2019年全国高中数学联赛四川省预赛-附答案解析
2019-2020学年人教A版四川省蓉城名校联盟高三第二学期第二次联考(文科)数学试卷 含解析

2019-2020学年高三第二学期第二次联考数学试卷(文科)一、选择题1.已知集合A={﹣1,1,3,4},集合B={x|x2﹣4x+3>0},则A∩B=()A.{﹣1,4}B.{﹣1,1,4}C.{﹣1,3,4}D.(﹣∞,1)∪(3,+∞)2.已知复数z=,则|z|=()A.1B.C.2D.33.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知实数0<a<b,则下列说法正确的是()A.>B.ac2<bc2C.lna<lnb D.()a<()b5.已知命题p:x<2m+1,q:x2﹣5x+6<0,且p是q的必要不充分条件,则实数m的取值范围为()A.m>B.m≥C.m>1D.m≥16.若数列{a n}为等差数列,且满足3+a5=a3+a8,S n为数列{a n}的前n项和,则S11=()A.27B.33C.39D.447.已知α,β是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是()A.若m⊂α,n⊂β,且α⊥β,则m⊥nB.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βC.若m⊥α,n∥β,且α⊥β,则m⊥nD.若m⊥α,n∥β,且α∥β,则m⊥n8.已知抛物线y2=20x的焦点与双曲线﹣=1(a>0,b>0)的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A.B.C.D.9.如图,在△ABC中,=,P是BN上的一点,若m=﹣,则实数m 的值为()A.B.C.1D.210.已知实数a>0,b>1满足a+b=5,则+的最小值为()A.B.C.D.11.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三形三边的数对(x,y)的个数a;最后再根据统计数a估计π的值,那么可以估计π的值约为()A.B.C.D.12.已知=(2sin,cos),=(cos,2cos),函数f(x)=•在区间[0,]上恰有3个极值点,则正实数ω的取值范围为()A.[,)B.(,]C.[,)D.(,2]二、填空题13.实数x,y满足,则z=2x+y的最大值为.14.在△ABC中,若a:b:c=2:3:4,则最大内角的余弦值为.15.已知直三棱柱ABC﹣A1B1C1中,∠ABC=,AB=4,BC=CC1=2,则异面直线AB1与BC1所成角的余弦值为.16.已知函数f(x)=﹣x3+x+a,x∈[,e]与g(x)=3lnx﹣x﹣1的图象上存在关于x轴对称的点,则a的取值范围为.三、解答题:共70分。
2019年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
2019年全国高中数学联赛试题及答案

说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)如图,在锐角ABC D 中,M 是BC 边的中点.点P 在ABC D 内,使得AP 平分BAC .直线MP 与,ABP ACP D D 的外接圆分别相交于不同于点P 的两点,D E .证明:若DE MP =,则2BC BP =.证明:延长PM 到点F ,使得MF ME =.连接,,BF BD CE .由条件可知BDP BAPCEP CEM === = . ………………10分 因为BM CM =且EM FM =,所以BF CE =且//BF CE .于是F CEM = = ,进而BD BF =. ………………20分 又DE MP =,故DP EM FM ==.于是在等腰BDF D 中,由对称性得BP BM =.从而22BC BM BP ==. ………………40分二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++.求f 的最小值0f .并确定使0f f =成立的数组122019(,,,)a a a 的个数. 解:由条件知2017222221220182019212()i i i f a a aaa a +==++++-å.①由于12,a a 及2(1,2,,2016)i i a a i +-=均为非负整数,故有221122,a a a a ³³,且222()(1,2,,2016)i i i i a a a a i ++-³-=.于是201620162221221222017201811()()i i i i i i a a a a a a a a a a ++==++-³++-=+åå.②………………10分参考答案及评分标准 2019年全国高中数学联合竞赛加试(A 卷)由①、②得2222017201820192017201820192()f a a a a a a ³++-++, 结合201999a =及201820170a a ³>,可知()22220172017201712(99)992f a a a ³+-++22017(49)74007400a =-+³.③………………20分另一方面,令1219201920211920220191,(1,2,,49),99k k a a a a a k k a +-+========, 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30分以下考虑③的取等条件.此时2017201849a a ==,且②中的不等式均取等,即121a a ==,2{0,1}(1,2,,2016)i i a a i +-Î=.因此122018149a a a =£££=,且对每个(149)k k ££122018,,,a a a 中至少有两项等于k .易验证知这也是③取等的充分条件对每个(149)k k ££,设122018,,,a a a 中等于k 1k n +,则k n 为正整数,且1249(1)(1)(1)2018n n n ++++++=124n n n +++=该方程的正整数解1249(,,,)n n n 的组数为1968,且每组解唯一对应一个使④取等的数组122019(,,,)a a a ,故使0f f =立的数组122019(,,,)a a a 有481968C 个.………………40分三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.证明:不妨设12,a a 互素(否则,若12(,)1a a d =>,则1a d 与2ad互素,并且用123,,,a a a d d d代替123,,,a a a ,条件与结论均不改变). 由数列递推关系知234(mod )a a a m || ººº.① 以下证明:对任意整数3n ³,有2212((3))(mod )n a a a n a m m º-+-.②………………10分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有212(mod )k ma ma m -º,结合归纳假设知112122((3))k k k a a ma a a k a m ma +-=-º-+--2212((2))(mod )a a k a m º-+-,即1n k =+时②也成立.因此②对任意整数3n ³均成立. ………………20分注意,当12a a =时,②对2n =也成立.设整数,(2)r s r s >³,满足1r s a a a ==. 若12a a =,由②对2n ³均成立,可知2212212((3))((3))(mod )r s a a r a m a a a a s a m m -+-º=º-+-,即1212(3)(3)(mod )a r a a s a m ||+-º+-,即2()0(mod )r s a m ||-º.