海上油气开采工程与生产系统教程(DOC 11页)
第二章 海上油气开采方式

(2)埕岛油田人工举升方式的选择分析 1)有杆泵。有杆泵是陆上油田使用最广泛的一种采油方式,但在海上油田大 斜度井中使用存在抽油杆与井壁摩擦造成抽油杆严重磨损的问题。同时,由于地 面设备大而笨重, 受平台井口条件和平台高度的限制,不能满足埕岛油田的导管
优点: 不受井深限制( 目前已知最大下泵深度已达5 486 m) , 适用于斜井, 灵 活性好, 易调整参数,易维护和更换。 可在动力液中加入所需的防腐剂、 降粘剂、 清蜡剂等。 缺点: 高压动力液系统易产生不安全因素, 动力液要求高, 操作费较高, 对气 体较敏感, 不易操作和管理, 难以获得测试资料。 3.气举 优点: 适应产液量范围大, 适用于定向井, 灵活性好; 可远程提供动力, 适用 于高气油比井况, 易获得井下资料。 缺点: 受气源及压缩机的限制, 受大井斜影响( 一般来说用于60∀以内斜井) , 不适用于稠油和乳化油, 工况分析复杂, 对油井抗压件有一定的要求。 4.喷射泵 优点: 易操作和管理, 无活动部件, 适用于定向井, 对动力液要求低, 根据井 内流体所需, 可加入添加剂, 能远程提供动力液。 缺点: 泵效低, 系统设计复杂, 不适用于含较高自由气井, 地面系统工作压力 较高。 5.螺杆泵 (1)地面驱动螺杆泵 优点: 对油井液体适应范围广; 不发生气锁, 泵效高; 运动部件少; 没有阀件 和复杂流道, 油流扰动小, 水力损失较低, 泵效可达70% 以上; 输出流量均匀、 易于调节, 通过改变地面驱动装置的转速, 很容易调节流量; 适应排量范围大, 日产液量为1. 59~380 m3 / d, 通过加大转速可以达到更高产量。 (2)电动潜油螺杆泵 优点: 它结合了潜油电泵和地面驱动螺杆泵的优点, 输送介质范围广; 节电效 果显著; 不存在管、 杆磨损; 可用于斜井、水平井; 可使用小直径油管; 运行可 靠、 维修量小; 启动扭矩大, 适用于斜井、 稠油井以及高含砂、 高含气井的开采。 缺点: 螺杆泵工作寿命较低( 与ESP 相比) , 一次性投资较高。 刘雅馨,张用德,吕古贤,高云波,杨光 浅海油田采油方式的选择 2010年第39卷 第11期第19页
海上石油的开采PPT课件

随着全球能源短缺状况日益严重,人类把目光转向海洋,致力与海上石油开发。
油套环空注入高压气体,并通过油管上的多组气举阀在不 有杆抽油机泵组的主要优点是结构简单,维修管理方便,在中深井中泵的效率为50%左右,适用于中、低产量的井。
注入井底,将原油举升出地面的人工举升采油方式。
东海: 挪世威界国 大家型石石油油公企主司业(,要是St由a北to欧中il A最S海大A的)油石于和油20公0中7司年石和由挪化原威挪最威大国的家公石司油。公司(Statoil)和挪威海德罗公司(Norsk Hydro)油气部门合并而成的
有杆抽油投机泵资组建的主设要。优点我是国结构与简日单,维本修在管理该方便,在中深井中泵的效率为50%左右,适用于中、低产量的井。 这深个海设 生备产海被平用台域来自油提动升操气和纵争放装下置夺钻。相柱的当。激烈。
下部为一大型浮力沉垫,上部为钻井平台,中间用支柱联结。 有杆泵的工作深度在国外已超过 3000m,抽油机的载荷已超过25t,泵的排量与井深有关,有些浅井日排量可以高达400m3,一般中深井可
达200m3,但有抽油些井的浅产量井主要日根据油排层的量生产可能力以。 高达400m3,一般中深井可达200m3,
海上采油、深井、斜井、含砂井、含气井和含有腐蚀性成分而不宜用其他人工举升采油方式开采的油井,都可采用气举采油。
井口。同时,注入的高压气体在井筒上升的过程中,体积 在一定的油层压力和油气比的条件下,每口井中的油管尺寸和深度不变时,有一个充分利用能量的最优流速范围,即最优日产量范围。
油气在地壳中生成后,呈分散状态存在于生油气层中,经过运移进入储集层,在具有良好保存条件的地质圈闭内聚集,形成油气藏。
第三讲海上油气集输.doc

第三讲海上油⽓集输.doc第三讲海上油⽓集输⼯艺技术3.1 海上油⽓集输系统的组成和类型海上油⽓集输系统是指把海上油井⽣产出来的原油、伴⽣⽓进⾏集中、计量、处理、初加⼯,最后将合格的油、⽓外输给⽤户的整个⽣产流程,以及为上述⽣产流程提供的⽣产设备、⼯程设施的总称。
