模糊控制及应用优秀课件

合集下载

模糊控制课件第三章.ppt

模糊控制课件第三章.ppt

其基本思想:对于训练样本(包括论域内若干 个测量点上的状态数据以及相应隶属于人类 经验的被测量,用自然语言符号描述的状态 符号),在当前概念模式下,根据最大隶属度 准则判定,若数据状态与概念状态相一致, 则训练结束;若不相符,则将相应概念隶属 函数曲线的修正率加以改变,以实现符合专 家经验的被测量数据状态与符号状态的一致。
If X1 is 大 and X2 is 小 then Y is 中
仿照蕴含式的称谓“X1 is 大 and X2 is 小” 称为控制规则的前件部,“Y is 中”称为控 制规则的后件部。
“大”、“小”、“中”等均是对某一物理 量的模糊化的自然语言描述,但它们均被描 述成一个模糊集合。
模糊控制是一种基于人的思维模式的控制, 因此,在模糊控制规则中出现的模糊集合往 往具有可以用自然语言描述的意义。
用于描述人们控制经验的基本语句结构有 三种形式,它们分别反映了三种基本的推 理。这三种基本结构和形式如下:
这种推理是一种最简单的蕴涵关系,在语
言表达时表示为“如果 A,那么B ”,即
有:if A then B
~
~
② (A B) (AC C)结构
~
~
~
~
这种推理较之前一种复杂,这种蕴涵关系在 用语言表达时叙述为“如果 A,那么B;否则 C ”,即有:
左边最大隶属度法,实质是把几个最大隶属 度中的最小元素作为解模糊的精确值;右边 最大隶属度法,实质是把几个最大隶属度中 的最大元素作为解模糊后的精确值。
3.3.3 系数加权平均法
系数加权平均法是指输出量模糊集合中各元 素进行加权平均后的输出值作为输出执行量, 其值为:
(3.7)
当输出变量为离散单点集时,则为:

模糊控制ppt课件

模糊控制ppt课件

可编辑课件PPT
23
5. 建立模糊控制表 模糊控制规则可采用模糊规则表4-5来描述,共
49条模糊规则,各个模糊语句之间是或的关系,由第 一条语句所确定的控制规则可以计算出u1。同理,可 以由其余各条语句分别求出控制量u2,…,u49,则控制 量为模糊集合U可表示为
uu1u2 u49
可编辑课件PPT
规则模型化,然后运用推理便可对PID参数实现最佳
调整。
可编辑课件PPT
32
由于操作者经验不易精确描述,控制过程中各种 信号量以及评价指标不易定量表示,所以人们运用 模糊数学的基本理论和方法,把规则的条件、操作 用模糊集表示,并把这些模糊控制规则以及有关信 息(如初始PID参数等)作为知识存入计算机知识库中 ,然后计算机根据控制系统的实际响应情况,运用 模糊推理,即可自动实现对PID参数的最佳调整,这 就是模糊自适应PID控制,其结构如图4-15所示。
可编辑课件PPT
31
随着计算机技术的发展,人们利用人工智能的
方法将操作人员的调整经验作为知识存入计算机中
,根据现场实际情况,计算机能自动调整PID参数,
这样就出现了智能PID控制器。这种控制器把古典的
PID控制与先进的专家系统相结合,实现系统的最佳
控制。这种控制必须精确地确定对象模型,首先将
操作人员(专家)长期实践积累的经验知识用控制
糊控制的维数。
可编辑课件PPT
10
(1)一维模糊控制器 如图所示,一维模糊控制器的 输入变量往往选择为受控量和输入给定的偏差量E。由 于仅仅采用偏差值,很难反映过程的动态特性品质, 因此,所能获得的系统动态性能是不能令人满意的。 这种一维模糊控制器往往被用于一阶被控对象。
可编辑课件PPT

