传感器原理与应用论文模板
传感器的原理及其应用论文范文

传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。
传感器是一种用于检测和测量环境中各种物理量的设备。
它们广泛应用于工业、医疗、环境保护、军事等领域。
本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。
以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。
当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。
通过测量电流的大小,可以得知光的强度和特性。
光电传感器广泛应用于自动化控制、安防和光通信等领域。
2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。
常见的温度传感器包括热电偶和热电阻。
热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。
热电阻则根据电阻值随温度变化的特性来测量温度。
温度传感器广泛应用于气象、工业过程控制和家用电器等领域。
2.3 压力传感器压力传感器用于测量压力的大小。
它们通过将压力转化为力或位移,再测量这些参数来得知压力。
常见的压力传感器包括电阻应变式传感器和压电传感器。
电阻应变式传感器根据压力引起的电阻变化来测量压力。
压电传感器则利用压电效应,将压力转化为电荷来测量压力。
压力传感器广泛应用于工业自动化、汽车、航空航天等领域。
2.4 气体传感器气体传感器用于检测环境中的气体浓度。
常见的气体传感器包括气敏传感器和红外线传感器。
气敏传感器基于物质与气体之间的化学反应来测量气体浓度。
红外线传感器利用气体对红外线的吸收特性来测量气体浓度。
气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。
3. 传感器的应用传感器在各个领域都有广泛的应用。
以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。
例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。
传感器原理与应用论文

《传感器原理与应用》课程结业论文院系:理学院班级:T1003-2姓名:陆磊学号:20100030204专业:光信息科学与技术(光电子技术)2013年11月生物传感器的应用与发展摘要:随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展当今各发达国家都把生物传感器列为二十一世纪的关键技术,给予高度的重视。
生物传感器不仅广泛应用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和发酵工程等领域广泛应用[1]。
关键词:生物传感器;应用;发展1、生物传感器简介1.1 生物传感器的原理生物传感器是以固定化生物活性物质(酶、蛋白质、微生物、DNA及生物膜等)作敏感元件与适当的物理或化学换能器有机结合而组成的一种先进分析检测装置[2]。
酶等生物体材料和物理化学器件相结合,构成生物传感器。
但酶易溶于水,故不适用于传感器[3]。
生物传感器的传感原理框图如下所示,其构成包括两部分:生物敏感膜和换能器。
被分析物扩散进入固定化生物敏感膜层,经分子识别发生生物学反应,产生的信息继而被相应的化学换能器或物理换能器转变成可定量和可处理的电信号,再经检测放大器放大并输出,便可知道待测物浓度。
生物敏感膜又称分子识别原件,他们是生物传感器的关键元件(表1),直接决定传感器的功能与质量。
依生物敏感膜所选材料不同,其组成可以是酶、核酸、免疫物质、全细胞、组织、细胞器或它们的不同组合,近年来还引入了高分子聚合物模拟酶,使分子识别元件概念进一步延伸。
换能器的作用是将各种生物的、化学的和物理的信号转换成电信号。
生物学反应过程产生的信息是多元化的,微电子学和传感器技术的现代成果为检测这些信息提供了丰富的手段,使得研究者在设计生物传感器时换能器的选择有足够的回旋余地[4 ]。
1.2 生物传感器的分类[5]2、生物传感器的应用[8]近年来,随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。
传感器原理以及应用的论文

传感器原理以及应用1. 介绍传感器是一种能够感知和测量环境中各种物理量和化学量的设备或装置,广泛应用于工业、农业、医疗和消费电子等领域。