3.1.1 油⽓集输的任务油⽓集输是继地质勘探、油⽥开发、钻井采油之后的油⽥⽣产阶段。
这阶段的任务是从油井井⼝开始,将油井的产出物在油⽥集中、油⽓分离、计量、净化处理、必要的初加⼯,⽣产出符合质量要求的油、⽓及副产品,⽽后输送给⽤户。
3.1.2 海上油⽓集输系统的组成海上油⽓集输系统包括海上油⽓⽣产设备系统以及为其提供⽣产场地、⽀撑结构的⼯程设施。
海上油⽓集输包括了整个油⽥⽣产设备及其⼯程设施。
这些⼯程设施有井⼝平台、⽣产平台、⽣活平台、储油平台、储油轮、储油罐、单点系泊、输油码头等。
根据所开发油⽥的⽣产能⼒、油⽥⾯积、地理位置、⼯程技术⽔平及投资条件,可分别组成不同的油⽓集输系统。
3.1.3 海上油⽓集输类型随着海上油⽥开发⼯程由近海向远海发展,海上油⽓集输形成了以下三种类型。
(⼀)全陆式集输系统海上油⽥开发初期,是在离岸不远的地⽅修筑⼈⼯岛,建⽊质或混凝⼟井⽈保护架(平台)打井采油。
油井的产出物靠油井的压⼒经出油管线上岸集油、分离、计量、处理、储存及外输。
这种把全部的集输设施放在陆上的⽣产系统叫全陆式集输系统。
该系统的海上⼯程设施⼀般为:①井⼝保护架(平台)通过海底出油管上岸,见图3-1;②井⼝保护架(平台)通过栈桥与陆地相连;③⼈⼯岛通过路堤与陆地相连,见图3-2。
全陆式⽣产系统在海上只设井⼝保护架(平台)和出油管线,⼤⼤减少了海上⼯程量,便于⽣产管理。
陆地⽣产操作费⽤⽐较低,⽽且受⽓候影响⼩,与同等⽣产规模的海上⽣产系统相⽐,其经济效益好。
该系统⼀般适⽤于浅⽔、离岸近、油层压⼒⾼的油⽥。
我国滩海油⽥开发多采⽤这⼀集输⽅式。
图3-1 全陆式油⽓集输系统图3-2 ⼈⼯岛全陆式集输系统图(⼆)半海半陆式集输系统随着油⽥开发地点⽔深的增加、离岸距离加⼤、钢导管架平台的发展和应⽤,全陆式集输系统已不能适⽤。
海洋石油开采工程(第五章海上油气井生产原理与技术)

P IPR
Pwf1
Pwf
d
Pt1
C
Pt
PT
A
B
q1 q
q
第一节 自喷采油
5、协调点的调节方法
(1)改变地层参数 如:注水、压裂、酸化等
(2)改变油管工作参数(管径) (3)换油嘴
简单易行,故常用。
第一节 自喷采油
6、协调在自喷井管理中的应用
(1)利用油咀控制油井生产
P
油咀直径不同,咀流曲 线不同,得不同的协调 生产点。控制油井产量 就是选用合适的油咀, 达到合适的协调点。
含砂流体及定向井,排量范围大。 缺点 工作寿命相对较低(与ESP相比),一次性投资高
。
第五章 海上油气井生产原理与技术
第一节 自喷采油 第二节 气举采油 第三节 电潜泵采油 第四节 其他采油方式 第五节 海上油田采油方式的选择
第一节 自喷采油
一、油井井身结构
自喷采油是完全依靠油层能量将原油从井底举升到地 面的采油方式。
(4)喷射泵
优点 易操作和管理,无活动部件,适用于定向井,对动力 液要求低,根据井内流体所需,可加入添加剂,能远程提 供动力液。 缺点 泵效低,系统设计复杂,不适用于含较高自由气井, 地面系统工作压力较高。
第五章 海上油气井生产原理与技术
(5)电潜螺杆泵 优点 系统具有高泵效,适用于高粘度油井,并适用于低
自喷采油是指油层能量充足,完全依靠油层天然能 量将原油举升到地面的方式。它的特点是设备简单、管 理方便、经济实用,但其产量受到地层能量的限制。由 于海上油田初期投资大,且生产操作费用较高,要求油 井在较长时间内保持较高的相对稳定的产量进行生产。 然而油井的供给能力随着油藏衰竭式开采而减弱,因此 油井自喷产量会逐渐降低。当油层能量较低或自喷产量 不能满足油田开发计划时,可采用人工给井筒流体增加 能量的方法将原油从井底举升到地面,即采用人工举升 方式。
海上油气开采工程与生产系统资料讲解

海上油气开采工程与生产系统中海工业有限公司第一章海上油气开采工程概述海底油气资源的存在是海洋石油工业得以发展的前提。
海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。
世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。
一、海上油气开采历史进程、现状和将来一个多世纪以来,世界海洋油气开发经历如下几个阶段:早期阶段:1887年~1947年。
