钢的合金化基础
工程材料学课后习题答案

第一章钢的合金化基础1、合金钢是如何分类的?1) 按合金元素分类:低合金钢,含有合金元素总量低于5%;中合金钢,含有合金元素总量为5%-10%;中高合金钢,含有合金元素总量高于10%。
2) 按冶金质量S、P含量分:普通钢,P≤0.04%,S≤0.05%;优质钢,P、S均≤0.03%;高级优质钢,P、S均≤0.025%。
3) 按用途分类:结构钢、工具钢、特种钢2、奥氏体稳定化,铁素体稳定化的元素有哪些?奥氏体稳定化元素, 主要是Ni、Mn、Co、C、N、Cu等铁素体稳定化元素, 主要有Cr、Mo、W、V、Ti、Al、Si、B、Nb、Zr等3、钢中碳化物形成元素有哪些(强-弱),其形成碳化物的规律如何?1) 碳化物形成元素:Ti、Zr、Nb、V、Mo、W、Cr、Mn、Fe等(按形成的碳化物的稳定性程度由强到弱的次序排列) ,在钢中一部分固溶于基体相中,一部分形成合金渗碳体, 含量高时可形成新的合金碳化物。
2) 形成碳化物的规律a) 合金渗碳体—— Mn与碳的亲和力小,大部分溶入α-Fe或γ-Fe中,少部分溶入Fe3C中,置换Fe3C中的Fe而形成合金渗碳体(Mn,Fe)3C; Mo、W、Cr少量时,也形成合金渗碳体b) 合金碳化物——Mo、W 、Cr含量高时,形成M6C(Fe2Mo4C Fe4Mo2C),M23C6(Fe21W2C6 Fe2W21C6)合金碳化物c) 特殊碳化物——Ti 、V 等与碳亲和力较强时i. 当rc/rMe<0.59时,碳的直径小于间隙,不改变原金属点阵结构,形成简单点阵碳化物(间隙相)MC、M2C。
ii. 当rc/rMe>0.59时,碳的直径大于间隙,原金属点阵变形,形成复杂点阵碳化物。
★4、钢的四种强化机制如何?实际提高钢强度的最有效方法是什么?1) 固溶强化:溶质溶入基体中形成固溶体能够强化金属;2) 晶界强化:晶格畸变产生应力场对位错运动起到阻碍达到强化,晶格越细,晶界越细,阻碍位错运动作用越大,从而提高强度;3) 第二相强化:有沉淀强化和弥散强化,沉淀强化着眼于位错运动切过第二相粒子;弥散强化着眼于位错运动绕过第二相粒子;4) 位错强化:位错密度越高则位错运动越容易发生相互交割形成割阶,引起位错缠结,因此造成位错运动困难,从而提高了钢强度。
1.2 第1章_钢合金化概论-钢的强化和韧化

2、影响塑性的因素
溶质 原子
↓ 韧性,间隙溶质原子 > 置换溶质原子。
晶粒 度
第二 相 杂质
细晶既↑σS,又 ↑ 韧性 → 最佳组织因素。
K↓韧性。K 小、匀、圆、适量 → 工艺努力方向。
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 径 3.改善沿晶断裂抗力的途径
锰对钢γ区的影响
铬对钢γ区的影响
3、对γ-Fe区的影响
A形成元素Ni、Mn等使γ-Fe区扩大→钢在室 温下也为A体 — A钢; F形成元素Cr、Si等使γ-Fe区缩小→钢在高 温下仍为F体 — 铁素体钢。
二、 合金钢的加热A化
α+ Fe3C (或 K) →
γ
α→γ: 需要Fe重组和 C扩散
Fe3C或K:需要溶解于γ
s 0 Ks d
著名的Hall-petch公式 式中,d为晶粒直径,Ks为系数
1/ 2
机理
晶粒越细 → 晶界、亚晶界越多→ 有效 阻止位错运动,产生位错塞积强化。
效果
↑钢的强度,又↑塑性和韧度 这是最理想的强化途径.
3、第二相强化
表达式
P K P
1
机理
微粒第二相钉扎位错运动→强化效果 主要有切割机制和绕过机制。在钢中主 要是绕过机制。 两种情况:回火时弥散沉淀析出强化, 淬火时残留第二相强化。 有效提高强度,但稍降低塑韧性。
效果
提高强度,降低塑韧性
固溶强化的规律
( 1)溶质元素在溶剂中的饱和溶解度愈小,其固溶 强化效果愈好。
置换元素对α-Fe屈服强度的影响
固溶强化的规律
第一章 钢的合金化原理