③若12a a ¹,则12r s a a a a ==¹,故3r s >³.此时由于②对3n ³均成立,故类似可知③仍成立. ………………30分我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为234,,,a a a 的公因子,而12,a a 互素,故p 1a ,这与1r s a a a ==矛盾.因此,由③得0(mod )r s m ||-º.又r s >,所以r s m ||-³.………………50分四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(,)G V E =是一个简单图,且G 是连通的,则G 含有||2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分). 引理的证明:对E 的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设4E ≥,并且结论在E 较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含||2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中21,,,k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:1deg()2v ≥.由于P 是最长路,1v 的邻点均在2,,k v v 中,设1i v v E ∈,其中3i k ≤≤.则121{,}i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形2:1deg()1v =,2deg()2v =.则1223{,}v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形3:1deg()1v =,2deg()3v ≥,且2v 与4,,k v v 中某个点相邻.则1223{,}v v v v是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有2E -条边.情形4:1deg()1v =,2deg()3v ≥,且2v 与某个13{,,,}k u v v v ∈/ 相邻.由于P 是最长路,故u 的邻点均在2,,k v v 之中.因122{,}v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -条边.引理获证. ………………20分 回到原题,题中的V 和E 可看作一个图(,)G V E =.首先证明2795n ≥.设122019{,,,}V v v v = .在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如1311216,,,v v v v v v ),共连了26115C 1815-=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤⎢=⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795. ………………30分另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有1,,k m m 个点,及1,,k e e 条边.下面证明1,,k e e 中至多有979个奇数.反证法,假设1,,k e e 中有至少980个奇数,由于12795k e e ++= 是奇数,故1,,k e e 中至少有981个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然12981,,,2m m m ≥ .令9812k m m m =++≥ ,则有2C 1980)(i m i e i ≥≤≤,2981C m k e e ≥++ ,故98022112795C C imk i i i m e ===≤+∑∑. ① 利用组合数的凸性,即对3x y ≥≥,有222211C C C C x y x y +-+≤+,可知当1980,,,m m m 由980个2以及一个59构成时,980221C C imm i =+∑取得最大值.于是 98022225921C C C 980C 26912795imm i =≤=<++∑, 这与①矛盾.从而1,,k e e 中至多有979个奇数. ………………40分对每个连通分支应用引理,可知G 中含有N 个两两无公共边的角,其中1111979(2795979)908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上,所求最小的n 是2795. ………………50分2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e .由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 .答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24y x =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分。
2019年全国高中数学联赛试题及答案

2019年全国高中数学联赛一、填空题(每小题8分,共64分,) 1. 函数x x x f 3245)(---=的值域是 .2. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 .3. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存有常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα .4. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 .5. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .6. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin .7. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分)9. (16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.10.(20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.11.(20分)证明:方程02523=-+x x 恰有一个实数根r ,且存有唯一的严格递增正整数数列}{n a ,使得+++=32152a a a r r r .解 答1. ]3,3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-.2. 1223≤≤-a 提示:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即 t a at t g )3()(3-+-=.由3)3(3-≥-+-t a at ,0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即3)(2-≥+t t a . (1)当1,0-=t 时(1)总成立;对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t .从而可知 1223≤≤-a . 3. 