最新常用的几种模糊控制器PPT课件

最新常用的几种模糊控制器PPT课件

Fuzzy-PID复合控制
PI调节器的积分作用从理论上可使系统的稳态 误差控制为零,有着很好的消除稳态误差的作 用。当误差在某一个阈值以外时,可采用PI控 制,以提高系统的响应速度和稳态性能;
当误差在阈值以内时,采用模糊控制可以提高 系统的阻尼性能,减小超调,获得更好的瞬态 性能。
这种模糊控制与PI控制相结合的控制方式称为 模糊-PI双模控制,其结构如下图所示。
量化因子和比例因子的选择也影响着整个系统的品 质,并且当对象动态特性发生变化,或者受到随机 干扰的影响都会影响模糊控制的效果。以上问题都 将导致模糊控制器存在一些缺陷。
为什么要将模糊控制与PID控 制结合使用?
简单模糊控制器由于不具有积分环节, 因而在模糊控制的系统中很难完全消除 稳态误差,而且在变量分级不够多的情 况下,常常在平衡点附近会有小的振荡 现象。但是模糊控制系统对复杂的和模 型不清的对象却能有效地加以控制,所 以把模糊控制和PID控制结合起来,就可 以组成兼有两者优点的模糊PID控制方法。
语言变量基本论域量化曲线 自调整控制器设计
语言变量基本论域量化曲线 自调整控制器设计
量化曲线y=f(x)是指语言变量y在其基本 论域[—L,+L]内的数量值yi(i=1,2,…, l)和其论域元素xj(j=0,l,…,m)之间的 函数关系曲线。量化曲线y=f(x)的形状 是可以选择的,不一定是线性的。
自适应模糊控制
自适应模糊控制
自适应模糊控制就是它能自动地对模糊控制规则进 行修改、改进和完善,以提高控制系统的性能。已 经知道,模糊控制器控制质量的好坏主要取决于模 糊控制规则的设定,对于不太复杂而难于建立数学 模型的系统,在专家力所能及的情况下,可以利用 专家的知识和经验制定模糊控制规则。但是不同的 专家对同一个被控系统所具有的经验并不相同,通 过总结归纳操作人员和领域专家的经验来建立模糊 控制器的规则很难完美无缺,一下子就能满足控制 要求,况且如果对于那些非线性、大时滞、高阶、 时变的复杂被控对象,以及环境的不断变化或者严 重的随机干扰,根本达不到满意控制效果。在这种 情况下,自适应模糊控制器有着更好的控制性能。

计算机控制系统第5章模糊控制课件

计算机控制系统第5章模糊控制课件

与其隶属
度 A(xi ) 之间的对应关系;“+”也不表示“求和”,而是表示
模糊集合在论域上的整体。
2024/8/6
5
2.几种典型的隶属函数 (1)高斯型隶属函数
( xc)2
f (x; ,c) e 2 2
2024/8/6
6
(2)S形隶属函数
f
(x;
a,
c)
1
1 ea(xc)
2024/8/6
7
(3)梯形隶属函数
第一节 模糊控制系统
一、模糊控制系统的组成
模糊控制系统的结构与一般计算机控制系统基本相似, 通常由模糊控制器、输入输出接口、广义被控对象和测量装 置四个部分组成。
基本模糊控制器
给定值 +
e
-
输 入 量


糊 化
e~



糊 u~


反 模 糊 化 处

输 出 量

u
D/A
A/D
传感器
被控对象
执行机构
所谓论域就是被考虑客体所有元素的集合。在模糊控制系
统中,把模糊控制器的输入变量偏差 e 及其变化率 ec 的实际范
围称为这些变量的基本论域。基本论域内的量为精确量,需要 对它们进行量化处理。
在实际控制系统中,需要通过所谓量化因子进行量化处理, 实现论域变换。量化因子的定义为:
ke
2n be ae
kec
a,
b)
1 2( 2(b
x b
x
a a
)2 )2
ba
0
xa
a a
x b
a x
2
b