本文将介绍传感器的工作原理以及其在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于不同的物理效应,常见的工作原理包括电阻、电容、电感、磁阻、热敏、光敏、声敏和化学敏感等。
2.1 电阻传感器电阻传感器是基于材料的电阻随外界物理量变化而变化的原理工作的。
常见的电阻传感器包括压力传感器、温度传感器和光敏电阻等。
2.2 电容传感器电容传感器是基于材料的电容随外界物理量变化而变化的原理工作的。
常见的电容传感器包括湿度传感器和接近传感器等。
2.3 电感传感器电感传感器是基于材料的电感随外界物理量变化而变化的原理工作的。
常见的电感传感器包括接近传感器和速度传感器等。
2.4 磁阻传感器磁阻传感器是基于材料的磁阻随外界物理量变化而变化的原理工作的。
常见的磁阻传感器包括磁力传感器和角度传感器等。
2.5 热敏传感器热敏传感器是基于材料的电阻随温度变化而变化的原理工作的。
常见的热敏传感器包括温度传感器和热流量传感器等。
2.6 光敏传感器光敏传感器是基于材料的电阻或电压随光线强度变化而变化的原理工作的。
常见的光敏传感器包括光电传感器和光纤传感器等。
2.7 声敏传感器声敏传感器是基于材料的电阻或电压随声音强度变化而变化的原理工作的。
常见的声敏传感器包括声压传感器和声音传感器等。
2.8 化学敏感传感器化学敏感传感器是基于材料的电阻或电压随化学物质浓度变化而变化的原理工作的。
常见的化学敏感传感器包括气体传感器和化学传感器等。
3. 传感器的应用传感器在各个领域都有广泛的应用,以下列举了一些常见的应用场景。
3.1 工业自动化•温度传感器用于监测和控制工业过程中的温度变化。
•压力传感器用于测量液体或气体的压力,用于流量控制和工艺控制。
•光电传感器用于检测和计数生产线上的物体,实现自动包装和分拣。
传感器原理及应用论文

传感器原理及应用论文传感器是一种能够感知、接收并转换某种能量或物理量的装置,它可以将非电信号转换为电信号,或者将一种形式的能量转换为另一种形式的能量。
传感器在现代科技领域中扮演着至关重要的角色,应用范围涵盖了工业生产、医疗设备、环境监测、智能家居等诸多领域。
本文将就传感器的原理及其在各个领域的应用进行探讨。
首先,让我们来了解一下传感器的工作原理。
传感器的工作原理主要包括感受外界信息、将信息转换为可测量的信号、信号的放大和处理、最终输出结果等几个步骤。
以温度传感器为例,当温度发生变化时,传感器内部的电阻值也会相应发生变化,这样的变化会引起电路中电压、电流等参数的变化,最终被转换为数字信号输出。
而光敏传感器则是利用光电效应将光信号转换为电信号输出。
传感器的工作原理可以简单概括为“感知-转换-输出”。
其次,传感器在工业生产中的应用十分广泛。
比如在自动化生产线上,各类传感器可以监测生产过程中的温度、压力、流量等参数,实时反馈给控制系统,从而实现对生产过程的精准控制。
在机械制造领域,传感器也扮演着重要角色,比如在机床上安装位移传感器,可以实时监测工件的位置,保证加工精度。
此外,传感器在汽车制造、航空航天、化工等领域也有着广泛的应用,为工业生产提供了可靠的技术支持。
除了工业生产,传感器在医疗设备中也发挥着不可替代的作用。
例如,心率传感器可以实时监测患者的心率变化,血氧传感器可以监测血氧饱和度,体温传感器可以监测患者的体温变化。
这些传感器的应用,为医生提供了重要的生理参数,帮助医生及时了解患者的身体状况,为诊断和治疗提供了重要依据。
此外,传感器在环境监测领域也发挥着重要作用。
比如大气传感器可以监测大气中的温度、湿度、气压等参数,水质传感器可以监测水质的PH值、浊度等参数,土壤传感器可以监测土壤的湿度、养分含量等参数。
这些传感器的应用,有助于科学家们更好地了解自然环境的变化,为环境保护和资源利用提供了重要数据支持。
传感器的基本原理及应用领域论文

传感器的基本原理及应用领域一、传感器的基本原理传感器是一种能够感知和测量某种物理量并将其转化为可用信号的设备。
传感器的工作原理通常基于不同的物理现象,如电磁感应、压力变化、声波传播等。
以下是几种常见的传感器工作原理:1. 光电传感器光电传感器利用物体对光的反射、散射或吸收的变化来检测物体的存在、位置或其他属性。
光电传感器包括光敏电阻、光电二极管和光电晶体管等。
它们通过光敏元件的电阻、电流或电压的变化来感知光的强度或改变。
2. 温度传感器温度传感器是测量物体的温度变化的设备。
常用的温度传感器有热电偶、热电阻和半导体温度传感器。
热电偶通过两个不同金属的焊接点之间产生的温差来测量温度变化。