9800 提示:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为98009848512=+⨯.3 提示 :设}{n a 的公差为}{,n b d 的公比为q ,则,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有βα+=-+-19log )1(63n n 对一切正整数n 都成立,即βα+-=-9log )1(36n n 对一切正整数n 都成立. 从而βαα+-=-=9log 3,69log ,求得 3,33==βα,333+=+βα.5. 41-提示:令,y a x =则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以412213)21()(2min -=-⨯+=y g ;当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 1217提示:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.提示:解法一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=B A B .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x z x BA m ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x B x A B n 由此可设 )3,1,0(),1,0,1(==,所以cos m n m n α⋅=⋅,即2cos cos αα=⇒=. 所以 410sin =α. 解法二:如图,PB PA PC PC ==11, . 设BA 1与1AB 交于点,O则1111,,OA OB OA OB A B AB ==⊥ .11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E .连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11,即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 336675 提示:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知OEPC 1B 1A 1CBA100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.9. 解法一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得)21(4)1(2)0(23f f f a '-'+'=.所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 所以38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38. 解法二:c bx ax x f ++='23)(2. 设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g .设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h .容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . 从而当11≤≤-z 时,22)()(0≤-+≤z h z h , 即21434302≤++++≤c b a z a , 从而 0143≥+++c b a ,2432≤z a ,由 102≤≤z 知38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a10. 解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.由(1)知直线AB 的方程为)2(30-=-x y y y ,即 2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即012222002=-+-y y y y . (3)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+=]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=.定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==.220209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314=.当且仅当20202249y y -=+,即0y =,A B 或A B -时等号成立. 所以,ABC ∆面积的最大值为7314. 解法二:同解法一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t6572+-=t ,66((33A B +或A B -时等号成立.所以,ABC ∆面积的最大值是7314. 11.令252)(3-+=x x x f ,则056)(2>+='x x f ,所以)(x f 是严格递增的.又043)21(,02)0(>=<-=f f ,故)(x f 有唯一实数根1(0,)2r ∈.所以 32520r r +-=,3152r r -=4710r r r r =++++.故数列),2,1(23 =-=n n a n 是满足题设要求的数列. 若存有两个不同的正整数数列 <<<<n a a a 21和 <<<<n b b b 21满足52321321=+++=+++ b b b a a a r r r r r r , 去掉上面等式两边相同的项,有+++=+++321321t t t s s s r r r r r r ,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的.不妨设11t s <,则++=++<21211t t s s s r r r r r ,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.加 试1. (40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.2. (40分)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r =(1)(()),2l f f r l -≥.证明:存有正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.3. (50分)给定整数2n >,设正实数12,,,n a a a 满足1,1,2,,k a k n ≤=,记12,1,2,,kk a a a A k n k+++==.求证:1112n nk k k k n a A ==--<∑∑. 4. (50分)一种密码锁的密码设置是在正n 边形12n A A A 的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?解 答1. 用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ . 因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO r KO r=-+-,同理()()22222QK QO r KO r =-+-,所以 2222PO PK QO QK -=-, 故OK ⊥PQ . 