《模糊控制系统》PPT课件

《模糊控制系统》PPT课件

是所期望的。这促使我们研究模糊系统作为万能
函数逼近器并拥有最小系统构成的必要条件,从
而使这些必要条件能用于指导模糊系统开发者设
计更紧凑的模糊控制器和模糊模型
• 必要条件设置了需要的输入模糊集、输出模糊集 和模糊规则,表明了模糊系统需要的输入模糊集
和模糊规则的数目依赖于被逼近函数的极值点的
数目和位置
精选ppt
“Fuzzy Sets”一文,首次提出了模糊集合的概念
• 1974年英国教授Mamdani首次将模糊集合理论应
用于加热器的控制,他将基于规则系统的想法与
模糊参数相结合来构造控制器,模仿人类操作者
的操作经验
• 1985年Takagi和Sugeno提出了另一类具有线性规
则后项的模糊控制器,称之为Takagi-Sugeno
(1988, Japan)
• Postsurgical patients
(1989, USA)
• Auto focus video camera
(1990, Japan)
• Washing machines
(1990, Japan)
• Air conditioners
(1990, Japan)
• Anti-shaking video camera
控制规律
• 各种类型的Mamdani和TS模糊系统在过去几年中
都被证明是万能逼近器,它们能一致逼近定义在
闭定义域D上的任意连续函数到任意高的逼近精
度。这些模糊系统有:加法模糊规则系统、模糊
输入—输出控制器、Sugeno模糊控制器的变型、
非独点模糊逻辑系统、一般Mamdani型模糊系统、
采用线性规则后项的TS型模糊系统、广义模糊系

模糊控制原理课件优秀课件

模糊控制原理课件优秀课件
人类的控制规则 如果水温比期望值高,就把燃气阀关小; 如果水温比期望值低,就把燃气阀开大。
描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增量 u) 之间的模糊关系R
3.1 模糊控制的基本原理
模糊值
规则库R
模糊值
模糊化
输入e
输出u
模糊推理
精确值
精确值
期望值 +
e A/D

温度 传感器
热水器
?
为了提高实时性,模糊控制器常常以控制查询表的形式出现。 该表反映了通过模糊控制算法求出的模糊控制器输入量和输 出量在给定离散点上的对应关系。为了能方便地产生控制查 询表,在模糊控制器的设计中,通常就把输入输出的论域定 义为有限整数的离散论域。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
档级多,规则制定灵活,规则细致,但规则多、复杂, 编制程序困难,占用的内存较多; 档级少,规则少,规则实现方便,但过少的规则会使 控制作用变粗而达不到预期的效果。 因此在选择模糊状态时要兼顾简单性和控制效果。
3.1 模糊控制的基本原理
对输入量进行模糊化处理,包括确定语言变量和隶属函数
确定隶属函数(原则)
模糊化
将输入的精确量转化成为模糊量的过程称为模糊化
模糊化步骤
确定符合模糊控制器要求的输入量和输出量 常用的输入量是系统输出的误差(e)和误差的改变量 (ec),而输出量就是控制量(u)。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
基本论域
e ec u 的实际范围称为这些变量的基本论域
e的基本论域: [eL eH] ec的基本论域: [ecL ecH] u的基本论域: [uL uH]

智能控制模糊控制PPT课件

智能控制模糊控制PPT课件
同时期,Mamdani和Ostergaard分别将模糊控制成功地应用 于蒸汽机和水泥窑的控制,为模糊理论的发展展现了光明 的前景。
机械结构力学及控制国家2.1.1 模糊控制的发展概述 模糊控制的发展——第三阶段
上世纪80年代,模糊理论的应用在深度和广度上 都有了较大进展,产生了大量的应用成果。
识别
输入的烹饪功能命令,口感命令
都是模糊的概念,带有人类思维
执行级
的命令。
对象
智能控制系统分层递阶结构示意图
机械结构力学及控制国家重点实验室
8
2.1 引言
2.1.1 模糊控制的发展概述 举个小例子
如何从人群中识别出自己认识的人?
计算机怎么识别?
脸部特征(脸型,眼睛,鼻子等) 身材(高、矮,胖、瘦) 声音 年龄 走路特征
如今需求:要考虑视觉、听觉、触觉信号,包含了图形、 文字、语言、声音等信息
输入参数越来越直接,越来越智能。
机械结构力学及控制国家重点实验室
4
2.1 引言
2.1.1 模糊控制的发展概述 一个小问题
随着社会文明的进步,社会分工越来越明确。于是对 于大部分人来说,做饭能力。。。
排骨怎么烧?
机械结构力学及控制国家重点实验室
特别是在日本,模糊控制被成功地应用于废水处 理、机器人、汽车驾驶、家用电器和地铁系统等 许多领域,掀起了模糊技术应用的浪潮。模糊软 硬件也投入商业使用。
机械结构力学及控制国家重点实验室
13
2.1 引言
2.1.1 模糊控制的发展概述 模糊控制的发展——第四阶段
上世纪90年代以来,模糊理论的研究取得了一系列突 破性的进展,例如自适应模糊控制,模糊系统的结构 和稳定性分析,模糊优化,模糊逼近等。

