的变化。薛定谔方程的解给出了系统在任意时刻的状态,从而可以预测系统在未来时刻的状态。薛定谔方程是量子力学中最重要的方程之一,是研究量子系统演化与动力学的基础。
总结词
详细描述
演化与动力学
量子力学中的重要理论
O3

大学物理 量子物理基础知识点总结

大学物理  量子物理基础知识点总结

大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。

(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。

4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。

5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。

(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。

(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。

大学物理理论:量子力学基础

大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。

本文将介绍一些关于量子力学的基本概念和原理。

2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。

解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。

2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。

通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。

3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。

通过波函数,可以计算出一系列平均值,用来描述系统的特征。

3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。

这涉及到测量的本质和粒子与波的性质之间的关系。

4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。

它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。

4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。

这为填充多电子原子如何达到稳态提供了解释。

5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。

它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。

5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。

6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。

介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。

6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。

结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。

15 量子物理基础—康普顿效应及光子理论的解释

15 量子物理基础—康普顿效应及光子理论的解释

4.5 1023 kgms 1
h/

tan (h ) /( h 0 ) 0
0.20 arctan 42.3 0.22
视为黑体,则 1)太阳表面的温度; 2)太阳的辐射功率; 3)由于热辐射而使太阳质量耗损1%经历的时间。 (已知太阳半径 RS=6.96×108m, 质量Ms=2 ×1030kg)
解:
1)根据维恩位移定律 mT b
T
b m

2.897103 m K 49010 9 m
5.9 103 K
大学物理 第三次修订本
15
第15章 量子物理基础
实验规律
(1) 对于原子量较小的散射物质,康普顿散射 较强,反之较弱。 (2)波长的改变量 -0 随散射角θ的增加而增加。
(3)对不同的散射物质,只要在同一个散射角下, 波长的改变量 - 0 都相同。
大学物理 第三次修订本
16
第15章 量子物理基础
(3)电子的初速度
19
第15章 量子物理基础 例2 钾的光电效应红限为0= 6.210-7m。求(1)电子 的逸出功;(2)在波长为3.0 10-7m的紫外线照射下, 遏止电压为多少?(3)电子的初速度为多少? 解 (1)逸出功
2eU a 2 1.6 10 2.14 vm ms 1 8.67 105 ms 1 11 m 9.11031 大学物理 第三次修订本
0.01M s c 11 t 10 年 P
大学物理 第三次修订本
5
2
第15章 量子物理基础 1、光电效应的实验
饱和电流∝光强度I
存在截止频率: > 0
瞬时性
1 2 mVm ekν eU 0 最大初动能与入射频率成线性关系: 2

大学物理量子物理基础(stone)

大学物理量子物理基础(stone)

金属来说,只有当入射光的
频率大于某一频率υo时,电 子才能从金属表面逸出,电 路中才有光电流,这个频率 υo叫做截止频率——红限.
0
Ua
红限频率
(3).线性关系:用不同频率的光照射金属K的表面时, 只要入射光的频率大于截止频率,遏止电势差与入射 光频率具有线性关系,即最大初动能与入射光的频率 成正比而与入射光的光强无关.
普朗克(Max Karl Ernst Ludwig Planck, 1858―1947)
德国物理学家,量子物理学的开创者 和奠基人。 普朗克的伟大成就,就是创立了量子理论, 1900年12月14日他在德国物理学会上,宣 读了以《关于正常光谱中能量分布定律的 理论》为题的论文,提出了能量的量子化 假设,并导出了黑体辐射的能量分布公式。 这是物理学史上的一次巨大变革。从此结 束了经典物理学一统天下的局面。劳厄称 这一天为“量子论的诞生日”。
1918年普朗克由于创立了量子理论而获 得了诺贝尔奖金。
1.普朗克公式
2hc2 1
M (T) 5
hc
e kT 1
2.普朗克假说
•谐振子的能量可取值只能是某一最小能量单元ε 的整 数倍,即:E=nε , n=1,2,3,....ε叫能量子,n为量子数, 它只取正整数—能量量子化. •对于频率为υ的谐振子,最小能量为:ε=hυ 其中h=6.62610-34 J·s为普朗克常数 结论:谐振子吸收或辐射的能量只能是ε=hυ的整数倍.
里兹组合原理:任一条谱线的波数都等于该元素所固有 的许多光谱项中的两项之差,这是里兹在1908年发现的.
~ 1 T( k ) T( n )
T(k) R k2
T (n)
R n2
R=1.096776 107m1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
hc
Байду номын сангаас
0
hc