由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ②M1MC DE APCD EA PM⋅⋅=. ③ 由①,②,③可得NB MC BD CD =, 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆.注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅, ⑤⑤-④,得2PK PE PC AK KE =⋅-⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ). 注2:若点E 在线段AD 的延长线上,完全类似.2. 记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法. 当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭为整数. 假设命题对1(1)v v -≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+,这里,0i α=或者1,1,2,i v v =++.FE QPONM K DCBA于是()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭2122k k k =+++ 11211212(1)2()222v v v v v v v ααα-++++=+++⋅++⋅+++ 12k '=+, ① 这里1121122(1)2()22v v v v v v v k ααα-++++'=++⋅++⋅+++. 显然k '中所含的2的幂次为1v -.故由归纳假设知,12r k ''=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明.3. 由01k a <≤知,对11k n ≤≤-,有110,0k n i i i i k ak a n k ==+<≤<≤-∑∑.注意到当,0x y >时,有{}max ,x y x y -<,于是对11k n ≤≤-,有11111kn n k i i i i k A A a a n k n ==+⎛⎫-=-+ ⎪⎝⎭∑∑ 11111n ki i i k i a a n k n =+=⎛⎫=-- ⎪⎝⎭∑∑ 11111max ,nk i i i k i a a n k n =+=⎧⎫⎛⎫<-⎨⎬ ⎪⎝⎭⎩⎭∑∑ 111max (),n k k nk n ⎧⎫⎛⎫≤--⎨⎬ ⎪⎝⎭⎩⎭ 1k n=-, 故 111n n nkk n k k k k a A nA A ===-=-∑∑∑ ()1111n n n k n k k k AA A A --===-≤-∑∑ 111n k k n -=⎛⎫<- ⎪⎝⎭∑12n -=.4. 对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母能够依次确定点23,,,n A A A 上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍.设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j -⎡⎤≤≤⎢⎥⎣⎦.选择2i 条边标记a 的有2i n C 种方法,在余下的边中取出2j 条边标记b 的有22j n i C -种方法,其余的边标记c .由乘法原理,此时共有2i n C 22j n i C -种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪ ⎪ ⎪⎝⎭∑∑. ① 这里我们约定001C =.当n 为奇数时,20n i ->,此时22221202n i j n i n i j C -⎡⎤⎢⎥⎣⎦---==∑. ②代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦----====⎛⎫ ⎪== ⎪ ⎪⎝⎭∑∑∑∑ 0022(1)(21)(21)n nkn k k n k k n n nn k k C C --===+-=++-∑∑ 31n =+.当n 为偶数时,若2n i <,则②式仍然成立;若2n i =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪= ⎪ ⎪⎝⎭∑∑()122210412n i n i n i C ⎡⎤-⎢⎥⎣⎦--=⎛⎫ ⎪⨯+ ⎪ ⎪⎝⎭∑()2221024233n i n i n n i C ⎡⎤⎢⎥⎣⎦--==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n +种;当n 为偶数时有33n +种.。
【竞赛试题】2019年全国和高中数学联赛试卷及答案

æ 4ö 【竞赛试题】2019 年全高中数学联合竞赛一试(B 卷) 参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 已知实数集合{1, 2, 3, x } 的最大元素等于该集合的所有元素之和,则 x 的 值为 .答案:-3 .解:条件等价于1, 2, 3, x 中除最大数以外的另三个数之和为 0 .显然 x < 0 , 从而1 + 2 + x = 0 ,得 x = -3 .2. 若平面向量 a = (2m , -1) 与 b = (2m -1, 2m +1) 垂直,其中 m 为实数,则 a 的 模为 . 答案: 10 . 解:令 2m = t ,则 t > 0 .条件等价于 t ⋅ (t -1) + (-1) ⋅ 2t = 0 ,解得 t = 3 .因此 a 的模为 32 + (-1)2 = 10 .3. 设a , b Î (0, p ) ,cos a , cos b 是方程5x 2 -3x -1 = 0 的两根,则sin a sin b 的 值为. 答案:7 .5解:由条件知 cos a + cos b = 3 , cos a cos b = - 1,从而5 5(s i n a sin b )2 = (1- c os 2 a )(1- c os 2 b ) = 1- cos 2 a - cos 2 b + cos 2 a cos 2 b2 2= (1+ cos a cos b )2 - (cos a + cos b )2 = ÷ æ 3ö - = 7 . ç ÷ ç ÷ çè 5 ø çè5ø 25又由a , b Î (0, p ) 知sin a sin b > 0 ,从而sin a sin b = 7.54. 设三棱锥 P - ABC 满足 PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的 体积的最大值为 .答案: 2 6 .3解:设三棱锥 P - ABC 的高为 h .取M 为棱 AB 的中点,则h £ PM = 32 -12 = 2 2 .当平面 PAB 垂直于平面 ABC 时, h 取到最大值 2 2 .此时三棱锥 P - ABC 的体r n -rnn积取到最大值 1S⋅= 1 ⋅ = 2 6 .3 D ABC3 35. 将 5 个数 2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 . 答案:95 . 解:易知 2, 0, 1, 9, 2019 的所有不以 0 为开头的排列共有 4´ 4! = 96 个.其中, 除了 (2, 0, 1, 9, 2019) 和 (2019, 2, 0, 1, 9) 这两种排列对应同一个数 20192019 ,其余 的数互不相等.因此满足条件的 8 位数的个数为96 -1 = 95 .6. 设整数 n > 4 ,( x + 2 的值为. 