通信原理实验一 数字基带传输

合集下载

实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。

二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。

在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。

对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。

其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。

数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。

在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。

通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。

对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。

希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。

数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。

通信原理-数字基带传输系统

通信原理-数字基带传输系统

数字基带信号的表示式:表示信息码元的单个脉冲 的波形并非一定是矩形的。
若表示各码元的波形相同而电平取值不同,则 数字基带信号可表示为:
s(t) an g(t nTs ) n
式中,an - 第n个码元所对应的电平值 Ts - 码元持续时间
g(t) -某种脉冲波形
一般情况下,数字基带信号可表示为一随机脉冲序
5
第6章 数字基带传输系统
差分波形:用相邻码元的电平的跳变和不变来表示消息代码 , 图中,以电平跳变表示“1”,以电平不变表示“0”。它也称 相对码波形。用差分波形传送代码可以消除设备初始状态的 影响。
多电平波形:可以提高频带利用率。图中给出了一个四电平 波形2B1Q。
6
第6章 数字基带传输系统
通信原理
第6章 数字基带传输系统
1
第6章 数字基带传输系统
概述
数字基带信号 - 未经调制的数字信号,它所占据的频 谱是从零频或很低频率开始的。
数字基带传输系统 -不经载波调制而直接传输数字基 带信号的系统,常用于传输距离不太远的情况下。
数字带通传输系统 -包括调制和解调过程的传输系统 研究数字基带传输系统的原因:
4
第6章 数字基带传输系统
单极性归零(RZ)波形:信号电压在一个码元终止时刻前总要 回到零电平。通常,归零波形使用半占空码,即占空比为 50%。从单极性RZ波形可以直接提取定时信息 。 与归零波形相对应,上面的单极性波形和双极性波形属 于非归零(NRZ)波形,其占空比等于100%。
双极性归零波形:兼有双极性和归零波形的特点。使得接收 端很容易识别出每个码元的起止时刻,便于同步。
s(t) sn (t) n
式中
sn
(t)
g1(t nTS ) , g(2 t nTS),

数字信号的基带传输

数字信号的基带传输
H(ω) A 0 B ω A 0
B 2
H(ω)
0 -
ω0
0
B 2
ω
(a)低通滤波器
(b)带通滤波器
A H ( ) 0
0 B other
A H ( ) 0
B B 0 0 2 2 other
15
无失真系统是否为线性系统?
(1)是否具有齐次性?
幅度。
(4) 时隙(Slot):一个时隙一个数据位逐个进行。 码元
5
基本概念
二、基带传输与频带传输
数字基带信号:未经调制的数字信号,它所占据的频谱是从零
频或很低频率开始的。
基带传输:将数字基带信号通过基带信道(传递函数为低通型)传
输 —— 信号频谱不搬移,直接传送。
同轴电缆,双绞线 频带信号:数字基带信号经正弦波调制的带通信号 频带传输:将数字带通信号通过带通信道传输
振幅失真:
是信号各个频率分量的振幅值随频率发生了不同变化。
由传输设备和线路引起的衰损造成的
延迟失真:
是信号各频率分量的传播速度不一致所造成的失真。
12
基本概念
三、信号通过系统 3、无失真系统
如果信号通过系统后各个频率分量的振幅和延迟改变 都是相同的,则称信号不失真。能够使信号不失真的系 统称为不失真系统。
假定通过系统前的信号为X(t),通过系统后的信号为Y(t),
不失真系统只能导致信号如下改变:
Y (t ) kX (t t 0 )
13
系统对信号的作用如下:
输入信号
系统
输出信号
Y ( ) X ( ) H ( )
不失真系统信号输出:
X(t )
h(t )

湘潭大学通信原理实验第一次

湘潭大学通信原理实验第一次

湘潭大学通信原理实验报告书课程名称:通信原理题目:数字基带传输系统的MATLAB仿真模拟信号幅度调制仿真实验学生姓名:唐绪泉学号:2010964530班级:2010级通信工程班指导教师:王仕果2012年12 月实验一数字基带传输系统的MATLAB仿真一、实验目的:1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生;3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质;5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。

二、实验内容1、编写MATLAB程序产生离散随机信号2、编写MATLAB程序生成连续时间信号3、编写MATLAB程序实现常见特殊信号三、实验原理:从通信的角度来看,通信的过程就是消息的交换和传递的过程。

而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。

例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调制等则是信号层次上的处理。

码的变换是易于用软件来仿真的。

要仿真信号的变换,必须解决信号与信号系统在软件中表示的问题。

3.1 信号及系统在计算机中的表示3.1.1 时域取样及频域取样一般来说,任意信号s(t)是定义在时间区间(-∞,+∞)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理(-∞,+∞)这样一个时间段。