四、按照对奥氏体层错能的影响分类
1、合金元素分类
奥氏体的层错能对钢的组织和性能都有很大影响。 按照对奥氏体层错能的影响,合金元素可分为两大类: (1) 提高奥氏体层错能的元素 如:镍(Ni),铜(Cu),碳(C),它们使奥 氏体层错能提高; (2) 降低奥氏体层错能的元素
如:锰(Mn),铬(Cr),钌(Ru),铱 (Ir),它们使奥氏体层错能降低。
二、合金钢定义与分类
1、定义: 合金钢:在化学成分上特别添加合金元素 用以保证一定的生产和加工工艺以及所要求的组 织与性能的铁基合金。
2、分类:
低碳钢(C≤0.25%) 碳素钢 中碳钢(0.25%< C≤0.60%) (非合金钢) 高碳钢(C>0.60%) 低合金钢(Me ≤5%) 合金钢 中合金钢(5%<Me≤10%) 高合金钢(Me >10%) 普通钢(S ≤0.050%,P ≤0.045%) 优质钢(S ≤0.035%,P ≤0.035%) 高级优质钢(S ≤0.025%,P ≤0.025%) 特级优质钢(S ≤0.015%,P ≤0.025%)
按化学成分
按冶金质量
工程构件用钢(桥梁、船舶、建筑等)
合金结构钢 机器零件用钢 调质钢 弹簧钢 渗碳钢 滚动轴承钢
按用途
合金工具钢
刃具钢 模具钢 量具钢
不锈钢
特殊性能钢 耐热钢 耐磨钢
在给钢产品命名时,往往把成分、质量和用 途分类方法结合起来。 如:优质碳素结构钢,合金工具钢等。
三、合金钢的编号原则
使“Fe-Me‖二元相图出现扩大γ相区和缩小γ 相区两个大类型。 每个大类再分为两小类,合金元素也可依此类 型分为奥氏体形成元素和铁素体形成元素两大类。
1、奥氏体形成元素(扩大γ相区元素或γ稳定化元素)
钢的合金化原理

M23C6型 复杂立方,Cr, Mn形成旳K:Cr23C6
M7C3型 复杂六方,Cr, Mn形成旳K:Cr7C3, Mn7C3
M3C型 正交晶系,Fe形成旳K:Fe3C
3)Fe-M-C形成旳三元K
M6C型
复杂立方,W、Mo旳K: Fe3Mo3C, Fe4Mo2C, Fe3W3C, Fe4W2C。
二. 碳化物(K)
1. 构造
1)rc/rM<0.59 简朴密排构造 V, Nb, Ta, Zr, Hf, Mo, W
MC型 面心立方,V, Nb, Ta,Zr, Hf, 如 VC,ZrC 等。 六方点阵,Mo, W, 如 MoC, WC。
M2C型 六方点阵,Mo,W,如:Mo2C, W2C
2)rc/rM>0.59 ,间隙化合物
rc/rMe > 0.59 —复杂点阵构造,如Cr、Mn、Fe , 形成Cr7C3、Cr23C6、Fe3C、Mn3C等形式旳K;
rc/rMe < 0.59 —简朴构造相,如Mo、W、V、Ti 等,形成VC等MC型,W2C等M2C型 。
Me量少时,形成复合K,如(Cr, M)23C6型 。
2)相同者相溶
一. 铁基固溶体
1. 置换(代位)固溶体 Ni, Co, Mn与γ-Fe形成无限固溶体。 Cr, V 与α-Fe形成无限固溶体。 其他置换原子与γ- Fe或α- Fe形成有限固溶体。
2. 间隙固溶体 间隙原子:B,C,N,O,H 间隙原子总是部分占据溶剂金属点阵旳八面体或四面体间
隙; 均为有限固溶体。
2、淬火态 Me分布与淬火工艺有关。溶入A体旳元素 淬火后存在于M、B中或AR中;未溶者仍在K中。
钢的合金化原理