答案:51. y -1)n 的展开式中x n -4 与 xy 两项的系数相等,则 nn解:注意到 ( x + 2 y -1)n= år =0C n x (2 y -1)r . 其中 x n -4 项仅出现在求和指标 r = 4 时的展开式 C 4 x n -4 (2 y -1)4中,其 x n -4 项系数为 (-1)4 C 4 = n (n -1)(n - 2)(n -3) .n24而 xy 项仅出现在求和指标 r = n -1 时的展开式 C n -1x ⋅ (2y -1)n -1 中,其 xy 项系数为 n -1 2 n -3 n -3C n C n -1 4⋅ (-1) = (-1) 2n (n -1)(n - 2) .因此有 n (n -1)(n - 2)(n - 3)= (-1)n -3 2n (n -1)(n - 2) .注意到 n > 4 ,化简得24n - 3 = (-1)n -3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51 .7. 在平面直角坐标系中,若以 (r +1, 0) 为圆心、 r 为半径的圆上存在一点 (a , b ) 满足b 2 ³ 4a ,则 r 的最小值为.答案: 4 .解:由条件知 (a - r -1)2 + b 2 = r 2 ,故4a £ b 2 = r 2 - (a - r -1)2 = 2r (a -1) - (a -1)2 . 即 a 2 - 2(r -1)a + 2r +1 £ 0 . 上述关于 a 的一元二次不等式有解,故判别式(2(r -1))2 - 4(2r +1) = 4r (r - 4) ³ 0 ,解得 r ³ 4 .经检验,当 r = 4 时, (a , b ) = (3, 2 3) 满足条件.因此 r 的最小值为 4 .8. 设等差数列{a n } 的各项均为整数,首项 a 1 = 2019 ,且对任意正整数 n ,总 存在正整数 m ,使得 a 1+ a 2 ++ a n = a m .这样的数列{a n } 的个数为.答案:5 .解:设{a n } 的公差为 d .由条件知 a 1 + a 2 = a k ( k 是某个正整数),则2a 1 + d = a 1 + (k -1)d ,a 1即 (k - 2)d = a 1 ,因此必有 k ¹ 2 ,且d =k - 2.这样就有 a = a + (n -1)d = a + n -1a , n 1 1 k - 2 1í而此时对任意正整数 n ,a +a++ a = a n + n (n -1) d = a + (n -1)a + n (n -1) d 1 2 n 1 2 1 12æ n (n -1) ö = a + (n -1)(k - 2) + d ,确实为{a n } 中的一项.ç 1 çè 2 ø 因此,仅需考虑使 k - 2| a 1 成立的正整数 k 的个数.注意到 2019 为两个素数3 与 673 之积,易知 k - 2 可取-1, 1, 3, 673, 2019 这5 个值,对应得到5 个满足条 件的等差数列.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆G 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.解:不妨设平面直角坐标系中椭圆 G 的标准方程为 x2y 2+= 1 (a > b > 0) ,并记 c = a 2 b 2a 2 -b 2 .由对称性,可设 F 为 G 的右焦点. 易知 F 到 G 的左顶点的距离为 a +c ,到右顶点的距离为 a - c ,到上、下顶点的距离均为 a .分以下情况讨论:(1) A , B 分别为左、右顶点.此时a + c = 3, a - c = 2 ,故 AB = 2a = 5 (相应地,b 2= (a + c )(a - c ) = 6 ,G 的方程为4 x 2y 2+ = 1 ). …………………4 分25 6(2) A 为左顶点,B 为上顶点或下顶点.此时 a + c = 3, a = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 3 ,所以 AB =a 2 +b 2= 7(相应的 G 的方程为 x + y = 1 ).4 3…………………8 分(3) A 为上顶点或下顶点, B 为右顶点.此时 a = 3, a - c = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 8 ,所以 AB =a 2 +b 2 = 17(相应的 G 的方程为 x + y= 1 ).9 8…………………12 分综上可知, AB 的所有可能值为5, 7, 17 . …………………16 分10. (本题满分 20 分)设 a , b , c 均大于 1,满足ìïlg a + log b c = 3, ïîlg b + log a c = 4. 求 lg a ⋅ lg c 的最大值.解:设lg a = x , lg b = y , lg c = z ,由 a , b , c >1可知 x , y , z > 0 . 由条件及换底公式知 x + z = 3, y + z= 4 ,即xy + z = 3y = 4x . y x…………………5 分。
2020年全国高中数学联赛四川预赛试题及答案

2020 年全国高中数学联赛试题
1. 四川预赛试题及其解答 2020.6.14
一、填空题: 本大题共 8 小题, 每小题 8 分, 满分 64 分.
1.
设
△ABC
的外接圆的圆心为
O,
且
3−O→A
+
−−→ 4OB
+
−−→ 5OC =
0,
则
∠C
的大小是
.
解: 设
−→ OA
=
−−→ OB
=
−−→ OC
这是一个漂亮的对称不等式, 齐一次, 带分式, 由于 λ 未知, 首先要猜出 λ 的值: 取 c = 1, a + b = 1, a > b, 则
a3
b3
c3
1
(b − c)2 + (c − a)2 + (a − b)2 ≥ λ (a + b + c) ⇒ 2λ ≤ 1 + (1 − 2b)2 , 0 < b < 1,
由柯西不等式
a4
b4
c4
a(b − c)2 + b(c − a)2 + c(a − b)2
× a(b − c)2 + b(c − a)2 + c(a − b)2
2
≥
a4 a(b − c)2
· a(b
− c)2
+
b(c
b4 − a)2
·
b(c
−
a)2
+
c4 c(a −
b)2
·
c(a
−
b)2
= a2 + b2 + c2 2,
则 a + b = 3. 8. 用 [x] 表示不超过实数 x 的最大整数, 若数列 {an} 满足:
2020年全国高中数学联赛(四川预赛)试题及参考答案

a3 (b c)2
b3 (c a)2
c3 (a b)2
(a
b c) .
求 的最大值.
解:取 a 1 ,b 1 , c 2 ,其中 0 1 .
2
2
6
(1 +)3 则 2
(1 )3 2
(2 )3
(1 +)3 2
1 2
(1 3 )2 ( 1)2 (2 )2 (1 3 )2 2
2
2
2
对任意的(0 1)成立. 6
注意到当
0+
(1 +)3 时, 2
(1 3 )2
1 2
2
1,
2
所以, 1 .
......5 分
另一方面,下证: =1成立,即证
a3 (b c)2
b3 (c a)2
c3 (a b)2
(a b c)
.
不妨设 a b c ,则可令 a=c x,b c y ,其中 x y 0 .
设 A(x1 ,y1) , B(x2 ,y2 ) ,则 x1 x2 k , x1x2 1.
过点 A(x1 ,y1) 的抛物线 y x2 的切线方程是 y y1 2x1(x x1) ,
由 y1 x12 ,代入可得 y 2x1x x12 .