1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。
到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。
起步阶段:1947年~1973年。
1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建造了世界上第一个钢制固定平台。
此后钢平台很快就取代了木结构平台,并在钻井设备上取得突破性进展。
到20世纪70年代初,海上石油开采已遍及世界各大洋。
发展阶段:1973年~至今。
1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特别是为了应对恶劣环境的北海和深水油气开发的需要,人们不断采用更先进的海工技术,建造能够抵御更大风浪并适用于深水的海洋平台,如张力腿平台(TLP)、浮式圆柱型平台(SPAR)等。
海洋石油开发从此进入大规模开发阶段,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。
进军深海是近年来世界海洋石油开发的主要技术趋势之一。
二、海上油气开采流程海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个阶段:勘探评价阶段:在第一口探井有油气发现后,油气田就进入勘探评价阶段,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。
前期研究阶段:一般情况,在勘探部门提交储量报告后,才进人前期研究阶段。
海上油气田开发设计、生产系统的流程

海上油气田开发设计、生产系统的流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!海上油气田开发设计、生产系统的流程海上油气田的开发设计及生产系统是一个复杂而系统的过程,涉及多个环节和专业领域。
海上油气开采工程与生产系统

海上油气开采工程与生产系统简介海上油气开采工程与生产系统是指在海上进行的油气勘探、开采和生产过程中所涉及的设备、工程和技术系统。
随着全球对能源需求的不断增长,海上油气开采工程逐渐成为了满足能源需求的重要途径之一。
本文将探讨海上油气开采工程的基本原理、关键技术以及未来发展方向。
基本原理海上油气开采工程与生产系统是通过在海底上建设各种设备和管道网络来实现对海底油气资源的勘探、开采和生产。
该系统包括以下几个基本组成部分:•海底设备:包括钻井平台、固定式或浮动式生产平台、子海底设备等。
这些设备通常需要抵御恶劣海洋环境和极端天气条件。
•油气管道:用于将从海底开采出来的油气输送到陆地上的处理厂。
这些管道通常要经过大规模的设计和建设,确保安全可靠地将油气输送到目的地。
•监测与控制系统:用于监测海底油气开采和生产过程中的各种参数,如温度、压力、流量等,并根据需要进行相应的控制。
这些系统通常采用自动化技术,以提高生产效率和安全性。
•安全设备:包括灭火系统、泄漏监测系统等,用于确保海上油气开采工程的安全性。
这些设备通常需要经过严格的测试和认证,以确保其能在紧急情况下有效地保护工作人员和环境。
关键技术海上油气开采工程与生产系统涉及到多个关键技术,以下是其中几个重要的技术:1.钻井技术:钻井是开采海底油气资源的关键过程。
传统的钻井技术已经相对成熟,但在海上钻井过程中需要考虑到海洋环境因素,如海浪、海盗等。
因此,海上钻井技术需要具备更高的安全性和稳定性。
2.水下生产技术:水下生产是指将油气从水下井口提到海面上进行处理和储存的过程。
水下生产技术可以大大减少在海上的设备和管道数量,降低成本和环境风险。
3.气液分离技术:油气从水下井口上升到海面后,需要进行气液分离,以分离出油气和水。
气液分离技术需要确保高效的分离效果,并将分离后的油气输送到陆地上的处理厂。
4.海上管道技术:海上油气开采工程中需要建设大规模的管道网络,以将油气从海底输送到陆地。
海洋石油开采工程(第一章绪论)

二、 海洋石油开发特点
(2) 油气开发规划
勘探钻井(含评价井)
油气开采可行性研究
勘探工作 评价 设备设计研究
阶段 技术可行性
经济可行性