热电阻则是通过材料的电阻随温度变化而产生的变化来测量温度。
半导体温度传感器利用半导体材料的电阻随温度的变化来测量温度。
3. 压力传感器压力传感器是测量物体受力或气体液体压力的设备。
它们根据物体受力或压力改变导致的变形或变量来测量压力。
常见的压力传感器有电阻式、电容式和压阻式传感器。
电阻式传感器是将变形或变量转化为电阻改变来测量压力。
电容式传感器则是将变形或变量转化为电容改变来测量压力。
压阻式传感器则是测量物体受力产生的压阻值来获得压力信息。
二、传感器的应用领域传感器在各个领域都有广泛的应用,以下列举了几个常见的应用领域:1. 工业自动化传感器在工业自动化中发挥着关键作用。
例如,温度传感器可以用于监测和控制工业过程中的温度变化。
压力传感器可以用于监测液体或气体管道中的压力变化。
光电传感器可以用于检测物体的存在和位置,实现自动化的装配和分拣。
2. 医疗健康传感器在医疗健康领域的应用越来越广泛。
例如,心率传感器可以测量人体的心跳情况,用于心率监测和心脏疾病检测。
血压传感器可以测量人体的血压水平,用于高血压和低血压的监测和治疗。
体温传感器可以测量人体的体温,用于发热疾病的检测和监测。
3. 环境监测传感器在环境监测中发挥着重要作用。
传感器原理及应用结课论文

传感器原理及应用结课论文第一篇:传感器原理及应用结课论文《传感器原理及应用》结课论文学院: 专业: 姓名: 学号: 指导教师:1.传感器的地位和作用传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
它是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
在生活中人的五官分别产生视觉、听觉、味觉、嗅觉、触觉,但是在研究自然界的现象和规律及生产活动中,人的五官运动不够,这就需要传感器来检测人们的器官所不能感知的现象。
人们把与人的“五官”相似的部分称为“电五官”。
现代科学技术使人类社会进入了信息时代,来自自然界的物质信息都需要通过传感器进行采集才能获取。
如图1-1所示,人们把电子计算机比作人的大脑,把传感器比作人的五种感觉器官,执行器比作人的四肢。
尽管传感器与人的感觉器官相比还有许多不完善的地方,但传感器在诸如高温、高湿、深井、高空等环境及高精度、高可靠性、远距离、超细微等方面所表现出来的能力是人的感官所不能代替的。
传感器的作用包括信息的收集、信息数据的交换及控制信息的采集三大内容1.1传感器的应用有以下几个方面1)传感器在工业检测和自动控制系统中的应用在石油、化工、电力、钢铁、机械等工业生产中需要及时检测各种工艺参数的信息,通过电子计算机或控制器对生产过程进行自动化控制,如下图所示,传感器是任何一个自动控制系统必不可少的环节。
2)传感器在汽车中的应用目前,传感器在汽车上不只限于测量行驶速度、行驶距离、发动机旋转速度以及燃料剩余量等有关参数,而且在一些新设施中,如汽车安全气囊、防滑控制等系统,防盗、防抱死、排气循环、电子变速控制、电子燃料喷射等装置以及汽车“黑匣子”等都安装了相应的传感器。
汽车传感器的原理及应用论文范文

汽车传感器的原理及应用论文范文引言汽车传感器是汽车电子系统中的重要组成部分,通过监测和测量汽车各种参数,可以提供给汽车控制单元(ECU)有关车辆性能、安全性和环境指标的重要信息。
本文将介绍汽车传感器的原理及其在汽车行业中的应用。
1. 汽车传感器的分类根据测量参数的不同,汽车传感器可以分为以下几类:1.1 温度传感器温度传感器用于测量发动机冷却液、排气气体、空气等的温度。
这些温度数据对于发动机的正常工作非常重要。
1.2 压力传感器压力传感器被用来测量燃油压力、涡轮增压压力和轮胎气压等。
这些参数的监测可以确保发动机的燃烧效率和安全性。
1.3 速度传感器速度传感器用于测量车辆的行驶速度。
这些速度数据可用于制动系统、车速控制系统和防抱死刹车系统等。
1.4 液位传感器液位传感器被用于测量燃油、冷却液和刹车液等的液位。
这些数据可以用于车辆的燃油管理和维护。
1.5 氧气传感器氧气传感器被用于测量汽车尾气中的氧气含量,以便控制发动机的燃烧过程和排放水平。
2. 汽车传感器的工作原理汽车传感器的工作原理主要涉及传感元件和信号处理电路。
2.1 传感元件传感元件是汽车传感器的核心部件,根据不同的测量参数,可以采用不同的传感器技术,如电阻传感器、电容传感器、压电传感器、霍尔传感器等。
2.2 信号处理电路传感器所获得的信号通常是微弱的模拟信号,需要通过信号处理电路进行放大、过滤和模数转换等处理,以适应汽车电子系统对信号的要求。