人工智能控制技术课件:模糊控制

人工智能控制技术课件:模糊控制
直接输出精确控制,不再反模糊化。
模糊集合


模糊控制是以模糊集合论作为数学基础。经典集合一般指具有某种属性的、确定的、
彼此间可以区别的事物的全体。事物的含义是广泛的,可以是具体元素也可以是抽象
概念。在经典集合论中,一个事物要么属于该集合,要么不属于该集合,两者必居其一,
没有模棱两可的情况。这表明经典集合论所表达概念的内涵和外延都必须是明确的。
1000
1000
9992
9820
的隶属度 1 =
= 1,其余为: 2 =
= 0.9992, 3 =
=
1000
1000
1000
9980
9910
0.982, 4 =
= 0.998, 5 =
= 0.991,整体模糊集可表示为:
1000
1000
1
0.9992
0.982
0.998
《人工智能控制技术》
模糊控制
模糊空基本原理
模糊控制是建立在模糊数学的基础上,模糊数学是研究和处理模糊性现
象的一种数学理论和方法。在生产实践、科学实验以及日常生活中,人
们经常会遇到模糊概念(或现象)。例如,大与小、轻与重、快与慢、动与
静、深与浅、美与丑等都包含着一定的模糊概念。随着科学技术的发展,
度是2 ,依此类推,式中“+”不是常规意义的加号,在模糊集中
一般表示“与”的关系。连续模糊集合的表达式为:A =
‫)( ׬‬/其中“‫” ׬‬和“/”符号也不是一般意义的数学符号,
在模糊集中表示“构成”和“隶属”。
模糊集合
假设论域U = {管段1,管段2,管段3,管段4,管段5},传感器采
1+|
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.德·摩根律
(A B)A B (A B)A B
A (BC ) (A B )(A C )
A ( BC ) (A B )(A C )
E
E
(三)普通集合运算的基本性质
模糊控制(Fuzzy control)是指模糊理论在控制 技术上的应用。
用语言变量代替数学变量或两者结合应用; 用模糊条件语句来刻画变量间的函数关系; 用模糊算法来刻画复杂关系,模拟人类学
习和自适应能力。
模糊逻辑控制方法
把模糊数学理论应用于自动控制领域, 从而产生的控制方法称为模糊控制方法。
模糊控制及应用
基于模糊推理的智能控制系统
2.1 引言 2.2经典集合论 2.3模糊集合基础 2.4模糊控制器工作原理 2.5模糊控制仿真应用实例
2.1 引言
一、模糊控制理论的产生和发展 二、模糊控制的概念和特点
控制系统简介
控制系统的基本结构可分为:
开环控制系统 闭环控制系统
它们以被控对象的状态变量是否引入负 反馈到控制器来予以区分。
属于 不属于
一、经典集合及其运算
1.基本概念 • 论域 当讨论某个概念的外延或考虑某个问
题的议题时,总会圈定一个讨论的范围,这 个范围称为论域,常用大写字母 U , E 表示 . • 元素 论域中的每个对象称为元素,常用小 写字母 a,b,x, y 等符号表示 • 集合 在某一论域中,具有某种特定属性的 对象的全体成为该论域中的一个集合,常用 大写 A、B、C、 ...或 X、Y、Z、…等表示。
(3)特征函数法
例如:
CA(a)
1 0
aA aA
3.几种特殊的集合 •全集是包含论域中的全部元素的集合,记为 E •空集是不包含任何元素的集合,记为 •A 是 B 的一个子集,记作B A ,或 A B
•集合的幂集,是由集合的所有子集构成的 集合
(二)普通集合的基本运算
• 并运算
交运算
• 补运算
模糊集合与经典集合
• 经典集合---描述清晰概念 • 模糊集合—描述不确定的概念
把若干确定的有区别的(不论是具体的或抽象的) 事物合并起来,看作一个整体,就称为一个集合, 其中各事物称为该集合的元素。 集合中的每个对象叫做这个集合的元素。
康托(Cantor,G.F.P. 1845年—1918年), 德国数学家
例如: 骑自行车
水箱水温控 制
模糊控制就是模仿人的控制过程,其中包 含了人的控制经验和知识。
模糊控制方法既可用于简单的控制对象,也可 用于复杂的过程。
模糊控制以模糊集合论作为数学基础。
1965年L.A.Zadeh(美国教授)首先提出了 模糊集合的概念。
1974年E.H.Mamdani(英国教授)首先将模 糊集合理论应用于加热器的控制。
传统控制依赖于被控系统的
数学模型;
模糊逻辑控制依赖于被控系统的
物理特性。
优点
A. 无需预先知道被控对象的精确数学模型; B. 容易学习和掌握模糊逻辑控制方法(规则 由人的经验总结出来、以条件语句表示); C. 有利于人机对话和系统知识处理(以人的 语言形式表示控制知识)。
2.2 经典集合论
一、经典集合及其运算 二、关系与映射
C. 设 计 一 个 满 足 控 制 目 标 的 控 制 器,必须要有数学模型。
实际实现很困难,特别是对复杂的非 线性系统和多因素的时变系统。
一.模糊控制理论的产生和发展
随着系统复杂程度的提高,将难以建立系 统的精确数学模型和满足实时控制的要求。
人们希望探索一种除数学模型以外的描 述手段和处理方法。
闭环控制系统结构