基本设计与预算
详细设计
开发工作
设备制造与采购
设备安装
试运行与投产
(3) 整体开发代替滚动开发
三、国内外海洋石油工业发展概况
1、国外海洋石油工业发展概况
➢ 初始阶段 (1897年到1984年) 1897年美国加利福尼亚海岸萨姆兰德油田用木桩作基 础建立了第一座海上钻井平台; 1920年委内瑞拉在马拉开波湖发现油田; 1930年,苏联在里海发现油田。
三、国内外海洋石油工业发展概况
➢ 起步阶段(1947年到1973年) 1947年美国在墨西哥湾成功建造了世界上第一座钢制 固定平台; 美国路易斯安那州马尔根城西南12海里的海域,首次 使用了海上移动式钻井装置—带有驳船的钻井平台; 1953年美国建成了世界上第一艘自升式钻井平台—“ 马格洛利亚号”; 1954年美国建造了第一艘坐底式平台—“查理先生号 ”。
3、加速发展海洋能源开发技术,加大深海油气开发技 术研发投入 4、统筹制订海洋油气资源开发、海洋运输、海洋能产 业和海洋人才等多方面的战略规划 5、在国际合作中,强化我国海洋企业的自我发展能力
五、国内外海洋油气资源分布
1、国外海洋油气分布
海洋油气资源主要分布在大陆架,约占全球海洋油气资 源的60%,但大陆坡的深水、超深水域的油气资源潜力可观, 约占30%。在全球海洋油气探明储量中,目前浅海仍占主导 地位,但随着石油勘探技术的进步,将逐渐进军深海。水深 小于500米为浅海,大于500米为深海,1500米以上为超深海。 2000~2005年,全球新增油气探明储量164亿吨油当量,其 中深海占41%,浅海占31%,陆上占28%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海上油气开采工程与生产系统教程(DOC 11页)海上油气开采工程与生产系统中海工业有限公司第一章海上油气开采工程概述海底油气资源的存在是海洋石油工业得以发展的前提。
海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。
世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。
一、海上油气开采历史进程、现状和将来一个多世纪以来,世界海洋油气开发经历如下几个阶段:早期阶段:1887年~1947年。
1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。
到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。
起步阶段:1947年~1973年。
1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建造了世界上第一个钢制固定平台。
此后钢平台很快就取代了木结构平台,并在钻井设备上取得突破性进展。
到20世纪70年代初,海上石油开采已遍及世界各大洋。
发展阶段:1973年~至今。
1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特别是为了应对恶劣环境的北海和深水油气开发的需要,人们不断采用更先进的海工技术,建造能够抵御更大风浪并适用于深水的海洋平台,如张力腿平台(TLP)、浮式圆柱型平台(SPAR)等。
海洋石油开发从此进入大规模开发阶段,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。
进军深海是近年来世界海洋石油开发的主要技术趋势之一。
二、海上油气开采流程海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个阶段:勘探评价阶段:在第一口探井有油气发现后,油气田就进入勘探评价阶段,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。
前期研究阶段:一般情况,在勘探部门提交储量报告后,才进人前期研究阶段。
前期研究阶段主要完成预可行性研究、可行性研究和总体开发方案(ODP)。
前期研究阶段也将决定油气田开发基础,方案的优化是最能提高油气田经济效益的手段。
因此,在可行性研究和总体开发方案( ODP )上都要组织专家进行审查,并得到石油公司高级管理层的批准。