过点 B(x2 ,y2 ) 的抛物线 y x2 的切线方程是 y 2x2 x x22 ,
所以,问题得证.
......15 分 ......20 分
参考答案及评分标准 (第 4 页,共 4 页)
令
k2
1 t ( t ≥1 ),则 d
| t2 1 2|
2
t
3
≥2
3
3
t
2 2t
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国高中数学联赛四川省预赛学校:___________姓名:___________班级:___________考号:___________1.设正六边形ABCDEF 的边长为1,则()()AB DC AD BE +⋅+=______ .2.双曲线22221x y a b-=的右焦点为F ,离心率为e ,过点F 且倾斜角为3π的直线与该双曲线交于点A 、B ,若AB 的中点为M ,且|FM |等于半焦距,则e =_____ . 3.满足(a +bi )6=a -bi (其中a ,b ∈R ,i 2=-1)的有序数组(a ,b )的组数是_____ . 4.已知正四棱锥Γ的高为3,侧面与底面所成角为3π,先在Γ内放入一个内切球O 1,然后依次放入球234,,,O O O ,使得后放入的各球均与前一个球及Γ的四个侧面均相切,则放入所有球的体积之和为_____ .5.设一个袋子里有红、黄、蓝色小球各一个现每次从袋子里取出一个球(取出某色球的概率均相同),确定颜色后放回,直到连续两次均取出红色球时为止,记此时取出球的次数为ξ,则ξ的数学期望为_____ .6.已知a 为实数,且对任意k ∈[-1,1]当x ∈(0,6]时,6lnx +x 2-8x +a ≤kx 恒成立,则a 的最大值是_____ .7.已知数列{a n }满足:()*1(22n n n a n ⎡⎤=+∈⎢⎥⎣⎦N ,其中[x ]表示不超过实数x 的最大整数.设C 为实数,且对任意的正整数n ,都有121nk k k a a =+∑C ,则C 的最小值是_____ . 8.若正整数n 使得方程33n x y z +=有正整数解(x ,y ,z ),称n 为“好数”.则不超过2019的“好数”个数是_____ .9.设点A 的坐标为(0,3),点B 、C 为圆22:25O x y +=上的两动点,满足∠BAC =90°,求△ABC 面积的最大值.10.设a ,b ,c ∈(0,1],λ1λ+()()()111a b c ---恒成立,求λ的最大值.11.已知函数f (x )=xlnx -ax 2,a ∈R .(1)证明:当1<x <3时,22()21(3)e ex f x ax x x +-+>-;(2)设函数F(x)=|f(x)|(x∈[1,e])有极小值,求a的取值范围.参考答案1.-3 【解析】 【分析】 【详解】如图所示,建立平面直角坐标 系设C (1,0),则11,22B A ⎛⎛-⎝⎭⎝⎭,11,,,22D E ⎛⎛- ⎝⎭⎝⎭.于是1(1,0),22AB DC ⎛⎫+=+ ⎪ ⎪⎝⎭3,22⎛= ⎝⎭,(1,(1,(0,AD BE +=+-=-,于是3()()(0,32AB DC AD BE ⎛+⋅+=⋅-=- ⎝⎭.故答案为:3-. 2【解析】 【分析】 【详解】设点()()()112200,,,,,A x y B x y M x y ,则2222112222221,1x y x y a b a b-=-=.两式相减,得()()()()12121212220x x x x y y y y a b +-+--=,所以AB的斜率为20122120b x y y k x x a y -===-又||,3FM c xFM π=∠=,所以M点的坐标为3,22c c ⎛⎫ ⎪ ⎪⎝⎭. 所以22b a=001x =,所以c e a ===. 3.8 【解析】 【分析】 【详解】令z =a +bi ,则6z z =,从而6||||||z z z ==. 于是||0z =或者||1z =.当||0z =时,z =0,即a =b =0,显然(0,0)符合条件; 当||1z =时,由6z z =知72||1z z z z =⋅==,注意到z 7=1有7个复数解.即有7个有序实数对(a ,b )符合条件. 综上可知,符合条件的有序实数对(a ,b )的对数是8. 故答案为:8. 4.1813π 【解析】 【分析】 【详解】设侧面与底面所成角为θ.记球O i 的半径为r i ,体积为V i ,i =1,2,3,…. 因为1cos 2θ=,故1113cos r h r r θ=+=,即1113r h ==. 定义12n n s r r r =+++,由于132(2)n n r h s n -=-,所以()132n n n r r r +-=,即113n n r r +=,所以113n n r -⎛⎫= ⎪⎝⎭.故333111431343i n nni i i i i V r ππ-===⎛⎫==⋅ ⎪⎝⎭∑∑∑,所以118lim13ni n i V π→∞==∑. 故答案为:1813π. 5.12 【解析】 【分析】 【详解】设所求数学期望为E ,第一次取出的球的颜色分别为红、黄、蓝的取法的次数ξ的数学期望为E (a )、E (b )、E (c ).则E (b )=E (c ).