为此将把s(t)按区间,22TT⎡⎤−⎢⎥⎣⎦截短为s T(t),再对s T(t)按时间间隔Δt均匀取样,得到取样点数为:TNtt=Δ (3-1)仿真时用这个样值集合来表示信号s(t)。

显然Δt反映了仿真系统对信号波形的分辨率,Δt越小,则仿真的精确度越高。

数字基带传输系统仿真实验

数字基带传输系统仿真实验

数字基带传输系统仿真实验一、系统框图一个数字通信系统的模型可由下图表示:信源信道数字信源编码器调制器编码器数字信源噪声信道信道数字信源信宿译码器解调器译码器数字信宿编码信道数字通信系统模型从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。

在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。

称为基带传输系统。

与之对应,把包括了载波调制和解调过程的传输系统称为频带传输系统。

无论是基带传输还是频带传输,基带信号处理是必须的组成部分。

因此掌握数字基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。

二、编程原理1. 带限信道的基带系统模型(连续域分析)X(t) y(t){}a, 输入符号序列―― lL,1dtatlT()(),,,T, 发送信号―― ――比特周期,二进制,lbbl,0码元周期,jft2,, 发送滤波器―― G(),或Gf()或gtGfedf()(), TT,TT,,, 发送滤波器输出――L,1xtdtgtatlTgt()()*()()*(),,,,,TlbTl,0 L,1=()agtlT,,lTsl,0, 信道输出信号或接收滤波器输入信号(信道特性为1) ytxtnt()()(),,,jft2,G(),Gf()gtGfedf()(),, 接收滤波器―― 或或 RR,RR,,, 接收滤波器的输出信号rtytgtdtgtgtntgt()()*()()*()*()()*(),,,RTRR,1L ()(),,,agtlTnt,lbR,0l,jft2,gtGfCfGfedf()()()(), 其中 ,TR,,(画出眼图)lTlL,,, 01, 如果位同步理想,则抽样时刻为 brlTlL() 01,,,, 抽样点数值为 (画出星座图) b,{}a, 判决为 l2. 升余弦滚降滤波器(1),,,Tf,||,s,T2s,,TT1(1)(1),,,,,,,,,ss Hfff()1cos(||),||,,,,,,,,TTT2222,,,ss,,(1),,f0,||,,T2s,1式中,称为滚降系数,取值为, 是常数。

通信原理实验一

通信原理实验一

中南大学信息科学与工程学院通信原理实验报告学生学院信息科学与工程学院专业班级学号学生姓名指导教师时间实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。

2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI 译码输出波形。

三、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,通过开关K1,K2,K3将数字信源置于01110010 11110000 11110000,理论上的波形应该是如下图1-11:图 1-1 示波器上的理想波形实际在示波器上看到此时示波器中的波形如下图 1-12,对比图1-11可以看到,发光状态是正确的。

图 1-2 代码01110010 11110000 11110000时的位同步信号和NRZ码(2)用开关K1产生代码01110010(1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。

图 1-3 代码01110010 00000000 00000000时的位同步信号和NRZ码说明:集中插入法是将标志码组开始位置的群同步码插入一个码组的前边。

通信原理实验数字基带传输仿真实验

通信原理实验数字基带传输仿真实验

通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。

这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。

实验步骤:第一步:实现数字基带信号的产生。

我们采用MATLAB编写代码来产生数字基带信号。

具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。

第二步:实现数字基带信号的传输。

我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。

具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。

第三步:实现数字基带信号的调制。

我们采用调制器进行数字信号的调制。

常见的数字调制方式有AM调制、FM调制、PM调制等。

此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。

第四步:实现数字基带信号的解调。

我们采用解调器来实现数字基带信号的解调。

常见的数字解调方式有包络检测法、抑制互调法等。

此处我们选择了直接判决法来进行数字基带信号的解调。

第五步:实现数字基带信号的重构。

我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。

此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。

实验结果:通过对仿真实验的分析,我们得出了一些结论。

首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。

其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。

第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。

最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。

数字基带传输技术实验报告

数字基带传输技术实验报告

实验报告课程名称通信原理实验名称实验一:数字基带传输技术班级学号姓名指导教师实验完成时间: 2014年 10 月 28 日一、熟悉实验平台二、数字基带传输系统实验1. 实验目的1.了解几种常用的数字基带信号。

2.掌握常用的数字基带出书码型的编码规则。

3.掌握CPLD实现码型变换的方法。

2.实验内容1.观察NRZ码,RZ码,AMI码,HDB3码,CMI码,BPH码的波形。

2.观察全0码或全1码时各码型的波形。

3.观察HDB3,AMI码的正负极性波形。

4.观察AMI码,HDB3码,CMI码,BPH码经过码型反变换后的输出波形。

5.自行设计码型变换电路,下载并观察波形。

3.实验仪器各功能模块(实验箱)20M双踪示波器一台频率计(可选)一台连接线若干2.实验原理二进制码元的数字基带传输系统参考使用模块:信号源模块、码型变换模块、信道模拟模块、终端模块。