给比信
定 值
较 器
号 e
+ -
反 馈 量
控制器
输 出
是负反馈系统


u
控制量
显示打印
被控对象
传统控制方法的局限性
若用计算机实现传统控制方法: A. 首先要设定控制目标值。 B. 根 据 被 控 对 象 的 特 性 变 化 和 环
境变化,通过负反馈原理,不断进行调节,以 跟踪所设定的目标值。
三者相互关系
三者相互关系的常用符号有: • a A 表示元素属于集合, • a A 表示元素不属于集合, • aA 表示集合中的所有元素
• a A表示集合中存在元素
2.普通集合的表示方法
(1)列举法
例如:“小于10的正奇数的集合”记为{1,3, 5,7,9}。
(2)定义法
例如:X{x|xU x 是5的整数倍}
模糊控制的主要应用领域
航空航天 无人驾驶车辆 生产调度系统 能源生产系统 过程控制系统 机器人
中国批准863高技术计划,包括自动化领域的计算 机集成制造系统和智能机器人两个主题(1986)。
日本安川公司娱乐机械狗(2001) 日本SONY公司二足步行机械人SDR-4X(2002)
二.模糊控制的概念和特点
• 差运算
A-B
B
A B{ xx A a n dx B }
• 集合的直积
XY{x,(y)x X ,y Y}
例: 设 X {1,2,3}, Y {a,b} 则直积
X Y ( 1 , a ) ( 1 , b ) , ( 2 , a , ) ( 2 , b , ) ( 3 , a , ) ( 3 , b ) ,
Y X ( a , 1 ) ( b , 1 ) , ( a , 2 ) , ( b , 2 ) , ( a , 3 ) , ( b , 3 ) ,
(三)普 A A BB A
2.结合律
( AB )C A( BC ) ( AB )C A( BC )
3.分配律
A( BC ) ( AB )( AC ) A( BC ) ( AB )( AC )
(三)普通集合运算的基本性质
4.幂等律
A AA
5.同一律
A A
A AA
A EA
6.零一律 A EE A
7.补余律(互补律)
A A A AE
(三)普通集合运算的基本性质
8.吸收律
A (A B)A A (A B)A
开环控制
• 按给定值操纵的开环控制
给定值 控制装置
输出量 被控对象
开环控制系统 适用于控制对象变化缓慢, 不能建立系统数学模型的, 控制精度要求不高的场合。
闭环控制系统
从被控对象检测出状态变量值,并 以此检测值与目标期望值(给定值)
进行比较,以偏差值作为控制器的输入
量,由控制器按某种数学模型进行运算 后的结果,作为控制量。
相关文档
最新文档