因为第一次取出的球的颜色为红、黄、蓝的概率是相同的,所以()2()3E a E b E +=,①先考虑第一次取出的球是红色的,若第二次取出的球是红色的,则操作结束;若不然,第一个为红球,第二个球的颜色为黄或蓝,忽略第一个球,剩下的取球方式可以视为一种新的取法(即第一个球的颜色是黄或蓝),则12()2(1())33E a E b =⨯++② 再考虑第一次取出的球的颜色是黄或蓝,忽略第一个球,剩下的取球方式可以视为一种新的取法,则()1E b E =+③ 由①、②、③,解得E =12. 故答案为:12. 6.6-6ln 6 【解析】 【分析】 【详解】由题意,对k ∈[-1,1],6ln 8x akx x x++-在x ∈(0,6]时恒成立,所以,6ln 18x ax x x-++-在x ∈(0,6]时恒成立, 即a ≤-x 2-6lnx +7x 在x ∈(0,6]时恒成立.设h (x )=-x 2-6lnx +7x ,x ∈(0,6],则max min ()a h x =. 所以6(23)(2)()27x x h x x x x'---=--+=. 因为x >0,所以当3,22x ⎛⎫∈⎪⎝⎭时,h '(x )>0,h (x )为增函数; 当x ∈30,2⎛⎫ ⎪⎝⎭和(2,6]时h '(x )<0,h (x )为减函数.所以h (x )的最小值为32h ⎛⎫⎪⎝⎭和h (6)中的较小者. 3939(6)6ln 6ln 612ln 202424h h ⎛⎫-=-+=+> ⎪⎝⎭,所以min ()(6)66ln 6h x h ==-,从而a 的最大值是6-6ln 6. 故答案为:66ln 6-. 7.1288【解析】 【分析】 【详解】记1222x x ==112nn n a x ⎡⎤=+⎢⎥⎣⎦.记12nnn T x x =+,则()21211214n n n n n T x x T x x T T T +++=+-=+,而()22211221212124,218T x x T x x x x x x =+==+=+-=,因此,对任意的正整数n ,T n ∈Z .又注意到1202-<<,从而212x <,于是21111222nn n nx -+-<<.因此,1211111122n n nnn n nx x x a x +-<+-<+11112n n x ⎛⎫=+-++ ⎪⎝⎭121n n x x <++. 又注意到12121,,1nnnnn x x a x x +-++均为整数,故12nnn a x x =+. 于是214n n n a a a ++=+,且124,18a a ==.又1221212411144k k kk k k k k k k k a a a a a a a a a a a +++++++-=⋅=⋅1121114k k k k a a a a +++⎛⎫=- ⎪⎝⎭, 故11211211114nn k k k k k k k k a a a a a a ==++++⎛⎫=- ⎪⎝⎭∑∑12121114n n a a a a ++⎛⎫=- ⎪⎝⎭12112884n n a a ++=-.显然a n >0,于是214n n a a ++>,从而224(2)n n a a n -,故121lim0n n n a a →∞++=.因此,1211288nk k k a a =+<∑,且1211lim 288n n k k k a a →∞=+⎛⎫= ⎪⎝⎭∑. 所以,常数C 的最小值为1288. 故答案为:1288. 8.1346 【解析】 【分析】 【详解】首先易知若n 为“好数”,则n +3也是“好数”又显然1、2是“好数”,从而当1,2(mod3)n ≡时,n 均为“好数”.由费马(Fermat )大定理知:333x y z +=无正整数解,即3不是“好数”.于是n =3k (k ∈N *)都不是“好数”.否则,存在k ∈N *,使得3k 是“好数”,即方程333kx y z+=有正整数解(x ,y ,z 0),从而333x y z +=有正整数解()000,,kx y z ,矛盾!故当且仅当n 满足1,2(mod3)n ≡时,n 为“好数”.所以,不超过2019的“好数”个数是2201913463⨯=. 故答案为:1346.9 【解析】 【分析】 【详解】如图所示,设()()1122,,,B x y C x y ,P (x ,y )为线段BC 的中点.则121225y x =+①222225x y +=②()()1212330x x y y +--=③12122,2x x x y y y +=+=④由①、②、③、④可知:2238x y y +-=,即222322x y ⎛⎫⎛⎫+-= ⎪ ⎪ ⎪⎝⎭⎝⎭.所以,线段BC 的中点P 的轨迹是⊙O 1,其方程为:222322x y ⎛⎫⎛⎫+-= ⎪ ⎪ ⎪⎝⎭⎝⎭.于是113||22AP AO O P +=+, 从而△ABC 面积1||||2S AB AC =⋅()221||||4AB AC +221||||4BC AP ==234125222⎛++= ⎝⎭, 当点P 的坐标为30,2⎛ ⎝⎭时,上式可取到等号.所以,△ABC 面积的最大值是252+. 10.6427【解析】 【分析】 【详解】一方面,取14a b c ===时,得6427λ. 