该通信系统的框图如图1所示。

图1 二进制码元的数字基带传输系统该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。

这里信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。

基带信号是代码的一种电表示形式。

在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。

例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。

单极性基带波形就是一个典型例子。

再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。

归纳起来,对传输用的基带信号的主要要求有两点:(1)对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2)对所选码型的电波形要求,期望电波形适宜于在信道中传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理实验一数字基带传输一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。

二、实验原理1.匹配滤波器和非匹配滤波器:升余弦滚降滤波器频域特性:将频域转化为时域2. 最佳基带系统将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。

要求接收滤波器的频率特性与发送信号频谱共轭匹配。

由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。

设信道特性理想,则有(延时为0)有可选择滤波器长度使其具有线性相位。

如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。

3.基带传输系统(离散域分析)✧输入符号序列――✧发送信号―― ――比特周期,二进制码元周期✧发送滤波器――或✧发送滤波器输出――✧信道输出信号或接收滤波器输入信号(信道特性为1)✧接收滤波器――或✧接收滤波器的输出信号(画出眼图)✧如果位同步理想,则抽样时刻为✧抽样点数值为(画出星座图)✧判决为其中若为最佳基带传输系统,则发送滤波器和接收滤波器都为根升余弦滤波器,当采用非匹配滤波器时,发送滤波器由升余弦滤波器基带特性实现,接收滤波器为直通。

三、实验内容1.通过匹配滤波和非匹配滤波方式,得到不同的滚降系数下发送滤波器的时域波形和频率特性。

实验程序:(1)非匹配情况下:升余弦滚降滤波器的模块函数(频域到时域的转换)function [Hf,ht]=f_unmatch(alpha,Ts,N,F0)k=[-(N-1)/2:(N-1)/2];f=F0/N*k;for i=1:N;if (abs(f(i))<=(1-alpha)/(2*Ts))Hf(i)=Ts;elseif(abs(f(i))<=(1+alpha)/(2*Ts))Hf(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts))));else Hf(i)=0;end;end;主函数alpha=input('alpha=');%输入不同的滚降系数值N=31;%序列长度Ts=4;F0=1;%抽样频率n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];f=F0/N*k;Hf=zeros(1,N);Hf=f_unmatch(alpha,Ts,N,F0);ht=1/N*Hf*exp(j*2*pi/N*k'*n);%非匹配滤波器的时域特性subplot(2,1,1)stem(f,Hf,'.');axis([-F0/2,F0/2,min(Hf)-0.2,max(Hf)+0.2]);title('非匹配发送滤波器频率特性');subplot(2,1,2);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]); title('非匹配发送滤波器的时域波形');实验结果alpha=1时Alpha=0.5时Alpha=0.1时(2)匹配情况下根升余弦滚降滤波器的模块函数(频域到时域的转换)function [Hf,ht]=f_match(alpha,Ts,N,F0)k=[-(N-1)/2:(N-1)/2];f=F0*k/N;for i=1:N;if (abs(f(i))<=(1-alpha)/(2*Ts))HF(i)=Ts;elseif(abs(f(i))<=(1+alpha)/(2*Ts))HF(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts))));else HF(i)=0;end;end;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];Hf=sqrt(HF);%发送滤波器频率特性(根升余弦滚降滤波器)ht=1/N*Hf*exp(j*2*pi/N*k'*n);%匹配滤波器的时域特性主函数alpha=input('alpha=');N=31;Ts=4;F0=1;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];Hf=zeros(1,N);HF=Hf;Hf=f_match(alpha,Ts,N,F0);subplot(2,1,1)stem(f,Hf,'.');axis([-F0/2,F0/2,min(Hf)-0.2,max(Hf)+0.2]);title('匹配发送滤波器频率特性');subplot(2,1,2);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]);title('匹配发送滤波器的时域波形');实验结果Alpha=1Alpha=0.5Alpha=0.1(3)由时域到频域的变化alpha=1;N=31;Ts=4;F0=1;T0=1;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];for n=-(N-1)/2:(N-1)/2;t=n*T0/Ts;y=(1-4*alpha*alpha*t*t)*(pi*t);if(y==0)h(n+((N-1)/2+1))=(cos(pi*t)*cos(alpha*pi*t)-alpha*pi*sin(alpha*pi*t)*sin(pi*t))/(1-12*alpha*alpha*t*t);elseh(n+((N-1)/2+1))=sin(pi*t)/(pi*t)*cos(alpha*pi*t)/(1-4*alpha*alpha*t*t); end;end;n=-(N-1)/2:(N-1)/2;k=1:N;f=F0*k/N;HF=h(n+((N-1)/2+1))*exp(-j*2*pi/N*k'*n);ht=1/N*HF*exp(j*2*pi/N*k'*n);%发送滤波器时域特性subplot(2,2,4)stem(f,HF,'.');axis([0,F0,min(HF)-0.2,max(HF)+0.2]);xlabel('f'),ylabel('HF');title('alpha=1的非匹配发送滤波器频率特性');subplot(2,2,3);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]);xlabel('n'),ylabel('ht'),title('alpha=1的非匹配发送滤波器的时域波形');Hf=sqrt(HF);%发送滤波器频率特性(根升余弦滚降滤波器)ht=1/N*Hf*exp(j*2*pi/N*k'*n);%发送滤波器时域特性subplot(2,2,2)stem(f,Hf,'.');axis([0,F0,min(Hf)-0.2,max(Hf)+0.2]);xlabel('f'),ylabel('Hf');title('alpha=1的匹配发送滤波器频率特性');subplot(2,2,1);stem(n,ht,'.');axis([-(N-1)/2,(N-1)/2,min(ht)-0.2,max(ht)+0.2]);xlabel('n'),ylabel('ht'),title('alpha=1的匹配发送滤波器的时域波形');实验结果2.输入信号叠加噪声,通过匹配和非匹配滤波两种方式,再经过抽样判决得到输出序列。