钢的合金化原理1.1 碳钢概论在讲授钢的合金化原理之前,我们先介绍碳钢中的常存杂质及碳钢的分类与用途。
一、碳钢中的常存杂质碳钢(也称碳素钢)被广泛地应用于工农业生产中,它们不仅价格低廉、容易加工,而且在一般情况下能满足使用性能的要求。
碳钢中除铁与碳两种元素外,还含有少量锰、硅、硫、磷、氧、氮、氢等非特意加入的元素,其中,锰、硅等常称为常存元素;硫、磷、氧、氮、氢等常称为杂质元素。
它们对碳钢的性能有一定的影响。
1.锰和硅的影响锰和硅是炼钢过程中随脱氧剂或者由生铁残存而进入钢中的。
锰在碳钢中的含量一般小于0.8%,主要固溶于铁中。
此外由于锰和硫的结合力比铁和硫的结合力强,形成稳定的MnS 夹杂物,这对改善钢的热脆性有益。
因为FeS 熔点较低(1190℃),与γ铁易于形成低熔共晶(989℃)而且沿晶界连续分布,引起钢的热脆性。
适量的锰和杂质硫形成高熔点MnS(1600℃),MnS 在高温下具有一定的塑性,不会使钢发生热脆,在加工过程中硫化锰呈条状沿轧向分布。
必须指出的是,这些夹杂物将使钢的疲劳强度和塑性、韧性下降。
当钢中含有大量硫化物夹杂时,轧成钢板后会造成分层。
硅在钢中的含量通常小于0.5%。
由于铁中可以溶入较多的硅,故碳钢中的硅(通常小于0.5%)一般均可溶入铁中。
此外由于硅和氧的亲和力很强,能形成稳定的SiO2,在钢中以夹杂物形式存在而降低钢的质量。
必须指出的是,只有固溶于铁素体中的锰和硅才可强化铁素体基体。
2.硫和磷的影响硫是炼钢时不能除尽的有害杂质。
硫可以大量溶于液态钢中,而在固态铁中的溶解度极小。
硫和铁能形成FeS,并易于形成低熔点共晶。
当钢凝固结晶时低熔共晶易于沿晶界分布;若把含有硫化物共晶的钢加热到高温,例如1100℃以上时,共晶体就将熔化,因此就引起轧制或锻造时的晶界碎裂(热脆)。
铸钢件虽然不经锻造,但含硫量高时也会引起铸件在铸造应力作用下发生热裂。
此外硫还对钢的焊接性能有不良影响,即容易导致焊缝热裂,同时在焊接过程中,硫易于氧化,生成SO2 气体,以致焊缝中产生气孔和疏松。
钢的合金化概论

合金粉末粒度分布
根据需求调整合金粉末粒度分布。
表面处理
喷射后进行表面处理,提高合金层的 附着力和耐腐蚀性。
烧结法
烧结温度控制
烧结气氛选择
控制烧结温度和时间,促进合金元素的固 溶和扩散。
选择合适的烧结气氛,以防止氧化和减少 合金元素的挥发。
烧结助剂添加
晶粒细化
添加烧结助剂促进合金元素的扩散和固溶 。
机械用钢要求具有较高的强度、硬度、耐磨性和耐腐蚀性等性能 ,以满足各种机械设备的工作需求。
常见机械用钢的种类
包括碳素机械钢、合金机械钢、不锈钢等。
机械用钢的应用范围
广泛应用于各种机械设备的主要零部件制造,如机床、汽车、航 空航天等领域。
工具用钢
工具用钢的特点
工具用钢要求具有高硬度、耐磨性和耐腐蚀性等性能,以确保工具 的寿命和准确性。
过量的磷会导致钢的脆性增加。
硫(S)
硫在钢中的作用与磷相似,可 以提高强度和硬度,但会降低
韧性。
硫还可以提高钢的抗腐蚀性 能和耐磨性。
过量的硫会导致钢的脆性增加 。
铬(Cr)
01
02
03
铬可以提高钢的强度和 硬度,同时保持较高的
韧性。
铬还可以提高钢的抗腐 蚀性能和耐磨性。
过量的铬会导致钢的脆 性增加。
钛(Ti)
01
钛可以提高钢的强度和硬度,同时保持较高的韧性。
02
钛还可以提高钢的抗腐蚀性能和耐磨性。
03
过量的钛会导致钢的脆性增加。
铌(Nb)
铌可以提高钢的强度和硬度,同时保持较高的韧性。 铌还可以提高钢的抗腐蚀性能和耐磨性。 过量的铌会导致钢的脆性增加。
03
钢的合金化工艺
第1章钢合金化概论钢的强化和韧化课件