另一方面,6427λ=641(1)(1)(1)27a b c +---. 事实上,注意到:3(1)(1)(1)13a b c a b c ++⎛⎫---- ⎪⎝⎭,令a +b +c =3x 2,其中x >0,则0<x ≤1.只须证()321641127x x +-33164(1)(1)27xx x x -⇔-+ 23641(1)(1)27x x x ⇔-+(*) 由均值不等式知:32321(1)(1)27(1)3x x x x x x +⎛⎫-+=- ⎪⎝⎭612(1)33276x x x ⎛⎫+⎛⎫+-+ ⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭2764=. 于是23646427(1)(1)1272764x x x -+⨯=,故(*)成立. 综上可知,λ的最大值是6427.11.(1)证明见解析(2)10e a <<或11e 2a << 【解析】 【分析】 【详解】(1)设2()()2ln 2g x f x ax x x x x =+-+=-+,则()ln g x x '=.当1<x <3时,g '(x )>0,因此,g (x )在(1,3)上单调递增,所以,()(1)1g x g >=;设()(3)e x h x x =-,则()(2)e xh x x '=-.当1<x <2时,h '(x )>0; 当2<x <3时,h '(x )<0因此,h (x )在(1,2)上单调递增,在(2,3)上单调递减. 所以,h (x )的最大值为h (2)=e 2,即0<(3-x )e x ≤e 2.所以2110(3)e ex x >-. 又因为f (x )+ax 2-x +2>1,所以22()21(3)e exf x ax x x +-+>-. (2)2ln ()|()|,[1,]xF x f x xa x e x==-∈. 令ln (),[1,]x t x a x e x =-∈,则21ln ()xt x x'-=. 当x ∈[1,e ]时,t '(x )≥0,故t (x )在[1,e ]上单调递增. 于是t (1)≤t (x )≤t (e ),即1()ea t x a --. (i )当-a ≥0,即a ≤0时,t (x )≥0,于是2()ln ,[1,e]F x x x ax x =-∈, 则()ln 120F x x ax '=+->,从而F (x )在[1,e ]上单调递增. 所以,F (x )在[1,e ]上无极值点. (ii )当10ea -<,即1e >a 时,t (x )<0,于是2()ln ,[1,]F x ax x x x e =-∈.则()2ln 1F x ax x '=--,1()2F x a x''=-,因为11,1e x ⎡⎤∈⎢⎥⎣⎦, ①当2a ≥1,即12a 时,F "(x )≥0,故F '(x )在[1,e ]上单调递增. 又因为F '(1)=2a -1≥0,故F (x )在[1,e ]上单调递增,所以,F (x )在[1,e ]上无极值点. ②当11e 2a <<时,由1()20F x a x ''=-得1e 2x a. 于是F '(x )在11,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,e 2a ⎡⎤⎢⎥⎣⎦上单调递增. 又因为F '(1)=2a -1<0,F '(e )=2ae -2>0,故存在0(1,e)x ∈,使得()00F x '=. 因此,F (x )在[)01,x 上单调递减,在(]0,x e 上单调递增.所以,F (x )在[1,e ]上有一个极小值点(iii )当1e a =时,2()ln 1e F x x x '=--,由21()0e F x x ''=->得e 2x >. 于是F '(x )在1,2e ⎡⎤⎢⎥⎣⎦上单调递减,在,2e e ⎡⎤⎢⎥⎣⎦上单调递增. 又2(1)10,(e)0eF F ''=-<=,从而F '(x )≤0在[1,e ]上恒成立. 所以,F (x )在[1,e ]上无极值点(iv )当10e a <<时,因为t (x )在[1,e ]上单调递增,于是存在x 0∈(1,e ),使得00ln x a x =. 因此,当[]01,x x ∈时,t (x )≤0;当[]0,e x x ∈时,t (x )≥0. 从而2020ln ,1()ln ,e ax x x x x F x x x ax x x ⎧-=⎨-<⎩于是0021ln ,1()ln 12,e ax x x x F x x ax x x --⎧=+-<⎩'⎨令2()ln ,[1,]k x ax x x x e =-∈,则()2ln 1k x ax x '=--.下面证明k '(x )≤0,即证2ax ≤lnx +1,即ln 12x a x+.又2ln 1ln 0x x x x '+⎛⎫=-< ⎪⎝⎭,故min ln 12e x x +⎛⎫= ⎪⎝⎭. 即证1ea ,所以结论成立,即k '(x )≤0. 注意到()01,[1,]x e ⊂,故F (x )在[)01,x 上单调递减,在(]0,e x 上单调递增. 因此,0x 为F (x )的极小值点综上所述,当10e a <<或11e 2a <<时,F (x )在[1,e ]上有极小值点.。