(1)匹配滤波形式M=8;%符号数N=32;%抽样点数L=4;T0=1;Ts=L*T0;Rs=1/Ts;fs=1/T0;%抽样频率Bs=fs/2;%折叠频率T=N/fs;t=-T/2+[0:N-1]/fs;f=-Bs+[0:N-1]/T;%产生随机的序列输入y=rand(1,M);x0=zeros(1,M);for i=1:Mif y(i)>0.5x0(i)=1;elsex0(i)=-1;endendsubplot(5,2,1),stem(x0,'b.');title('输入符号序列');%在两个序列间插入三个零得到发送信号n=0:L*M-1;x1=zeros(1,L*M);for i=1:Mx1(L*(i-1)+1)=x0(i);endsubplot(5,2,2);stem(n,x1,'.');title('发送信号');%根升余弦的发送滤波器alpha=1;n=[-(N-1)/2:(N-1)/2];k=[-(N-1)/2:(N-1)/2];Hf=zeros(1,N);HF=Hf;k=[-(N-1)/2:(N-1)/2];f=k/N;for i=1:N;if (abs(f(i))<=(1-alpha)/(2*Ts))HF(i)=Ts;elseif(abs(f(i))<=(1+alpha)/(2*Ts))HF(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts))));else HF(i)=0;end;end;Hf=sqrt(HF);%发送滤波器频率特性(根升余弦滚降滤波器)h=1/N*Hf*exp(j*2*pi/N*k'*n);%匹配滤波器的时域特性subplot(523);stem(t,h,'.');axis([-T/2,T/2,1.1*min(h),1.1*max(h)]);title('平方根升余弦发送滤波器的时域冲激响应');%发送滤波器输出y=conv(x1,h);%输入信号与发送滤波器卷积输出n=-T/2:L*M-1-T/2+N-1;subplot(524);plot(n,y)axis([-T/2,L*M-1-T/2+N-1,1.1*min(y),1.1*max(y)]);title('发送滤波器输出波形');%计算平均每比特功率Eb=0;for i=1:length(y)Eb=Eb+abs(y(i))*abs(y(i));endEb=Eb/32;%信噪比SNR=20;%产生噪声sgma=sqrt(Eb/(10^(SNR/10))/2);n0=sgma*randn(1,length(y));p=length(y);t0=0:p-1;subplot(525);plot(t0,n0);title('噪声');%发送滤波器输出加噪声得接收滤波器输入y1=y+n0;subplot(526);plot(n,y1);title('接收滤波器输入信号');%根升余弦的接收滤波器subplot(527);stem(t,h,'.');axis([-T/2,T/2,1.1*min(h),1.1*max(h)]);title('平方根升余弦接收滤波器的时域冲激响应'); %接收滤波器输出波形r=conv(y1,h);n=-T:L*M-1-T+2*(N-1);subplot(528);stem(n,r,'.')title('接收滤波器输出波形');%抽样判决sam=zeros(1,M);for i=0:M-1c=find(n==i*fs/Rs);sam(i+1)=r(c);endn1=0:M-1;subplot(5,2,9),stem(n1,sam,'.');title('抽样值');b=zeros(1,M);for i=1:Mif sam(i)>0b(i)=1;elseb(i)=-1endendsubplot(5,2,10),stem(b,'b.');title('判决结果');实验结果(2)非匹配滤波形式将发送滤波器改为升余弦滚降滤波器,而接收滤波器为直通滤波器。

相关文档
最新文档