1

1.68×10-16 J )
EK 0
hc (
0

1

答案 (B) 分析:遏止电压与入射光 的频率成线性关系,与光 的强度无关
光 强 较 强 光 强 较 弱
Ua
O
U
3. 康普顿效应的主要特点是 [ D ] (A) 散射光的波长均比入射光的波长短,且随散射角增大 而减小,但与散射体的性质无关. (B) 散射光的波长均与入射光的波长相同,与散射角、散 射体性质无关. (C) 散射光中既有与入射光波长相同的,也有比入射光波 长长的和比入射光波长短的.这与散射体性质有关. (D) 散射光中有些波长比入射光的波长长,且随散射角增 大而增大,有些散射光波长与入射光波长相同.这都与散 射体的性质无关. 康普顿效应:X射线被较轻物质散射后光的成分,发现散射
U a kv U 0
U a 0时,对应的v为红限频率
v 5 10 Hz
14
|Ua| (V) 2 -2 5 10
×1014 Hz)
Uo A vo k h
2V 14 A eU 0 ekv0 5 10 ( Hz )e 2eV 14 5 10 Hz
5.如图3所示,一频率为v的入射光子与起始静止的自由电子发生 碰撞和散射.如果散射光子的频率为v′,反冲电子的动量为p, 则在与入射光子平行的方向上的动量守恒定律的分量形式为 h (h cos ) p cos ____________________________ . c c ′

光子的能量: 光子的动量:
hv mc
2
hv p mc c 水平方向的动量守恒:
h (h cos ) p cos c c


e 反冲电子
6. 波长为 0 = 0.0500nm,的X射线被静止的自由电子所散射, 若散射线的波长变为 = 0.0522 nm, 试求反冲电子的动能 EK 。(普朗克常量h=6.63×10-34 J•s) 解:入射光子的能量为 散射光子的能量为 反冲电子的动能为:
0
h
分析:(1)光电效应存在红限频率 ,只有入射光频率 0 金属才有光电子逸出。因此选项之一是错误的。 (2)光电子的最大初动能与入射光频率成线性关系 1 2 m h A 不同 m也不同 ,因此选项之二是正确的。 2 (3)饱和电流和光的强度成正比:入射光的强度决定于能流密度, 设单位时间内通过单位面积的光子数为N,则入射光的能流密度 为 Nh ,当 强度 一定时,频率越高,N越小,照射到阴极的光子 数越少,单位时间释出的光电子越少,从而饱和电流也越小。因此 选项之三是错误的。 (4)由(3),当频率一定时,入射光强增大一倍,N增大一倍, 则逸出的光电子数也增大一倍,因此饱和电流增大一倍。因此选项 之四是正确的。 答案:D
2.以一定频率的单色光照射在某种金属上,测出其光电流曲线 在图中用实线表示,然后保持光的频率不变,增大照射光的强 度,测出光电流曲线在图中用虚线表示,满足题意的图是
I
I
(A)
I
U
I
(B)
U
(C)
U
(D)
U
要点回顾:
光电效应的实验规律 光电效应伏安特性曲线
I
饱 和 遏 电I s 止 Ua hv U0 , 则v U0 流 电 压 Ua与光强无关
要点回顾:
爱因斯坦对光电效应的解释:
1 2 h m m A 2
1. 光强越大,光子数越多,释放的光电子也越多, -- 所以 ,光电流也越大。 2. 电子只要吸收一个光子就可以从金属表面逸出, 所以无须时间的累积。 3. 从方程可以看出光电子初动能和照射光的频率 成线性关系。
4.从光电效应方程中,当初动能为零时,可得到 红限频率: A
量子物理基础习题
练习三十八 量子物理基础(一)
1.关于光电效应有下列说法: (1)任何波长的可见光照射到任何金属表面都能产生 光电效应; (2)若入射光的频率均大于一给定金属的红限,则该 金属分别受到不同频率的光照射时,释出的光电子的最 大初动能也不同; (3)若入射光的频率均大于一给定金属的红限,则该 金属分别受到不同频率,强度相等的光照射时,单位时 间释出的光电子数一定相等; (4)若入射光的频率均大于一给定金属的红限,则当 入射光频率不变而强度增大一倍时,该金属的饱和光电 流也增大一倍。 其中正确的是: (A)(1),(2),(3); (B)(2),(3),(4) (C)(2),(3); (D)(2),(4)
谱线中除了有波长相同的成分外还有波长较长的成分。
且随着散射角的增大而增大,都与散射体的性质无关。
4. 在光电效应实验中,测得某金属的遏止电压|Ua|与入射 光频率v的关系曲线如图2所示,由此可知该金属的红限频 14 2 率 0 =___________Hz ;逸出功 A =__________eV . 5 10
相关文档
最新文档