3. 汽车传感器的应用汽车传感器在汽车行业中的应用非常广泛,主要包括以下几个方面:3.1 发动机管理系统引擎控制单元(ECU)使用各种传感器来监测发动机的温度、压力、氧气含量等参数,并根据这些数据调整燃料喷射、点火时机和进气量等,以提高燃烧效率和降低排放。
3.2 制动系统制动系统中的传感器可监测刹车液位、刹车片磨损程度和车速等参数,以确保刹车系统的安全性和可靠性。
3.3 安全气囊系统安全气囊系统中的传感器可检测车辆碰撞的冲击力和方向,从而触发安全气囊的膨胀和释放,以保护乘车人员的安全。
传感器的原理及其应用论文

传感器的原理及其应用论文摘要本论文主要介绍了传感器的原理及其在各个领域中的应用。
首先,论文阐述了传感器的定义和基本原理。
接着,详细讨论了各种类型传感器的工作原理,包括光学传感器、压力传感器、温度传感器等。
随后,论文探讨了传感器在环境监测、医疗领域、智能交通系统、工业生产等领域的应用案例。
最后,论文总结了传感器的发展趋势和未来的研究方向。
1. 引言传感器是一种能够感知环境中各种物理量并将其转化为可用信号的设备。
它是现代科技中不可或缺的一部分,广泛应用于各个领域。
本章将介绍传感器的基本概念,以及其在不同领域中的重要性和应用前景。
2. 传感器的定义和基本原理2.1 定义传感器是一种能够感知并感知环境中某种物理量,并将其转化为可以用来测量、监测或控制的其他形式的信号的设备。
2.2 基本原理传感器的基本原理是通过感受外部物理量的变化,并将其转化为可测量的电信号或其他形式的输出信号。
传感器通常包括感受部件、转换部件、输出部件和电路部分。
3. 传感器类型及其工作原理3.1 光学传感器光学传感器是一种利用光学原理检测并测量环境物理量的传感器。
它通过感受环境中光线的变化来判断目标物体的位置、颜色、形状等特征。
光学传感器工作原理可分为透射式光电传感器、反射式光电传感器和光纤传感器等。
3.2 压力传感器压力传感器是用于测量系统中气体或液体压力的传感器。
它通过感受被测介质对传感器施加的力来转化为电信号输出。
按其测量原理可分为机械式压力传感器、电阻式压力传感器和微电子压力传感器等。
3.3 温度传感器温度传感器是用于测量环境中温度变化的传感器。
常见的温度传感器有热电偶、热电阻和半导体温度传感器等。
这些传感器通过测量物体的温度并将其转化为电流或电压信号来实现温度测量。
4. 传感器的应用案例4.1 环境监测传感器在环境监测中起着重要的作用。
例如,大气压力传感器可以用于气象学研究和天气预报,土壤温湿度传感器可以用于农业生产监测,水质传感器可以用于水环境监测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《传感器原理与应用》课程结业论文院系:理学院班级:T1003-2姓名:**学号:***********专业:光信息科学与技术(光电子技术)2013年11月生物传感器的应用与发展摘要:随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展当今各发达国家都把生物传感器列为二十一世纪的关键技术,给予高度的重视。
生物传感器不仅广泛应用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和发酵工程等领域广泛应用[1]。
关键词:生物传感器;应用;发展1、生物传感器简介1.1 生物传感器的原理生物传感器是以固定化生物活性物质(酶、蛋白质、微生物、DNA及生物膜等)作敏感元件与适当的物理或化学换能器有机结合而组成的一种先进分析检测装置[2]。
酶等生物体材料和物理化学器件相结合,构成生物传感器。
但酶易溶于水,故不适用于传感器[3]。
生物传感器的传感原理框图如下所示,其构成包括两部分:生物敏感膜和换能器。
被分析物扩散进入固定化生物敏感膜层,经分子识别发生生物学反应,产生的信息继而被相应的化学换能器或物理换能器转变成可定量和可处理的电信号,再经检测放大器放大并输出,便可知道待测物浓度。
生物敏感膜又称分子识别原件,他们是生物传感器的关键元件(表1),直接决定传感器的功能与质量。
依生物敏感膜所选材料不同,其组成可以是酶、核酸、免疫物质、全细胞、组织、细胞器或它们的不同组合,近年来还引入了高分子聚合物模拟酶,使分子识别元件概念进一步延伸。
换能器的作用是将各种生物的、化学的和物理的信号转换成电信号。
生物学反应过程产生的信息是多元化的,微电子学和传感器技术的现代成果为检测这些信息提供了丰富的手段,使得研究者在设计生物传感器时换能器的选择有足够的回旋余地[4 ]。