工程建设阶段:在工程建设阶段,油藏、钻完井和海洋工程方面的主要工作是成立各自的项目组,建立有效的组织结构和管理体系,组织基本设计编写并实施,对工程质量、进度、费用、安全进行全过程的管理和控制,使之达到方案的要求。
油藏项目组主要进行随钻分析和井位、井数等方面调整;钻完井项目组密切与油藏项目组配合进行钻井、完井方案的实施;海洋工程项目组负海上生产设施的建造;生产方面的人员也会提前介入,并进行投产方面的准备。
生产阶段:生产阶段在油气田开发过程中延续的时间最长,从油气田投产开始,直至油气井废弃为止。
该阶段由于平台到处有油、气的存在,操作人员除进行正常的设施操作和维护外还需要经常配合钻完井方面人员进行钻井、完井、修井等方面的作业,有时还要配合地面工程设施的改造,因此,安全工作尤为重要。
弃置阶段:海上油气生产设施的退役和拆除是海上油气田开发的组成部分和最后一个工作环节。
设施废弃处置,不仅涉及拆除技术、费用,而且涉及海洋环境的保护。
油气田设施弃置不仅要遵守国内有关法律、法规,而且需要履行国际公约所承担的义务。
三、海上油气开采工程系统构成海洋石油工程建设的目的是为油气田生产提供必要的生产设施,主要有海上生产设施、油气储运设施及陆地终端三个部分。
1.海上生产设施海上生产设施是指建立在海上的建筑物。
由于海上设施是用于海底油气开采工作,加上海洋水深及海况的差异、油气藏类型和储量的不同、开采年限不一,因此海上生产平台类型众多。
基本上可分为海上固定式生产设施(导管架式平台、重力式平台和人工岛以及顺应塔型平台)、浮式生产设施(潜式平台、TLP、SPAR 及FPSO等)、水下生产设施等三大类。
2.油气储运设施海上油田原油的储存和运输,基本上有两种:储油设施安装在海上,采用运输油轮将原油直接运往用户;或利用安装海底输油管道将原油从海上输送到岸上的中转储油库,然后再用其他运输方式运往用户。
海上气田的气一般采用海底长输管线进行外输到岸上终端,然后再用其他运输方式运往用户。
3.陆地终端陆上终端是建造在陆地上,通过海底管线接收和处理海上油气田或油气田群开采出来的油、气、水或其混合物的油气初加工厂,是海上终端的延伸。
它一般设有原油或轻油脱水与稳定、天然气脱水、轻烃回收和污水处理以及原油、轻油、液化石油气储运等生产设施,并有供热、供排水、供变电、通讯等配套的辅助设施与生活设施。
因此它具有大规模集中处理和储存油气,几乎不受气候影响的优点。
第二章海上油气生产系统海上油气田开发具有高投入、高风险、高科技、高收益等特点,选择合适的生产设施和生产技术是减少海上油气生产投入的关键。
为此,世界各大石油公司研制第二节主要平台形式海洋平台主要是用于海洋石油勘探、开发,由于海洋水深和其他海况相差悬殊,因此海洋平台也设计成很多种,以更好的适应具体环境。
依据其结构形式的不同,将其分为:导管架平台、重力式平台、顺应塔式平台、自升式平台、半潜式平台、张力腿平台、浮式柱状海洋平台(以下称为SPAR)以及FPSO等八种,如上图所示。
一、导管架平台导管架平台是通过打桩的方法将钢质导管架式平台固定于海底的一种固定式平台。
导管架平台是最早使用的,也是目前技术最成熟的一种海上平台。
迄今为止世界上建成的大、中型导管架式海洋平台已超过2000座。
导管架平台主要由三部分组成:上部模块、导管架和桩基础。
导管架平台的技术特点:1)导管架平台主要由杆件组成。
各杆件相交处形成了杆结点结构,由于结点的几何形状复杂并受焊接影响,故其应力集中系数很高,容易发生各种形式的破坏。
对杆节点的校核是导管架分析的重要环节,API等规范对管节点的设计都有明确要求。
2)导管架是刚性结构,是靠自身的结构刚性来抵制外部载荷的,一般要求导管架不能随着波浪的冲击而大幅摆动。
所以当水深越深时,要达到结构要求的刚性,必须增加材料,以致成本会成几何级数增长。
所以,导管架结构不适合在较深的海域。
3)随着工程技术水平的发展,导管架形式越来越多。
4)导管架平台的分析计算一般包括就位、装船、运输、吊装、地震、疲劳等,需根据这一系列工况的分析和计算,最终确定结构形式及构件尺寸。
5)导管架的形式很大程度上取决于当地的运输及海上安装能力及设备。
如海上吊装能力足够大,则导管架设计成吊装下水形式;如吊装能力不够,则导管架必须设计成滑移下水形式,需要专用的带滑道的下水驳船。