Si能溶于ε ,不溶于Fe3C ,Si要从ε 中出去
↓ε-FeXC的形核、长大
↓ε→ Fe3C 效果: 含2% Si能使M分解温度从260℃提高到350℃以上
(2)对残余A转变的影响
(3)回火时K的形成
各元素明显开始扩散的温度为:
Me
Si
Mn
Cr
(2) Me对A晶粒长大倾向的影响
➢合金元素形成的碳化物在高温下越稳定,
越不易溶入A中,能阻碍晶界长大,显著细 化晶粒。 按照对晶粒长大作用的影响,合 金元素可分为:
①Ti 、V 、Zr 、Nb等强烈阻止A晶粒长大,
Al在钢中易形成高熔点AlN 也能强烈阻止晶粒长大;
、Al2O3细质点,
AlN含量对A晶粒度的影响
第二 相
K ↓韧性。 K 小、匀、圆、适量 → 工艺努力方向。
杂质
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 3.改径善沿晶断裂抗力的途径
4、提高钢韧度的合金化途径
1)细化晶粒、组织—— 如Ti 、V 、Mo; 2) ↑回火稳定性 —— 如强K形成元素 ; 3)改善基体韧度 —— Ni ; 4) 细化K —— 适量Cr 、V ,使K小而匀 ; 5) ↓回脆 —— W 、Mo ; 6)在保证强度水平下,适当↓含C量.
效果
有效提高强度,但稍降低塑韧性。
钢强度表达式
位错被质点障碍物所挡住
4、位错强化
表达式
机理
位错密度ρt →tt位错交割、缠结, → 有效地阻止了位错运动 → t钢强度。
效果
工程结构钢的合金化原理

一、工程结构钢的合金化原理1、低碳:由于低温韧性、焊接性和冷成型性能的要求高,其碳质量分数一般不超过0.25%。
2、加入以锰为主的合金元素,起固溶强化作用,提高钢的强度和韧性。
3、加入铌、钛或钒等辅加元素,起弥散强化作用,提高钢的强度和韧性。
4、加入少量铜(<0.4%)和磷(0.1%左右)等,可提高抗腐蚀性能。
二、调质钢合金化特点1、中碳,碳质量分数一般在0.25%~0.50%之间,以0.4%居多。
碳量过低,不易淬硬,回火后强度不够;碳量过高则韧性不够。
2、加入提高淬透性的元素,如Cr、Mn、Ni、Si、B等。
3、加入防止第二类回火脆性的元素,如Mo、W等。
三、轴承钢的合金化特点1、高碳,为了保证轴承钢的高硬度、高耐磨性和高强度,碳质量分数应较高,一般为0.95%~1.10%。
2、铬为基本合金元素,铬含量为0.40%~1.65%。
铬能提高淬透性,并与基体金属形成合金渗碳体(Fe,Cr)3C,呈细密、均匀分布,从而提高钢的耐磨性,特别是疲劳强度。
3、加入硅、锰、钒等提高淬透性四、渗碳钢的合金化特点(1)碳质量分数一般在0.10%~0.25%之间,以保证零件心部有足够的塑性和韧性。
(2)加入提高淬透性的合金元素,常加入Cr、Ni、Mn等,以提高经热处理后心部的强度和韧性。
Cr还能细化碳化物、提高渗碳层的耐磨性,Ni则对渗碳层和心部的韧性非常有利。
(3)加入阻碍奥氏体晶粒长大的元素,主要加入少量强碳化物形成元素Ti、V、W、Mo等,形成稳定的合金碳化物。
除了能阻止渗碳时奥氏体晶粒长大外,还能增加渗碳层硬度,提高耐磨性。
五、氮化钢的合金化特点1、低碳2、铬、钼、锰可使钢获得足够的淬透性。
3、钼及钒能使钢在500~580℃之间长时间保温时保持强度。
为了防止或减轻钢发生回火脆化,往往须要在氮化钢中加入0.2~0.5%钼。
六、弹簧钢的合金化特点1、中、高碳。
一般为0.50%~0.70%。
碳质量分数过低,强度不足。