1.2 生物传感器的分类[5]生物传感器主要有下面三种分类命名方式:(1)根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器(enzymesensor),微生物传感器(microbialsensor),细胞传感器(organallsensor),组织传感器(tis-suesensor)和免疫传感器(immunolsensor)。
显而易见,所应用的敏感材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体。
(2)根据生物传感器的换能器即信号转换器分类有:生物电极(bioelectrode)传感器,半导体生物传感器(semiconductbiosensor),光生物传感器(opticalbiosensor),热生物传感器(calorimetricbiosensor),压电晶体生物传感器(piezoelectricbiosensor)等,换能器依次为电化学电极、半导体、光电转换器、热敏电阻、压电晶体等。
(3)以被测目标与分子识别元件的相互作用方式进行分类有生物亲和型生物传感器(affinitybiosensor)、代谢型或催化型生物传感器。
三种分类方法之间实际互相交叉使用。
2、生物传感器的应用[8]近年来,随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。
生物传感器的强大生命力不仅在于它具有特异的生物分子识别功能[6],这是任何其它敏感材料如金属、半导体等难以达到的,而且还在于它与现代的物理化学方法相结合,产生一种灵敏、专一、微量、快速和准确的“无试剂”的检测分析方法[7]。
2.1 空间生命科学发展中的应用空间飞行对生命系统产生重大影响的问题很多。
如调查在微重力环境和空间飞行中对大鼠生命的影响,必须在一段长时间内允许它们相对自由行动中进行。
这些研究用现在的仪器检测技术和数据收集系统是无法做到的,而可植入的生物传感器和微型生物遥测术的结合在这方面有着巨大的发展潜力。
可以预计可植入生物体内传感器和生物遥测技术的结合将使得灵活方便地远距离测量连续在线的资料获得成为可能。
关于它的研究将推动现代医学和空间生命科学的迅速发展。
2.2 食品工业中的应用生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。
食品成分分析:在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。
已开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中葡萄糖的含量。
食品添加剂的分析:亚硫酸盐通常用作食品工业的漂白剂和防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸含量。
此外,也用生物传感器测定色素和乳化剂。
它是基于细胞质基因组的反应,通过光学系统传输信号,已达到的检测极限为16.2 ng/mL 。
一天可以检测20个牛奶样品。
2002 年,Morales等研究的一种聚四氟乙烯- 酪氨酸酶生物传感器可以测量食物中的安息香酸,原理是基于安息香酸对酶的抑制作用。
该生物传感器的电极可以长时间稳定运行,并且它的专一性好,在同时含有众多其他物质的食物中可以准确地检测安息香酸的浓度而不受影响。
用该生物传感器对两类不同的样品进行了测量:高度不沾水的蛋黄酱和可乐类饮料,不需要任何样品的处理过程,其结果令人满意。
2.3 环境监测领域的应用大气环境监测中,SO2是酸雨酸雾形成的主要原因,传统的检测方法很复杂。
Marty等人将亚细胞类脂类固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,可对酸雨和酸雾样品溶液进行检测。
生化需氧量的测定是监测水体被有机物污染状况的最常用指标,常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测。
一种紧凑的光学生物传感器也已经研制成功,能同时测量多种样品的BOD值,生物传感器在环境监测领域的应用主要有工业污染物、残留农药和环境微生物的检测。
生化耗氧量(biochemicaloxygendemand,BOD)是广泛应用的水中有机污染物测试标准。
除了生化耗氧量的测定以外,生物传感器还可以用于测定多种污染物的浓度。
一种安培生物传感器用于测量酚类化合物已经运用于纸浆厂的污水测定。
它是基于漆酶的抑制作用。
该生物传感器显示出相当好的稳定性,可以连续工作3个月。