导管架平台的优点:1)技术成熟、可靠;2)在浅海和中深海区使用较为经济,尤其在浅海的边际油田,导管架平台有较强的成本优势;3)海上作业平稳、安全。
导管架平台的缺点:1)随着水深的增加,导管架平台的造价成指数级增长,所以不能继续向深水发展,一般适用于水深200米以内的油气田;2)海上安装工作量大,制造和安装周期长;3)当油田预测产量发生变化时,对油田开发方案调整的灵活性较差。
二、半潜式平台半潜式生产平台是用于深海钻井及采油的一种平台型式,最初由半潜式钻井平台改造而成,由于其非常适合深水开发,现在的半潜式生产平台一般为新建平台,主要集中在墨西哥湾、北海和巴西海域,最深水深将达到2414米。
半潜式平台一般选择适用的水下生产系统,并利用FPSO觧决原油的贮运问题。
除常规的动力系统和公用系统外,半潜式生产平台包括:船体和甲板系统、锚泊定位系统、生产系统和立管等,综合生产平台可能还有钻完井系统。
三、张力腿平台张力腿平台是一种垂直系泊的顺应式平台。
1954年,美国的R.O.Marsh率先提出了采用倾斜系泊索群固定的张力腿平台方案。
1984年,Conoco公司在北海148米水深的Hutton油田安装了世界上第一座张力腿平台。
在此后20多年中,张力腿平台得到飞速发展,在建和在役的张力腿平台共有23座,大部分在墨西哥湾,最深工作水深达1425米。
张力腿平台通常简称TLP,它由上部设施、甲板、柱型船体、浮筒、张力腿构成,船体通过由钢管组成的张力腿与固定于海底的锚桩相连。
船体的浮力使得张力腿始终处于张紧状态,从而使平台保持垂直方向的稳定。
根据张力腿平台结构形式进化的阶段,大致可以将它们分为第一代张力腿平台和第二代张力腿平台。
第一代张力腿平台又称为传统类型的张力腿平台,这种平台一般由4~6根立柱和连接立柱的浮筒组成。
张力腿与立柱的数量关系一般是一一对应的,每条张力腿由2至4根张力筋腱组成,上端固定在平台本体上,下端与海底基座模板相连,或是直接接连在桩基顶端。
第二代张力腿平台出现于20世纪90年代初期,它在保持了传统类型张力腿平台优良的稳定性和良好的经济效益同时,同时又降低了建造成本,使张力腿平台更适合于深海环境。
可分为三大系列:-......................................................................................................................................... A tlantia公司的SeaStar系列单柱式张力腿平台;-......................................................................................................................................... M ODEC公司的Moses系列张力腿平台;-......................................................................................................................................... A BB公司的延伸式张力腿平台(ETLP)。
虽然张力腿平台种类、形式繁多,但总体上仍可将其按结构分成五部分:平台上部结构、立柱(含横撑、斜撑)、浮体(含沉箱)、张力腿、锚固基础。
平台上部结构是指TLP底甲板以上的部分,其上设有生产、生活设备和设施。
张力腿平台的系泊方式一般采用垂直系泊的张力腿系统。
张力腿系泊系统不仅控制着平台与井口的相对位置,还对其安全性起着决定性的作用。
张力腿平台的系泊系统主要由两部分组成:-......................................................................................................................................... 张力腿(Tendon):张力腿一般是由空心钢管构成,直径从610毫米到1100毫米不等,厚度在20毫米到35毫米。