传感器上的一种透析膜可以保护它不受污泥等影响,并且提供适合的工作环境。
这使得它可以用于测量一些复杂的样品,而不需要样品的处理过程。
2.4 发酵工程领域的应用在各种生物传感器中,微生物传感器最适合发酵工业诸多化学、生物参数的测定。
因为发酵过程中常存在对酶的干扰物质,并且,发酵液往往不是清澈透明的,不适用于光谱等方法测定。
而应用微生物传感器则极有可能消除干扰,并且,不受发酵液混浊程度的限制。
同时,由于发酵工业是大规模的生产,微生物传感器成本低、设备简单的特点使其在应用中具有更大的优势。
微生物传感器可用于原材料(如糖蜜、乙酸等)的测量和代谢产物(如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等)的测量。
测量的装置基本上都是由适合的微生物电极与氧电极组成,原理是利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。
2.5 在医学领域中的应用生物传感器在医学领域发挥着重大的作用。
生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型检测方法,而且,因其专一、灵敏、响应快等特点,在军事医学方面,也具有广阔的应用前景。
在临床医学中,酶电极是最早研制且应用最多的一种传感器。
利用具有不同生物特性的微生物代替酶,可制成微生物传感器。
免疫传感器等生物传感器可用来检测体液中的各种化学成分,为医生的诊断提供依据。
在军事医学中,对生物毒素地及时、快速检测是防御生化武器的有效措施,生物传感器除用于监测多种细菌、病毒及其毒素,还可以用来测量乙酸、乳酸、乳糖尿酸、抗生素、谷氨酸等各种氨基酸,以及各种致癌物质。
生物传感器技术的不断进步,必然要求不断降低产品成本,提高灵敏度、稳定性和延长使用寿命。
这些特性的改善也会加速生物传感器市场化、商品化的进程。
3、生物传感器的发展[9]3.1、生物传感器的发展过程生物传感器由生物识别元件和信息转换器件组成。
利用生物活性物质的分子识别功能,将其引起的化学或物理变化,借助转换器变换成电信号。
从广义上说仿生传感器是属于生物传感器的重要组成部分,因为在生物中有视觉、嗅觉、味觉、听觉和触觉等等。
所以生物传感器研究中的一个重要内容就是研究能代替这些感觉器官的生物传感器,称它为仿生传感器,也称它为以生物系统为模型的生物传感器。
五种感觉中有响应物理量光、力的视觉、听觉和触觉,也有响应化学物质的嗅觉和味觉,它们的响应机理是不同的,特别是嗅觉和味觉,其响应机理至今尚有很多问题仍不明确,但这些感觉都是分子识别、分子信息转移、传输和处理的过程。
通常认为分子识别时会导致神经脉冲的发生,引起界面膜电位的变化。
多年来利用一些生物材料、非生物材料或两者混合材料,来模仿生物系统,实现感官功能,研制一系列的仿生传感器。
这里列举一些例子。
嗅觉传感器不同于通常的气敏传感器。
气敏传感器只检测某种特定的气体,而嗅觉传感器具有对复杂的混合气体和气味的识别和检测能力,具有广泛的交叉灵敏性。
虽然目前对嗅觉的机理尚不甚清楚,但已知生物嗅觉组织的主要成分是磷脂酞胆碱、磷脂乙醇胺等磷脂材料,我们试验了磷脂材料,采用分子膜和分子自组装技术,制备仿生嗅敏膜,并同信息转换元件相结合,观察到对醇类气味的敏感性,最小检测到的乙醇气浓度,响应速度达秒。
目前国际上正在研制的嗅觉传感器是模拟哺乳动物鼻子识别气味的过程,称为“人工鼻”或“电子鼻”。
它包括取样系统、阵列式嗅觉传感器、信息处理系统和气味识别系统。
而关键是阵列式嗅觉传感器。
味觉传感器味觉是同时捕捉多种物质的复合感觉,同嗅觉一样,味觉的机理也不甚清楚。
国外学者采用胆固醇油酸脂与人工合成的氯化乙烯脂质混合成膜,其膜电位在不同的味道中是不同的。
由此可测定酸、甜、苦、辣以及啤酒、咖啡等味道。
这是用人工合成仿生脂质膜来模拟味觉,研制“人工舌”的一个例子。
一个完善的“人工舌”必须研制阵列式不同种类的人造合成脂质膜电极,感受不同味道,对味觉信息进行编码、综合图像处理和味觉识别研究。
视觉传感器近年来对仿生视觉传感器的研究已有很大进展。
细菌视紫红质上一种由生物体中提取出来的光敏染料,具有动物视觉染料视紫红质相似的功能,即具有光色互变和质子泵作用,响应速度快光牢度好,可反复使用。
已有人用它做成膜的光敏元件,构成成像体系,模拟视功能,是一种视觉传感器。
近年来在研究中提出对视觉神经系统进行人工仿真。
人从外界获取信息来自眼睛。
视网膜是一种多层的神经元互连处理网络,尽管其速度和精度低于现代计算机,但功能要比计算机强很多,研究这种光电子视网膜,就是一个绝好的视觉传感器。